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Unsteady Heat Conduction 

 

Hello everyone. So in last class we have derived the discretized algebraic equation for the steady 

state heat conduction equation using Finite Difference Equations as well as the energy balance 

method.  
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So let us see what we have done yesterday.  

   

   
 
   

   
   

So you can see that part of any interior point, if the node indices are m and n, then if this is the 

governing equation with the assumption that it is a two dimensional steady state heat conduction 

without heat generation, then either using finite difference approximation where we have used 

central difference scheme or using energy balance method, we can derive this equation.  

                                         

This is the algebraic equation okay. The unknown temperature will be at the central node, which 

is Tm,n. And this unknown temperature you can find using the neighbor nodal points. So you can 



see that these are discrete points, ((m,n)), (m +1, n) or ((m,n)+1). So we are solving this 

discretized algebraic equation at those nodal points. 

 

So the accuracy depends on the how refined mesh you have generated. So obviously if you use 

fine mesh or grid, then you will get good accuracy. So this, we are finding at the interior points, 

but these are boundary value problems. So we need to find the boundary condition as well.  
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So now we will see in next slide for a node at an internal corner with convection. So you can see 

these are boundaries and where this boundary are actually open atmospheric condition where you 

have temperature T∞ and the heat transfer coefficient h. So obviously the heat transfer will take 

place due to convection. Now at this corner point (n + 1), what will be the discretized algebraic 

equations. So let us derive it okay. We are considering the heat transfer from all the neighboring 

points to the central nodal poinTm,n as positive. So the energy balance equation without heat 

generation is 

∑ ( ) (   )

 

   

   

So you can write heat transfer q from (m –1, n) that is from the left neighbor point to ((m,n)) 

using Fourier’s law as 

 (     ) (   )   (  )
            

  
 



This we derived in the last class where the heat transfer area is (  ) and distance between the 

two nodal points is   . So from other points, let us say from ((m,n) + 1) to ((m,n)). So what 

would be the q? So it will be 

 (     ) (   )   (  )
            

  
 

This also we derived in earlier class. So in both the cases you can see that the heat transfer area is 

either    or   .  

 

But now you consider other 2 neighbor points like (m+1, n) or ((m,n)-1). You can see that heat 

transfer area is half of the earlier one okay. Because you have half channel, because this is your 

     and this is your     , because this part is open as it is a corner point. So now if we write 

 (     ) (   )   (
  

 
)
            

  
 

Here we are writing the heat transfer area to be 
  

 
 as it is half and the distance between these 2 

points is obviously  . Now in the other point, from (m+1, n) to ((m,n)), it will be 

 (     ) (   )   (
  

 
)
            

  
 

Here also the area is half and it is 
  

 
 and the distance is   . So these are heat inflow that is 

taking place due to conduction okay and we have used Fourier’s law of heat conduction. Now 2 

half lengths are there where heat transfer is taking place due to convection okay. As those areas 

are open to atmosphere so due to convection there will be heat transfer and that now let us write. 

So we will write for the vertical bouondary 

 ( ) (   )   (
  

 
) (       )   (

  

 
) (       ) 

( )  (   ) here means just the ambient to ((m,n)), As it is convection we have written heat 

transfer coefficient h, and the area here will be 
  

 
. Now T∞ is the ambient temperature. Now, 

here we are assuming obviously the region, inside this dotted line okay, the temperature is the 

average temperature and that lies at the center nodal point okay. That is Tm,n ((m,n)). So along 

this surface where convection is taking place, obviously your temperature is maintained at Tm,n 

because that is the average temperature.  

 



So that assumption anyway we have considered so it is valid to write that temperature difference 

is        . Because Tm,n is constant for this dotted line, and it is the average temperature and 

everywhere it is the same. So we can write Tm,n. Similarly from this surface, the horizontal 

corner surface if you consider there will be heat convection okay. So that is given by the 2
nd

 term 

in the equation of  ( ) (   ). There the area will be    but all other things will be constant. 

 

Now we will assume       okay, or uniform grid in both x and y directions. So now if we go 

to the energy balance equation and do the summation of all these  ( ) (   ) where i represents 

the neighboring points, we can write 

 (     ) (   )   (     ) (   )   (     ) (   )   (     ) (   )   ( ) (   )    

If we divide both sides by k/2 and write their expressions we will get the final expression as 

 (            )     (            )                           

 
    

 
(       )    

Let’s simplify it and write as 

                 (
    

 
  )                      

    

 
     

So this is the discretized algebraic equation for the node at an internal corner with convection 

okay.  So this case we have considered now take another type of boundary condition. So these all 

are, we are considering boundary conditions okay. Because when you are solving the interior 

points you need to solve for the boundary points as well depending on that boundary condition. 

So we are discretizing those boundary points.  
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Now you consider node at a plane surface with convection. So this is your plane surface and this 

is open to convection okay. T∞ and h okay. It is not a corner point. It is a plain surface and the 

heat convection is taking place. So heat transfer coefficient is h and temperature is T∞ and it is 

obviously boundary points at Tm,n. So at this point now how we will find that temperature. So we 

will use same energy balance okay. 

∑ ( ) (   )

 

   

   

So you can write 

 (     ) (   )   (  )
            

  
 

This is the same as we did for the earlier case. Now for other point (m,n + 1) to (m,n), we have 

half length right, because your area is half or 
  

 
 . So it will be 

 (     ) (   )   (
  

 
)
            

  
 

Similarly from (m,n-1), you can write similar expression because it is also half length 

 (     ) (   )   (
  

 
)
            

  
 

Now convection is taking place so we will write  ( ) (   )  okay. So now we have only 1 plane 

surface whose area is    as this vertical distance is    okay. So, 

 ( ) (   )     (       ) 



So now all summation you write. 

 (  )
            

  
  (

  

 
)
            

  
  (

  

 
)
            

  
    (       )    

Now assume      , and divides both sides by k/2. Then we will get 

 (            )                            
    

 
(       )    

So now you can rearrange, all the coefficient of Tm,n you can take in one place. So you can write 

         (
    

 
  )                     

    

 
     

So this is the final discretized algebraic equation for the condition of a node at a plane surface 

with convection. So second type of boundary condition we have discussed. Now another type of 

boundary condition we will consider next.  
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So that is your node at an external corner with convection. So you can see here, it is an external 

corner node, Tm,n and this side and this side are open to atmosphere and heat convection is taking 

place there, with ambient condition T∞ and h okay. So in this case let’s derive the heat transfer 

rate from (m-1, n) to (m,n). So area in this case it will be half okay. So it will be 
  

 
, and the 

distance will be    okay. So it will be 

 (     ) (   )   (
  

 
)
            

  
 

Similarly 



 (     ) (   )   (
  

 
)
            

  
 

Now all other neighbor nodes are not there. Only the heat convection is taking place. Here, we 

have 2 surfaces for convection, but heat transfer area will be half of the total area in both. So that 

you can consider the top surface that will be 
  

 
  as we are considering per unit width and for the 

right side surface it will be 
  

 
  okay. So that will be 

 ( ) (   )   (
  

 
) (       )   (

  

 
) (       ) 

So all the heat transfer to the nodal point (m,n) we have written. Now your summation will be 

zero. So that you write 

 (
  

 
)
            

  
  (

  

 
)
            

  
  (

  

 
) (       )   (

  

 
) (       )

   

Now let us assume that uniform grid so you can write       okay. So it will be 

(
 

 
) (            )  (

 

 
) (            )   (  )(       )    

Now divide both side by k/2 okay.  

                          
  (  )

 
(       )    

So now let us simplify it further, so all the Tm,n term will take together. 

        (
  (  )

 
  )             

  (  )

 
     

This is the discretized algebraic equation for the case of a node at an external corner with 

convection. So this type of boundary condition you may face while solving some of the problem. 

So along with the discretized equation for the interior point you need to solve these discretized 

boundary values too.  
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So now another type of boundary condition we will consider for a node at a plane surface with 

uniform heat flux okay. So you have a plane surface where uniform heat flux is there. So you can 

see uniform heat flux    we are considering on this surface okay, so for this particular nodal 

point (m,n) we will write 

∑ ( ) (   )

 

   

   

Now let’s write the heat transfer values 

 (     ) (   )   (  )
            

  
 

This is same as we did earlier. The area we can consider full. But for the top and bottom surface 

the area will be half as you can see in the figure. So it will be 

 (     ) (   )   (
  

 
)
            

  
 

Similarly, 

 (     ) (   )   (
  

 
)
            

  
 

And now there is a heat flux    which is acting on the area   . So that you can write 

 ( ) (   )       

So now you sum it up, so it will be 

 (  )
            

  
 (
  

 
)
            

  
  (

  

 
)
            

  
        



And again we will assume uniform grid so       okay and divide both sides by k/2. So let’s 

just write the simplified form this final equation.  

 (            )                            
     

 
   

Now all the Tm,n term we will write together. 

                               
     

 
   

This is the final discretized algebraic equation for the condition of a node at a plane surface with 

uniform heat flux. So today we have discussed different types of boundary conditions and we 

have tried to discretize the boundary condition at that nodal point Tm,n. So if you are solving the 

interior points, along with that equation you need to solve this boundary condition okay. So now 

all these conditions whatever we have considered all are steady state heat transfer. So only we 

have the considered governing equation 

   

   
 
   

   
   

But there are many situations where unsteady heat conduction takes place. Already you have 

solved 1D unsteady heat transfer and you have the analytical solution for that. But, when you 

solve 2D unsteady heat conduction, it is more complicated. So you do not have the analytical 

solution or exact solution for that. So you can go for either energy balance method or finite 

difference method for these kind of problem as analytical solutions are not directly available. So 

now we will consider two dimensional heat conduction with no heat generation. So let us 

consider that. 
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So now we are considering unsteady heat conduction where governing equation will be 

  

  
  (

   

   
 
   

   
) 

What is α? α is you know thermal diffusivity right, already you have derived thermal diffusivity, 

where 

  
 

  
 

where k is the thermal conductivity of the solid,   is the density and C is the heat capacity of the 

solid. So this is the two dimensional unsteady heat conduction equation with no heat generation 

and with constant properties as we have considered. This you can solve using finite difference 

approximation as well as the energy balance method. We will here consider the finite difference 

approximation and we will discretize this equation for an interior point. But you can discretize 

this as a homework using energy balance method as well as for the different boundary 

conditions.  

 

Now here you can see it is an initial boundary value problem. As you have a temporal term 

which is 
  

  
. To solve this type of problems you need initial condition that means at t=0, at all 

interior nodes you have to specify the temperature. And boundary values, already you know that 

you need to specify the boundary condition and accordingly you need to discretize the equation. 

 



So that means initial condition you need. So at t=0, you have to specify the T at all nodal points 

okay. Then after that you are marching in time okay. So you are actually from t to      or t to 

t1 then t1 to t2; that way you are marching in the time direction. 

 

So it is a marching problem okay. Initial value problem or marching problem where if you have a 

specified at t some values then at time t1, you are again finding the values then at t2 again you are 

finding the value. So that way you are marching in time direction and you are finding the values 

at different time levels okay. 

 

And the time between these two time points we will consider as    okay. So that is known as 

time step. So that means we will give the increment in the time direction as    okay. Like you 

have discretized in space coordinate    and   . Similarly, in time direction you need some 

points so that at those points you will find the temperature. 

 

And here the index we will use P okay. Where, P+1 is the new or current time level okay, and P 

will be the previous time level. So we are going from P to P+1 and we are trying to find the 

temperature at any nodal point (m, n) at time level P+1. So P is the index we are using in time 

direction, like we have used m and n in x and y direction as the indices. Similarly, at time level 

we are using P. 

 

So P+1 is the current time level at which we are interested to find the temperature and P is 

already known because we have already calculated the value at time level P. So, all the values of 

interior nodal points and boundary points are known at time level P. Using those values now we 

will find the temperature at P+1. So now here anyway the spacial discretization we have done for 

steady state heat conduction equation that you know. We have used central differencing scheme 

which is a second order spacial accuracy (  )  and (  ) . So now that we will not describe 

here. But now time derivative is there. So now you can discretize this time derivative either using 

forward time difference or backward time difference. Depending on that you will get either 

explicit scheme or implicit scheme. So first we will use forward time stepping and we will 

discretize that equation. So it is known as explicit discretization. 

 



We can use Taylor series expansion for  (    ) and just like spacial discretization we can get 

first derivative of temperature with time using forward differencing  

  

  
 
    
        

 

  
 

Here, P is the index in time and m and n are in space. So this is the forward time derivative. But 

for the spacial discretization we will use central difference okay. 
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So we had 

  

  
  (

   

   
 
   

   
) 

So now we are using explicit scheme that is forward time discretization and central differencing 

for space. So the discretized equation will be 

    
        

 

  
  (

      
       

        
 

(  ) 
 
      
       

        
 

(  ) 
) 

Here in the space discretization we are using values from the previous time level so that 

represents explicit scheme but if we use the values from the current time level P+1 then it will be 

backward differencing and we can call it implicit scheme. Here we assumed that we know the all 

the nodal values from the previous time step. So obviously you have already calculated at time 

step P. Hence all P time step temperatures are known. So we can write this 

    
        

  
   

(  ) 
(      

       
        

 )  
   

(  ) 
(      

       
        

 ) 



 

So this equation if you see in the right hand side at different nodal points means the main nodal 

point (m,n) as well as all the neighboring nodal points (m+1, n) or (m-1, n) or (m, n+1) or (m,n-

1), at all these points temperatures are known okay. So only unknown is     
    and that we are 

trying to find here. So let’s now assume that you have a uniform grid in both x and y direction. 

 

And if you make this assumption that        you can further simplify it. So now let’s define 

Fourier number  

   
   

(  ) 
 

It is dimensionless number and about this you have already learnt in a transient heat conduction. 

So you can write it 

    
        

    (      
       

        
 )    (      

       
        

 ) 

So we have written in terms of Fourier number. Now all the coefficient of Tm,n you take it 

together. So if you write that 

    
      (      

        
        

        
 )  (     )    

  

So it will be final discretized algebraic equation for the interior points for a unsteady heat 

conduction equation. 

 

You can see that you can easily solve because     
    is the only unknown. So     

    is in the left 

hand side. Right hand side all the terms are known, all the neighboring points and the nodal point 

at time level P, but there is a time restriction. Because explicit schemes are conditionally stable 

okay, it is not unconditionally stable okay. Implicit schemes are sometimes unconditionally 

stable but explicit scheme are conditionally stable only. So for that reason you cannot choose    

any value okay. Then during the solution, it may diverge okay. Otherwise it will oscillate, and it 

will diverge. So for that there is the Courant Friedrichs Lewy number, that is known as CFL 

criteria okay. The condition is that for the explicit scheme for this two dimensional case, the 

coefficient of     
   should be positive. So you should have  

   
 

 
 

    
   

(  ) 
 
 

 
 



So this is the time restriction. Now you can see that α, thermal diffusivity is constant for a 

particular solid. And if you have already done the meshing or made the grid then    and    are 

constants. And you cannot change them later. So only possible way you can satisfy this criterion 

is you change    okay. So    you have to choose from this condition okay. So because    you 

know, α you know, so    you choose such a way that this condition is satisfied okay. Then you 

will not get any problem in the convergence.  
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Now let’s say we choose 1D unsteady heat conduction. Then we can write 

    
      (      

        
 )  (     )    

  

This we can derive using the same discretization scheme. So here CFL condition will be 

   
   

(  ) 
 
 

 
 

So when you are choosing the time step    to solve these governing equations for given    and 

thermal diffusivity. Then you need to choose    so that this condition is satisfied. For two 

dimensional    
 

 
  and for 1D it will be    

 

 
 .  

 

So now you can see that we have written the discretized equation for interior points. Similar way 

for any boundary point you can find depending on the different boundary condition you can 

write the discretize equation. Then along with all these interior points discretize algebraic 



equation and the boundary points discretized equation you can solve it using different iteration 

techniques. So just one I will discuss here. 
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So we are writing this discretization equation for any nodal point (m,n). So there will be many 

points right (m,n). So if there are N number of points then obviously you will get N number of 

equations. N number of points mean in the x direction and in the y direction, if you consider total 

number of nodal points as N then we will get N number of algebraic equation. And that if you 

write then you can write in a matrix format and you can write in the form 

[ ][ ]  [ ] 

Where, A is the coefficient matrix. So for all the neighboring points and the nodal points you 

have some coefficient. So all that coefficients you can bring it in the A matrix. T is the unknown. 

It is the solution vector and C is the right hand side vector of constants okay. So which are 

already known okay. So if it is known term, so that you can take it right hand side. 

 

Now we will use implicit scheme which actually unconditionally stable. So you do not have any 

time restriction. 
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So let us use implicit method okay. So we will discretize the governing equation which is your 

unsteady heat conduction equation 

  

  
  (

   

   
 
   

   
) 

So similarly we will use for first order derivative 
  

  
 backward difference and this spacial 

discretization we will use central difference okay. Earlier in the explicit scheme, for the time 

derivative we have used forward difference. But in this case, we will use backward difference 

and we will discretize like this. So it will be 

    
        

 

  
  (

      
         

          
   

(  ) 
 
      
         

          
   

(  ) 
) 

So earlier case in explicit, you remember that we used only time level P in the right hand side, 

which is the previous time level. But in this case, we are using all these neighbor temperature 

and also the main point temperature at current time level P+1, which is unknown. So this is 

known as implicit scheme. So you can see here there are more than one unknown. But in the 

explicit scheme only one unknown was there     
    and all other neighbor nodes were at time 

level P. So those were known. 

 

Let’s discretize and write in a simple form. So if you take       and    
   

(  ) 
 we will get 

  (      
          

          
          

   )  (     )    
        

  



So now all the unknown terms we have written in the left hand side and the known term, which 

is at time level P, we have written in the right hand side. So this is the final discretized algebraic 

equation for the unsteady heat conduction equation using implicit discretization. So if you 

remember in the explicit scheme left hand side only one term was unknown. So that was     
    

and all right hand side term was at time level P. So it was easy to solve. But in this case now we 

have left hand side all are unknown terms. 

 

So for a given node if you discretize the equation you are going to get 5 unknowns. You can see 

that (m+1, n), (m-1, n), (m, n+1), (m, n-1) and (m,n). So at this 5 locations, 4 neighbor points and 

at nodal point you have unknown terms. So those we have written in the left hand side. And right 

hand side we have kept which is known. So this equation is for any interior point okay. 

 

So you can see that all these terms are having some coefficients like this is Fourier number here. 

And Tm,n which is the main nodal point also known as diagonal term. For diagonal term 

coefficient is 1 (     ). And in right hand side this is known term. Because you have 

already calculated at time level P. 

 

So this equation now you can solve using different methods. So say if you have a grid like this. 

So say let us say this is your (m,n). So it is (m+1, n). This is your (m-1, n) and this is your (m, 

n+1) and this is your (m, n-1) okay. So for each nodal point you are going to get this equation. 

So for (m,n) I have written. So if N numbers of points are there in the domain then you are going 

to get N equations and how many unknowns will be there. There will be N unknowns okay. 

 

And you can include the boundary points as well but different discretized equation you have to 

use like we have discussed today. So if you write all this unknown terms there will be N number 

of unknowns and you are going to solve for N equations. So you can use some direct method 

where you can construct a matrix and use it or you can use some Gauss Seidel method or Jacobi 

method. 

 

So let us discuss how we will solve okay.  
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So right hand side whatever we are writing that is known term. So if we use that we can write in 

this form okay. 

[ ][ ]  [ ] 

So all the coefficient you can keep in the A matrix okay. This is known as coefficient matrix 

okay and its sides will be NXN and temperature vector you will get okay. So that is solution 

vector which is unknown. So there we will write T1 to TN as the solution vector. And C, C is the 

right hand side vector, which is already known okay. That we are telling for each equation C1, C2 

up to CN you are going to get. Now you can write 

[ ]  [ ]  [ ] 

When solving by direct method [ ] we have to take to the right hand side we will write the 

inverse of [A] matrix. So if you have N number of unknown points then it will be a NXN matrix. 

So making its inverse will be very difficult.  

 

So another way you can find that is known as Gauss minus Seidel Iteration okay. So each finite 

difference equation is written in explicit such that its unknown nodal temperature appears alone 

on the left hand side. So you can see that all available temperature we will write at P + 1 and at 

known temperature is at P level. So in earlier equation this is your C right. It is your C and these 

are all A matrix we will find. And this is the diagonal term. So this is known as aii, because it is 

(m, n) point. So it is a called diagonal coefficient. So whatever best available values are there 



that you can take using   
   

. So you see if you have this grid and if you are solving this point 

say it is, let us say i point. 

 

So obviously you have already calculated at this point, this point and this point okay. But 

unknown are this point, because you have not found the temperature. So in this way whatever 

already you have found that you take in the current time level P +1 and whatever is unknown that 

you take at the previous time level okay, that is P. 

 

So using that if you iteratively solve then you are going to solve actually [ ][ ]  [ ] matrix. So 

we can write in this way 

  
    

  
   
 ∑

   

   
  
   

   

   

 ∑
   

   
  
 

 

     

 

You can see   
    for the main nodal point that is Ti and the coefficient is aii that is the diagonal 

coefficient. So you have to divide that, so 
  

   
  and Ci is the known term. So left hand side of the 

nodal term there were all neighbor points, and so those points you writing j = 1 to i -1, because j 

= 1 to i -1 means it will involve these points where already you have solved. 

 

So those are available at P+1 time level. So we are writing that at P+1 time level. So aij is the 

coefficient of each neighbor points and aii already we have divided which is the diagonal 

coefficient. Summation of j = i +1 to N means those terms are not solved yet. So those 

temperatures are available at time level P, previous time level \P. So that we are writing 

  
  where aij is again the coefficient of temperature and aii is the diagonal coefficient. 

 

So that way you can solve. And this is known as Gauss minus Seidel method. So it is easy to 

solve in this way because for each you do not need to build a matrix A and C only for each nodal 

point, you can solve this equation okay. Because whichever is known term already at P +1. So 

you take that and whatever is unknown, all not solved; that you take at time level P and 

iteratively you solve it unless it is converged. 

 

And this convergence we can write 



|  
      

 |    

P+1 is the current time level and P is the previous time level. If the difference between these two 

temperatures is much smaller than that means it is converged okay. So that condition you can use 

for this Gauss minus Seidel iteration to avoid the construction of A matrix and also its inverse is 

very difficult to find. So this method you can use for the implicit scheme. So today I will stop 

here. In the next class we will solve few example problems. Thank you. 


