Fundamentals of Conduction and Radiation
Prof. Amaresh Dalal
Department of Mechanical Engineering
Indian Institute of Technology - Guwahati

Lecture — 22
Unsteady Heat Conduction
Hello everyone. So in last class we have derived the discretized algebraic equation for the steady
state heat conduction equation using Finite Difference Equations as well as the energy balance
method.
(Refer Slide Time: 00:45)
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So let us see what we have done yesterday.
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So you can see that part of any interior point, if the node indices are m and n, then if this is the
governing equation with the assumption that it is a two dimensional steady state heat conduction
without heat generation, then either using finite difference approximation where we have used
central difference scheme or using energy balance method, we can derive this equation.

= Tmtin T Tn-1n — 4T + Tinn-1 + Tnngr =0

This is the algebraic equation okay. The unknown temperature will be at the central node, which

IS Tmn. And this unknown temperature you can find using the neighbor nodal points. So you can



see that these are discrete points, ((m,n)), (m +1, n) or ((m,n)+1). So we are solving this

discretized algebraic equation at those nodal points.

So the accuracy depends on the how refined mesh you have generated. So obviously if you use
fine mesh or grid, then you will get good accuracy. So this, we are finding at the interior points,
but these are boundary value problems. So we need to find the boundary condition as well.
(Refer Slide Time: 02:28)
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So now we will see in next slide for a node at an internal corner with convection. So you can see
these are boundaries and where this boundary are actually open atmospheric condition where you
have temperature T, and the heat transfer coefficient h. So obviously the heat transfer will take
place due to convection. Now at this corner point (n + 1), what will be the discretized algebraic
equations. So let us derive it okay. We are considering the heat transfer from all the neighboring

points to the central nodal poinTy, as positive. So the energy balance equation without heat
generation is

4
Z A@-mm =0
i=1

So you can write heat transfer q from (m —1, n) that is from the left neighbor point to ((m,n))
using Fourier’s law as

Tm—l,n - Tm,n

d(m-1n)-(mn) = k(Ay) Ax



This we derived in the last class where the heat transfer area is (Ay) and distance between the
two nodal points is Ax. So from other points, let us say from ((m,n) + 1) to ((m,n)). So what
would be the g? So it will be

Tins1 — T,
dimn+1)-(mn) = k(Ax)%ymn

This also we derived in earlier class. So in both the cases you can see that the heat transfer area is

either Ax or Ay.

But now you consider other 2 neighbor points like (m+1, n) or ((m,n)-1). You can see that heat
transfer area is half of the earlier one okay. Because you have half channel, because this is your
Ay/2 and this is your Ax/2, because this part is open as it is a corner point. So now if we write
dmn-1)»(mn) = k (%) W
y

Here we are writing the heat transfer area to be %as it is half and the distance between these 2

points is obviouslyAy. Now in the other point, from (m+1, n) to ((m,n)), it will be

-k (A_y) Tm+1,n - Tm,n
q(m+ 1,n)—-(m,n) 2 Ax

Here also the area is half and it is A7yand the distance is Ax. So these are heat inflow that is

taking place due to conduction okay and we have used Fourier’s law of heat conduction. Now 2
half lengths are there where heat transfer is taking place due to convection okay. As those areas
are open to atmosphere so due to convection there will be heat transfer and that now let us write.

So we will write for the vertical bouondary

Ay Ax
q(e0)~(mn) = h (7) (Too - Tm,n) +h (7) (Too - Tm.n)

(00) = (m,n) here means just the ambient to ((m,n)), As it is convection we have written heat
transfer coefficient h, and the area here will be Az—y. Now T, is the ambient temperature. Now,

here we are assuming obviously the region, inside this dotted line okay, the temperature is the
average temperature and that lies at the center nodal point okay. That is T, ((m,n)). So along
this surface where convection is taking place, obviously your temperature is maintained at T,

because that is the average temperature.



So that assumption anyway we have considered so it is valid to write that temperature difference
IS Too — Ty np- Because Trpn is constant for this dotted line, and it is the average temperature and
everywhere it is the same. So we can write T ,. Similarly from this surface, the horizontal
corner surface if you consider there will be heat convection okay. So that is given by the 2™ term

in the equation of g(e)—mn)- There the area will be Ax but all other things will be constant.

Now we will assume Ax = Ay okay, or uniform grid in both x and y directions. So now if we go
to the energy balance equation and do the summation of all these q(;)_mn) Where i represents
the neighboring points, we can write
dm-1n)-mn) T Admn+1)-mn) T Admn-1)-mn) T Am+1,m)-mn) T A(e)>mn) = 0
If we divide both sides by k/2 and write their expressions we will get the final expression as
2(Tm-1n = Tmn) + 2(Tmn+1 — Tnn) + Tmn1 — Tmn + Tsin — Tn

2hAx
k

+ (Too — Tynpn) =0

Let’s simplify it and write as

2hAx 2hAx

Tm+1,n + 2Tm—l,n - ( + 6) Tm,n + Tm,n—l + 2Tm,n+1 + TToo =0

So this is the discretized algebraic equation for the node at an internal corner with convection

okay. So this case we have considered now take another type of boundary condition. So these all
are, we are considering boundary conditions okay. Because when you are solving the interior
points you need to solve for the boundary points as well depending on that boundary condition.
So we are discretizing those boundary points.

(Refer Slide Time: 14:35)
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Now you consider node at a plane surface with convection. So this is your plane surface and this
is open to convection okay. T,, and h okay. It is not a corner point. It is a plain surface and the
heat convection is taking place. So heat transfer coefficient is h and temperature is T,, and it is
obviously boundary points at Trm . So at this point now how we will find that temperature. So we

will use same energy balance okay.

4
Z A@-mm =0
i=1

So you can write

Tm—l,n - Tm,n

dim-1,n)»(mmn) = k(Ay) Ax
This is the same as we did for the earlier case. Now for other point (m,n + 1) to (m,n), we have
half length right, because your area is half or Az—x . So it will be

_ Ax Tm,n+1 B Tm,n
dimn+1)-(mn) = k 7 T

Similarly from (m,n-1), you can write similar expression because it is also half length

-k Ax Tm,n—l B Tm,n
d(mn-1)-(mn) = 7 T

Now convection is taking place so we will Writé q(c)-(mn) Okay. So now we have only 1 plane
surface whose area is Ay as this vertical distance is Ay okay. So,

Aoy (mm) = hAY(Too = T )



So now all summation you write.

Tpc1n — T, Ax\ T, —T AT, .1 — T,
k(Ay) m—1,n m,n +k(—) mn+1 m,n + k(—) mn—1 m,n +hA}I(Too _Tm,n) -0

Ax 2 Ay 2 Ay
Now assume Ax = Ay, and divides both sides by k/2. Then we will get
2hAx
2(Tm—l,n - Tm,n) + Tm,n+1 - Tm,n + Tm,n—l - Tm,n + T (Too - Tm,n) =0
So now you can rearrange, all the coefficient of T, , you can take in one place. So you can write
2hAx 2hAx
2Tm_1’n - ( k + 4‘) Tm'n + Tm,n—l + Tm’n+1 + TTOO == O

So this is the final discretized algebraic equation for the condition of a node at a plane surface
with convection. So second type of boundary condition we have discussed. Now another type of
boundary condition we will consider next.

(Refer Slide Time: 21:24)
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So that is your node at an external corner with convection. So you can see here, it is an external
corner node, T, and this side and this side are open to atmosphere and heat convection is taking
place there, with ambient condition T, and h okay. So in this case let’s derive the heat transfer
rate from (m-1, n) to (m,n). So area in this case it will be half okay. So it will be Az—y, and the
distance will be Ax okay. So it will be

-k Ay Tm—l,n B Tm,n
d(m-1,n)»(mn) = > )T Ax

Similarly



Ax Tm,n—l - Tm,n

dmn-1)»(mn) = k (7) Ay

Now all other neighbor nodes are not there. Only the heat convection is taking place. Here, we
have 2 surfaces for convection, but heat transfer area will be half of the total area in both. So that

you can consider the top surface that will be % as we are considering per unit width and for the

right side surface it will be ATY okay. So that will be

Ax Ay
q(e0)>(mm) = I (7) (T = Tonn) + 1 (7) (Teo = Tonn)
So all the heat transfer to the nodal point (m,n) we have written. Now your summation will be

zero. So that you write

Ay Tm—ln - Tmn (AX) Tm n-1 — Tmn (AX) (Ay)
I Lt — A L — —I\ (T, — T, — (T, — T,
k(z) Ax Tk Ay +h3 ( man) + B 2 ( man)

=0

Now let us assume that uniform grid so you can write Ax = Ay okay. So it will be

(g) (Tn1n = Tonn) + (;) (Tmne1 = Tran) + h(80) (Too = Try) = 0

Now divide both side by k/2 okay.

2h(Ax)
k
So now let us simplify it further, so all the T, , term will take together.

2h(Ax) 2h(Ax)
Tm—l,n - + 2 Tm,n + Tm,n—l +——T,=0

Tm—l,n - Tm,n + Tm,n—l - Tm,n +

(Too — Tiyn) = 0

k k ®
This is the discretized algebraic equation for the case of a node at an external corner with
convection. So this type of boundary condition you may face while solving some of the problem.
So along with the discretized equation for the interior point you need to solve these discretized
boundary values too.
(Refer Slide Time: 27:08)
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So now another type of boundary condition we will consider for a node at a plane surface with
uniform heat flux okay. So you have a plane surface where uniform heat flux is there. So you can
see uniform heat flux g" we are considering on this surface okay, so for this particular nodal

point (m,n) we will write

4
z A@-mm =0
i=1

Now let’s write the heat transfer values

Tm—l,n - Tm,n
Ax

This is same as we did earlier. The area we can consider full. But for the top and bottom surface

dim-1,n)-(mn) = k(AY)

the area will be half as you can see in the figure. So it will be

Ax Tm,n+1 - Tm,n
dmn+1)»(mn) = k 7 T

Similarly,

-k Ax Tm,n—l B Tm,n
CI(m,n—l)—»(m,n) - 7 T

And now there is a heat flux g" which is acting on the area Ay. So that you can write
q(0)»(mn) = q"Ay
So now you sum it up, so it will be

Tm—ln _Tmn (Ax> Tmn+1 _Tmn (Ax> Tmn—l _Tmn
k(Ay) —————— —_)—_— k=) — "Av =0
(Ay) A {3 Ay + Ay +q"Ay



And again we will assume uniform grid so Ax = Ay okay and divide both sides by k/2. So let’s

just write the simplified form this final equation.

2q"Ax
2(Tm—l,n - Tm,n) + Tmn+r = Tnn + Tin—1 — T + & =0
Now all the Ty, » term we will write together.
2q"Ax
2Tm-1n —4Tmn + Tmn-1 + Tinar + =0

k
This is the final discretized algebraic equation for the condition of a node at a plane surface with

uniform heat flux. So today we have discussed different types of boundary conditions and we
have tried to discretize the boundary condition at that nodal point Ty, . So if you are solving the
interior points, along with that equation you need to solve this boundary condition okay. So now
all these conditions whatever we have considered all are steady state heat transfer. So only we
have the considered governing equation

0*T 09°T

Fro I 0
But there are many situations where unsteady heat conduction takes place. Already you have
solved 1D unsteady heat transfer and you have the analytical solution for that. But, when you
solve 2D unsteady heat conduction, it is more complicated. So you do not have the analytical
solution or exact solution for that. So you can go for either energy balance method or finite
difference method for these kind of problem as analytical solutions are not directly available. So
now we will consider two dimensional heat conduction with no heat generation. So let us
consider that.
(Refer Slide Time: 33:31)
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So now we are considering unsteady heat conduction where governing equation will be

orT _ (9°T N 0%T

ot~ “\oxz T ay2
What is a? a is you know thermal diffusivity right, already you have derived thermal diffusivity,
where

_k
=C

where k is the thermal conductivity of the solid, p is the density and C is the heat capacity of the

a

solid. So this is the two dimensional unsteady heat conduction equation with no heat generation
and with constant properties as we have considered. This you can solve using finite difference
approximation as well as the energy balance method. We will here consider the finite difference
approximation and we will discretize this equation for an interior point. But you can discretize
this as a homework using energy balance method as well as for the different boundary

conditions.

Now here you can see it is an initial boundary value problem. As you have a temporal term
which is ‘;—:. To solve this type of problems you need initial condition that means at t=0, at all

interior nodes you have to specify the temperature. And boundary values, already you know that

you need to specify the boundary condition and accordingly you need to discretize the equation.



So that means initial condition you need. So at t=0, you have to specify the T at all nodal points
okay. Then after that you are marching in time okay. So you are actually from tto ¢t + At ort to

t; then t; to ty; that way you are marching in the time direction.

So it is a marching problem okay. Initial value problem or marching problem where if you have a
specified at t some values then at time t;, you are again finding the values then at t, again you are
finding the value. So that way you are marching in time direction and you are finding the values

at different time levels okay.

And the time between these two time points we will consider as At okay. So that is known as
time step. So that means we will give the increment in the time direction as At okay. Like you
have discretized in space coordinate Ax and Ay. Similarly, in time direction you need some

points so that at those points you will find the temperature.

And here the index we will use P okay. Where, P+1 is the new or current time level okay, and P
will be the previous time level. So we are going from P to P+1 and we are trying to find the
temperature at any nodal point (m, n) at time level P+1. So P is the index we are using in time
direction, like we have used m and n in x and y direction as the indices. Similarly, at time level

we are using P.

So P+1 is the current time level at which we are interested to find the temperature and P is
already known because we have already calculated the value at time level P. So, all the values of
interior nodal points and boundary points are known at time level P. Using those values now we
will find the temperature at P+1. So now here anyway the spacial discretization we have done for
steady state heat conduction equation that you know. We have used central differencing scheme
which is a second order spacial accuracy (Ax)? and (Ay)Z2. So now that we will not describe
here. But now time derivative is there. So now you can discretize this time derivative either using
forward time difference or backward time difference. Depending on that you will get either
explicit scheme or implicit scheme. So first we will use forward time stepping and we will

discretize that equation. So it is known as explicit discretization.



We can use Taylor series expansion for T(t + At) and just like spacial discretization we can get
first derivative of temperature with time using forward differencing

oT Thy —Thn

ot At
Here, P is the index in time and m and n are in space. So this is the forward time derivative. But
for the spacial discretization we will use central difference okay.
(Refer Slide Time: 40:18)
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So now we are using explicit scheme that is forward time discretization and central differencing

So we had

for space. So the discretized equation will be

T#ljr_ll - TTfl,n - a Trﬁ+1,n - ZTTIr)l,n + TrIrJL—l,n + TrlrJL,n+1 - ZTTIrJL.n + TrlrJL,n—l
At (Ax)? (Ay)?

Here in the space discretization we are using values from the previous time level so that

represents explicit scheme but if we use the values from the current time level P+1 then it will be
backward differencing and we can call it implicit scheme. Here we assumed that we know the all
the nodal values from the previous time step. So obviously you have already calculated at time

step P. Hence all P time step temperatures are known. So we can write this

TP+1 Tnp;n (A )2 (Trlr)l+1n ZTTZTL-I_TTITJI 1n)+ (A )2 (T£n+1 ZTHI‘Dln_i_TTIr)ln 1)



So this equation if you see in the right hand side at different nodal points means the main nodal
point (m,n) as well as all the neighboring nodal points (m+1, n) or (m-1, n) or (m, n+1) or (m,n-
1), at all these points temperatures are known okay. So only unknown is T,;%! and that we are

trying to find here. So let’s now assume that you have a uniform grid in both x and y direction.

And if you make this assumption that Ax = Ay you can further simplify it. So now let’s define

Fourier number
_ alAt
 (Mx)?

It is dimensionless number and about this you have already learnt in a transient heat conduction.

Fo

So you can write it
Trﬁ,tll = Tnﬁ,n + FO(TrI:l+1,TL - 2T£,n + TTI:l—l,TL) + FO(TrI:L,n+1 - ZTrfl,n + TTI:l,n—l)
So we have written in terms of Fourier number. Now all the coefficient of T, you take it
together. So if you write that
Tont = Fo(Tmian + Tmo1n + Tmns1+Tmn-1) + (1 — 4F0)TH
So it will be final discretized algebraic equation for the interior points for a unsteady heat

conduction equation.

You can see that you can easily solve because T4 +! is the only unknown. So T4 %! is in the left
hand side. Right hand side all the terms are known, all the neighboring points and the nodal point
at time level P, but there is a time restriction. Because explicit schemes are conditionally stable
okay, it is not unconditionally stable okay. Implicit schemes are sometimes unconditionally
stable but explicit scheme are conditionally stable only. So for that reason you cannot choose Ax
any value okay. Then during the solution, it may diverge okay. Otherwise it will oscillate, and it
will diverge. So for that there is the Courant Friedrichs Lewy number, that is known as CFL
criteria okay. The condition is that for the explicit scheme for this two dimensional case, the

coefficient of T;%, ,, should be positive. So you should have




So this is the time restriction. Now you can see that a, thermal diffusivity is constant for a
particular solid. And if you have already done the meshing or made the grid then Ax and Ay are
constants. And you cannot change them later. So only possible way you can satisfy this criterion
is you change At okay. So At you have to choose from this condition okay. So because Ax you
know, a you know, so At you choose such a way that this condition is satisfied okay. Then you
will not get any problem in the convergence.

(Refer Slide Time: 50:34)
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Now let’s say we choose 1D unsteady heat conduction. Then we can write
TEtY =Fo(Th 1 n+Th_1n) + (1 — 2F0)TH
This we can derive using the same discretization scheme. So here CFL condition will be

_ alt < 1
~(Ax)2 T2

So when you are choosing the time step At to solve these governing equations for given Ax and

Fo

thermal diffusivity. Then you need to choose At so that this condition is satisfied. For two

dimensional Fo < i and for 1D it will be Fo < %

So now you can see that we have written the discretized equation for interior points. Similar way
for any boundary point you can find depending on the different boundary condition you can

write the discretize equation. Then along with all these interior points discretize algebraic



equation and the boundary points discretized equation you can solve it using different iteration
techniques. So just one I will discuss here.
(Refer Slide Time: 52:39)
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* Matrix Inversion: Expression of system of N finite-difference equations for
N unknown nodal temperatures as:

[A][r]=[€]
N
Coefficient — giution Vector ~ Right-hand Side Vector of Constants
Mt () (1, T 1€,63.6)
Solution —» [1]=[4]"[¢]

Inverse of Coefficient Matrix
* Gauss-Seidel Iteration: Each finite-difference equation is written in explicit
form, such that its unknown nodal temperature appears alone on the left-
hand side:

[
4

- Y

( 1
P aZl_y
T4 a4, AT

where i =1, 2,..., N and p is the level of iteration.
Iteration proceeds until satisfactory convergence is achieved for all nodes:

e -1e|se

So we are writing this discretization equation for any nodal point (m,n). So there will be many
points right (m,n). So if there are N number of points then obviously you will get N number of
equations. N number of points mean in the x direction and in the y direction, if you consider total
number of nodal points as N then we will get N number of algebraic equation. And that if you
write then you can write in a matrix format and you can write in the form
[A][T] = [C]

Where, A is the coefficient matrix. So for all the neighboring points and the nodal points you
have some coefficient. So all that coefficients you can bring it in the A matrix. T is the unknown.
It is the solution vector and C is the right hand side vector of constants okay. So which are

already known okay. So if it is known term, so that you can take it right hand side.

Now we will use implicit scheme which actually unconditionally stable. So you do not have any
time restriction.
(Refer Slide Time: 54:10)
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So let us use implicit method okay. So we will discretize the governing equation which is your

oT _ (9T 0T
ot~ “\oxz T ay2

So similarly we will use for first order derivative %backward difference and this spacial

unsteady heat conduction equation

discretization we will use central difference okay. Earlier in the explicit scheme, for the time
derivative we have used forward difference. But in this case, we will use backward difference
and we will discretize like this. So it will be

P+1 P P+1 P+1 P+1 P+1 P+1 P+1
Tm,n - Tm,n (Tm+1n - 2Tm,n + T -1,n Tm n+1 2Tm,n + Tmn 1)

At (Ax)2 (4y)?
So earlier case in explicit, you remember that we used only time level P in the right hand side,
which is the previous time level. But in this case, we are using all these neighbor temperature
and also the main point temperature at current time level P+1, which is unknown. So this is
known as implicit scheme. So you can see here there are more than one unknown. But in the
explicit scheme only one unknown was there T;h*! and all other neighbor nodes were at time

level P. So those were known.

Let’s discretize and write in a simple form. So if you take Ax = Ay and Fo = (Zi)tz

Fo(Thty, + Th  + ThtL + TEAL ) — (1 + 4Fo)Th = Th



So now all the unknown terms we have written in the left hand side and the known term, which
is at time level P, we have written in the right hand side. So this is the final discretized algebraic
equation for the unsteady heat conduction equation using implicit discretization. So if you
remember in the explicit scheme left hand side only one term was unknown. So that was T+
and all right hand side term was at time level P. So it was easy to solve. But in this case now we

have left hand side all are unknown terms.

So for a given node if you discretize the equation you are going to get 5 unknowns. You can see
that (m+1, n), (m-1, n), (m, n+1), (m, n-1) and (m,n). So at this 5 locations, 4 neighbor points and
at nodal point you have unknown terms. So those we have written in the left hand side. And right
hand side we have kept which is known. So this equation is for any interior point okay.

So you can see that all these terms are having some coefficients like this is Fourier number here.
And Tpnpn which is the main nodal point also known as diagonal term. For diagonal term
coefficient is 1—(1 + 4Fo). And in right hand side this is known term. Because you have

already calculated at time level P.

So this equation now you can solve using different methods. So say if you have a grid like this.
So say let us say this is your (m,n). So it is (m+1, n). This is your (m-1, n) and this is your (m,
n+1) and this is your (m, n-1) okay. So for each nodal point you are going to get this equation.
So for (m,n) | have written. So if N numbers of points are there in the domain then you are going

to get N equations and how many unknowns will be there. There will be N unknowns okay.

And you can include the boundary points as well but different discretized equation you have to
use like we have discussed today. So if you write all this unknown terms there will be N number
of unknowns and you are going to solve for N equations. So you can use some direct method
where you can construct a matrix and use it or you can use some Gauss Seidel method or Jacobi

method.

So let us discuss how we will solve okay.
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Solutions Methods

* Matrix Inversion; Expression of system of N finite-difference equations for
N unknown nodal temperatures as:

Q \] g v ey i

Coefficient  solugion Vector  Right-hand Side Vector of Congtants

Solution —» []=[4)"(c]

Inverse of Coefficient Matrtx

o Gauss-Seidel lteration: Each finite-difference equation is written in explicit
form, such that its unknown nodal temperature appears alone on the left-
hand side:

wherei =1, 2,.., Nand pis the level of iteration.
Iteration proceeds until satisfactory convergence is achieved for all nodes:
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So right hand side whatever we are writing that is known term. So if we use that we can write in
this form okay.
[A][T] = [C]
So all the coefficient you can keep in the A matrix okay. This is known as coefficient matrix
okay and its sides will be NXN and temperature vector you will get okay. So that is solution
vector which is unknown. So there we will write T; to Ty as the solution vector. And C, C is the
right hand side vector, which is already known okay. That we are telling for each equation C,, C,
up to Cy you are going to get. Now you can write
[T] = [A]*[C]

When solving by direct method [A] we have to take to the right hand side we will write the
inverse of [A] matrix. So if you have N number of unknown points then it will be a NXN matrix.

So making its inverse will be very difficult.

So another way you can find that is known as Gauss minus Seidel Iteration okay. So each finite
difference equation is written in explicit such that its unknown nodal temperature appears alone
on the left hand side. So you can see that all available temperature we will write at P + 1 and at
known temperature is at P level. So in earlier equation this is your C right. It is your C and these
are all A matrix we will find. And this is the diagonal term. So this is known as a;;, because it is

(m, n) point. So it is a called diagonal coefficient. So whatever best available values are there



that you can take using ij+1. So you see if you have this grid and if you are solving this point

say it is, let us say i point.

So obviously you have already calculated at this point, this point and this point okay. But
unknown are this point, because you have not found the temperature. So in this way whatever
already you have found that you take in the current time level P +1 and whatever is unknown that

you take at the previous time level okay, that is P.

So using that if you iteratively solve then you are going to solve actually [A][T] = [C] matrix. So

we can write in this way

i-1 N
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You can see TF** for the main nodal point that is T; and the coefficient is a;; that is the diagonal

coefficient. So you have to divide that, so % and Ci is the known term. So left hand side of the

aij

nodal term there were all neighbor points, and so those points you writing j = 1 to i -1, because j

= 1toi-1 means it will involve these points where already you have solved.

So those are available at P+1 time level. So we are writing that at P+1 time level. So a;; is the
coefficient of each neighbor points and a;; already we have divided which is the diagonal
coefficient. Summation of j = i +1 to N means those terms are not solved yet. So those
temperatures are available at time level P, previous time level \P. So that we are writing

7}” where a;; is again the coefficient of temperature and a;; is the diagonal coefficient.

So that way you can solve. And this is known as Gauss minus Seidel method. So it is easy to
solve in this way because for each you do not need to build a matrix A and C only for each nodal
point, you can solve this equation okay. Because whichever is known term already at P +1. So
you take that and whatever is unknown, all not solved; that you take at time level P and

iteratively you solve it unless it is converged.

And this convergence we can write



|TiP+1 _ TiP| <e
P+1 is the current time level and P is the previous time level. If the difference between these two
temperatures is much smaller than that means it is converged okay. So that condition you can use
for this Gauss minus Seidel iteration to avoid the construction of A matrix and also its inverse is
very difficult to find. So this method you can use for the implicit scheme. So today | will stop

here. In the next class we will solve few example problems. Thank you.



