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Lecture - 21
Steady Heat Conduction
Hello everyone. So, today we will study numerical methods in conduction. So, earlier we
have studied the two-dimensional heat conduction using analytical method, we used
separation of variables method and also we have used graphical method. But today will use
numerical methods where it is easy to apply in two dimensions and three dimensions even if

you have heat generation inside the body.

So, we will use some numerical techniques to discretize the heat conduction equation. So
mostly we will use finite difference method.
(Refer Slide Time: 01:11)

Discretization Methods
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Here you can see, we can use either finite difference method or finite volume method or finite
element method. In analytical method, the expression for temperature whatever we have
derived, that is valid at any point X, y. So, we can find the temperature just putting the value
of X, y. So, at any point you can find. But in numerical techniques what we do, we use some

nodal points.

So, at these nodal points we calculate or discretize the governing equation and we get the
algebraic equation. So, these are discrete equations which are valid in all those nodal points.



In finite difference method, generally we use Taylor series expansion and we find the
gradients and we discretize the governing equation whereas in finite volume method, we use
the integral form of the governing equation and we integrate that in a finite continuous

control volume.

And in finite element method, we use weight function and integrate the governing equation in
a node. So, in this study will use just finite difference method.
(Refer Slide Time: 02:36)

The Finite-Difference Method

+ An approximate method for determining temperatures at discrete
(nodal) points of the physical system.

* Procedure:
o
~ Represent the physical system by a nodal network.
~ Use the energy balance method to obtain a finite-difference

equation for each node of unknown temperature.

Solve the resulting set of algebraic equations for the unknown
nodal temperatures.

.____________________________________________________________________|
So, you can see that finite difference method is an approximate method for determining

temperature at discrete or nodal points of the physical system. So, for that we need to divide
the domain into some finite nodal points. So, those are known as grid. So, at every grid points
we will solve the heat conduction equation and using some discretization technique. So, what

we will do? You can see the procedure.

So, procedure is, we represent the physical system by a nodal network. Then, we can use
either Taylor series expansion and we can discretize the equation using finite difference
method and finally we can solve the final discrete algebraic equation. Or also we can use the
energy balance method to obtain a finite difference equation for each node of unknown

temperature.

Then, solve the resulting set of algebraic equations for the unknown nodal temperature. So,
today we will find the discrete algebraic equation by using both Taylor series expansion as

well as using the energy balance method.



(Refer Slide Time: 03:56)

Finite Difference Appfoximation

Backward

+ Discrete points in the domain known as grid points.
+ FD representation of derivatives are derived from
Taylor-series expansion.
* Weneedtofind ¢f f@x)
Y
+ Using forward differencing in space
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So, before going to the discretizing it let us see how you find the gradient at any point. So,
here you can see in this graph, this f(x) how it varies along x okay. So, these are different
nodal point okay. This is point i we have given, here i+1, this is i+2 and this is i-1 and i-2. So,

these are indexes in x direction.

So, f(x) is varying like this. So, you can see f(x) this black bold line, so this is your function,

so let us say at ith point we want to find the gradient okay. So, that means it is a tangent we
want to find, so that is Z—i okay. So, how we will do? So, if you just draw a tangent at this

point, so that will be your exact value of that gradient, but we can use some numerical
approach and we can find that if we divide this into discrete points in x directioni +1,i-1, i
- 2 and i + 2 then you can see we can use these points and we can find say if we use forward
point i + 1 and this i then using that we can find some gradient if you join this line, so you
will get one gradient and that gradient is forward difference okay and backward points if you
consider i-1, so this will be backward approximation and if you use this forward and

backward both then it is central approximation.

So, now let us see using forward differencing in space if you use Taylor series expansion,
then what we can write? So, we can write

Gaan o+ LA 03 ax
flx x) = flx axx 0x?% 2! dx3 3!

Assuming uniform spacing in x direction.



So, this is the Taylor series expansion. So, using that let us see if we can find the gradients.

So, you can write

Fota =+ y o0
n=1

n! oxm

Now from the 1% equation we can write by rearranging it

of flx+AMx)—f(x) 0°fAx 0°f Ax?
ox Ax dx2 2! 9x3 3!

So, this you can see that the gradient Z—i we have approximated using forward difference

approximation W . S0 Ax is the distance between these two points and f(x + Ax) is

the value at i + 1 point and f(x) is the value at ith point and the additional terms are known as
higher order terms. So, these all terms in the right hand side are known as higher order terms.

So, these higher order terms are known as truncation error, because when we approximate the

fx+Ax)—f(x)
Ax

first derivative g—i and we are writing as that means we are neglecting the other

terms which are known as higher order term and that is known as truncation error, TE okay.

So, you can see in the truncation error, the order of Ax in the first term will be the accuracy of
the finite difference scheme. So, you can see here in the truncation error first term
contains Ax. So, the order of accuracy of this forward differencing scheme is Ax okay. So,
whatever the first term in the truncation error, whatever Ax order will be there that will be

your order of accuracy of that finite difference scheme.

So, as you are using forward finite difference scheme, so we can see that first term contains
Ax, so its order of accuracy is Ax okay. So you can see this line will represent this forward
differencing okay. So, you can see that it contains one forward point and one its own point i.

So, we write in this way

0 + Ax) —

o) _ fetb)—fC) ooy
0xl; Ax

So, now if we use backward differencing in space what you can write in this case, you can

see the backward differencing scheme so we are using this point and this point. So you can

write

f| _ f)—flx—Ax)
B Ax

oxl, + 0(Ax)



Here, f(x — Ax) actually it is at point i — 1. if you see its truncation error contains the first
term Ax, so order of accuracy will be Ax. How can you do it? So, just use Taylor series
expansion

f 0%f Ax?  03f Ax3

0
f(x_Ax):f(x)_a_xAx+ax2 2 9x3 3!

So if you rearrange this and find Z—i as we did previously it will be order of Ax.

Similarly, if you use central difference in space, you can see here two points we are
considering at f(x + Ax) and f(x — Ax). So now if you subtract values of f(x + Ax) and
f(x — Ax) we will get
flx+ Ax) — f(x — Ax)
of 0%f Ax?> 03f Ax3
=/ +an Tz 2 Toxd 3

of 92f Ax?  33f Ax®
_{f(x)_ﬁA”axz 21 0x3 3l o

Rearranging it, we will get

of 93f Ax3
0x dx3 3!

fx+Ax) — f(x — Ax) = 2{—Ax+——+
Here the Ax?2 terms will cancel out as they will have opposite signs. Now, dividing both sides
by 2Ax.

of _f(x+Ax) — f(x — Ax)
T ox 20x

As the Ax? terms cancel out we will get the TE in the order of Ax? here. So it will be the

+ 0(Ax?)

second order accurate. And 2Ax will be the distance between x + Ax and x — Ax . As you
can see the difference of value of the function f at these two points we are using on the

numerator.

So, you can see that in finite differencing scheme if you use forward and backward difference
that will give order of accuracy 1 okay or first order accurate. And when we use the central
differencing scheme, then it will be second order accurate. So in this graph you can see this
central difference scheme line whatever you have drawn, this is actually mostly parallel to the

exact solution.



So, it will give more correct evaluation of that gradient 2—2 okay rather than the forward and

backward difference and obviously you can see that order of accuracy is higher in central
difference scheme so it will give more accurate result compared to the other schemes okay.
So, with this introduction you will be able to find the derivative in the heat conduction
equation, so let us see that.
(Refer Slide Time: 15:14)

The Nodal Network and Finite-Difference Approximation

+ The nodal network identifies discrete
points at which the temperature is
to be determined and uses an
m,n notation to designate their location.
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Here, you see this is the interior domain and these are all boundary. So, now here first what
you have to do, you have to divide into few discrete points. Those are known as nodal points
which we have done. You see these lines we have drawn. So, at interior point, if you consider
one nodal point, so it is having 4 neighbor points right. If (m, n) is the main point then you
have (m + 1, n) in right side, left side you will have (m - 1, n) and on the top it will be (m, n +
1) and at the bottom (m, n — 1). So, (m, n) are the indices of that main nodal point. So,
obviously if you consider any interior points, you will have 4 neighbors except near to the
boundary points. And the distance between these neighboring points will be Axin the

horizontal direction and Ay in the vertical direction.

And you can see when we will find some value T at (m, n) point, that is actually average
value in this hatched domain okay. So, now we have discretized or we have got the discrete
points. So those are known as grid or mesh. So, in this case, you can see we have considered
any distance between two nodal points in x direction is Ax and in y direction it is Ay and m
indices we are representing in the x direction and n we are representing the index of this y

direction.



So, now let us in the horizontal direction represent the central point between (m, n) and (m+1,
n) as (m+1/2, n) and the central point between (m, n) and (m-1, n) as (m-1/2, n). These two

points will lie on the boundary of our hatched region. Now let’s take central differencing

scheme to find the value of Z—z . So it will be

aT

Tm. n-_ Tm

-1, n
— = : 0(Ax?
0x m_%, n Ax +O0(Ax%)
And
aT T, -T,
or ) _m+in m, n + O(sz)
dx mis, n Ax

Here we are taking central differencing scheme to get higher order accuracy. We have
followed similar discretization approach as before. Ax is the distance between the two points
whose difference we are taking on the right side that is between (m, n) and (m+1, n) which is
same as between (m, n) and (m-1, n). So, now similarly you can write taking similar
assumptions in vertical direction defining points (m, n+1/2) and (m, n-1/2) which again lie on
the boundary of our hatched region. Taking central differencing

aT Tm. n+1 = Tm, n
— == -2+ 0(4y?
5 0y

1
m, Tl+i
And

oT Tm n- Tm n—1
- =— —— + 0(Ay?
6x|m_ n_% Ay (y%)

So, central difference we are using, so these are second order accurate okay. So, now the first
derivative we have found. Now, what is the governing equation?
(Refer Slide Time: 22:44)



The Finite-Difference Method
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So governing equation for 2D, steady state heat conduction without heat generation and
constant thermal conductivity will be

0°T 09°T

Pl + Fv =0
So, now you have to discretize this using finite difference method. So, if you use finite

difference method, so the second derivative what we can write?

aZT_ d (6T>
ax2  dx \ox
So, now if we write at point (m, n) it will be
or|  _ar
o2r| o ary|  PXlmidn OXlnln ,
-— = — |z = + 0(Ax?)
0x? 0% \Ox/ Ax

So here also we are taking central differencing scheme for finding the derivative of the
variable Z—z. Ax is the distance between points and (m+1/2, n) and (m-1/2, n) as they are the

central points between (m, n) and (m+1, n) and the central point between (m, n) and (m-1, n).
So, what is the order of accuracy? Central difference order of accuracy is second order
accurate okay. So, now you substitute this first derivative with the expression in last slide we
have derived. And what is the order of accuracy of that first derivative finite difference
approximation? That is also second order accurate, so overall it will be second order accurate

scheme okay. So, now we can write it

Tm+1. n - Tm, n| __ Tm. n - Tm—l, n
d (OT)
0x \Ox

Ax Ax

Ax

mmn



can write it

So, you can see the order of accuracy is second order. So, now what you can write this, we
_ Tm+1. n - 2Tm, n + Tm—l, n

d (6T)
dx \ox/l,p, (Ax)?

So this is the second derivative we have derived using central difference okay and it is a

second order accurate. So, | think you understood how we have derived it okay. So, this is the
central difference approximation we have used. Similarly, you write second derivative in y
direction okay

aT _or
0yl pnsl  0Xlp, L
’ 2 ! 2 2
= o(A
Ay + 0(Ay?)

d0°T
dy?

_ d <6T)
~ dy \dy

mn mn

We can find the distance between points (m, n+1/2) and (m, n-1/2) to be Ay following

previous method. Hence

{Tm. n+l — Tm, n} _ {Tm. n_ Tm, n—l}

02_T Ay Ay
0Y?| Ay
_ {Tm. n+1 — 20, 0+ T, n—1}
(Ay)?
Here also final order of accuracy will be of Ay?2. Now finally we can write
9T T _Tmtrn=2Tm ntTmt,n, Tonss =2Tm, o+ T no1 _
ax?| " ay?| (Ax)? (8y)?

So, now we have not assumed anything that whether Ax = Ay okay but it is a general
expression we have written where Ax is constant okay. So, it is uniform in x direction. And
Ay is constant in y direction. So, Ay is uniform okay. But now let us assume that Ax = Ay
then how will get the expression? Ax = Ay means uniform grid okay. So, as Ax = Ay we can
take them common from both the terms and they can vanish if we take it to the right side. So
final term we can write

Tm+1. 0t Tme1, n = 4Tm, n * T n1 + T, n-1 =0

So, this is the final discretized algebraic equation. So, we started with partial differential
2 2
equation okay, we started with partial differential equation 377; + ZTZ = 0, but using the finite

difference scheme, we could write the discretized algebraic equation okay.

So, at any point (m, n) at the interior of the domain we have written this expression okay

which is a discretized algebraic equation. So you can write this equation for all the interior



nodal points for (m, n) which you can solve using some numerical techniques like Gauss
Seidel or Jacobi method or some direct method like conjugate gradient method or
BiCGSTAB okay.

So, depending on your problem, you can solve this equation okay. So, now for interior
domain using Ax = Ay you could write this. Now, we have to treat the boundary condition
also right because there are boundary points where you will not have the 4 neighbor points
depending on whether it is corner point or side point. Depending on that you will get one
interior neighbor but other will be on the surface or outside there will be some boundary
condition, so let us see that.

(Refer Slide Time: 34:45)

Derivation of the Finite-Difference Equations
- The Energy Balance Method -
+ As a convenience that obviates the need to predetermine the direction of heat

flow, assume all heat flows are into the nodal region of interest, and express all
heat rates accordingly. E =
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So, before going to that we will derive the same algebraic equation using energy balance
method okay. We will also find the algebraic equation for both interior domain using energy
balance method as well as at the boundary points using energy balance method. So, you can
see that this is your nodal points of interior nodal points (m, n) okay. And 4 neighbor points
are (m+1,n), (m-1,n), (m, n+ 1) and (m, n- 1) okay and this is Ax and this is the Ay . Now
we will do the energy balance at this control volume okay. So let’s consider the domain
inside the red dotted line about the (m, n) node. Here the red arrows are pointing towards the
domain. So we will assume whatever heat is flowing it is coming into the domain because we
do not know whether heat is going out or in. If the heat is leaving the domain then the value

of g will become negative.



Now, what is the energy balance method? So, assuming that it is a steady state and no heat
out, so you will get
En+E;=0

So, let us assume that there is a heat generation per unit volume okay and that is g. And

Eg = 4V = §(AxAy)
Where, V is the volume of a unit cell represented by the red dotted line. Here we are
considering unit width so that V = AxAy. So, that is the assumption we are taking and
obviously we have assumed that it is 2D and steady and another point will assume that K is
constant. So, these are the assumptions. And, there is no heat out because all the heat we have
taken inflow towards the nodal point.

Now as we are assuming heat flow is only towards inside net heat flow towards node (m, n)
will be summation of heat flow from each of the neighboring nodes that is (m + 1, n), (m - 1,
n), (m, n+ 1) and (m, n- 1). That we can write as

4
Ein = z q(i)-@mmn)
i=1

Hence the energy balance will become
4

qi)-(mn) + Q(AXA}/) =0
=1

l

So, now you can write the heat flow from this left neighbor point (m - 1, n) to (m, n) using
Fourier’s law of heat conduction okay. Here, what is the area? In this case, you can see, in
this case it is Ay okay and per unit width, perpendicular to the plane of paper, so width will
be 1. Hence area will be (Ay.1). Now heat is flowing from (m - 1, n) to (m, n) so temperature
difference we can write as Tp,—1, — Tynp. Writing the temperature difference like this also
allows us the neglect the —ve sign associated with Fourier law. And the distance between the
two nodal points is Ax. So finally we can write

Tm—l,n - Tm,n

d(m-1,n)-»(mn) = k(Ay. 1) Ax
So, now similarly you can write for other neighbor points.

Tm+1,n - Tm,n

Ax
Here, the area will be same and temperature gradient will be T,,,41, — T s heat is going

d(m+1,n)-(mn) = k(Ay- 1)

from (m +1, n) to (m, n). Similarly, from (m, n- 1) to (m, n) the heat transfer rate is



mn 1 Tm,n

dmn-1)»(mn) = = k(Ax.1) Ay

Here the area becomes (Ax.1)as it is the horizontal plane and the distance becomesAy.
Similarly we can write

m n+1 ~ Tm,n

dmn+1)-(mn) = = k(Ax.1) Ay

Now, we can put all these values in energy balance equation okay.
(Refer Slide Time: 43:40)

Derivation of the Finite-Difference Equations
- The Energy Balance Method -
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So, we can write

Z q(i)>(mn) T q(AxAy) =0

i=1

= d(m-1n)-»(mn) + d(m+1,n)-»(mn) + dimn-1)»(mn) + d(mn+1)-»(mn) + éI(AxAY) =0

—-T, —T, ~T
= k(Ay. 1)—m 1”Ax + k(Ay 1)—"‘“”Ax + k(Ax. 1)—"”‘ 1Ay mn

mn+1 —Iimn

+ k(Ax.1) Ay

+ q(AxAy) =0

So the first 4 terms in the left hand side is for the E;,, and last term is heat generation term.
Now if we divide the whole equation by k and assume uniform mesh or Ax = Ay to get a

simple form we can write

_[Ax?
= Tm-1n = Tmn + Ttin — Tn + Tmn—1 = Tnn + Tner — Tnn + 4 (T) -0

Here we are writing AxAy = Ax? as both are same



[Ax?
= Tm—l,n + Tm+1,n - 4’Tm,n + Tm,n—l + Tm,n+1 +q (T) =0

Now assume that there is no heat generation hence g = 0.

= Tm+in + Tm-1n = 4Tmn + Tmn-1 + Tn+1 =0
So, this is the final discretized algebraic equation okay. So, this you can see that we started
with the energy balance and considering that all the heat flow is from the neighbor to the
nodal points then we have derived these equation; this is the discretized algebraic equation
and this is you can see that is same as whatever we have derived using finite difference

method okay.

So, using finite difference method where we have used Taylor series expansion, so using the
approximation Ax = Ay and there is no heat generation whatever discretized equation we

derived same discretized equation we got using energy balance method okay.

Now, say we want to find the temperature at (m, n) okay. So, we can write
4Tm,n = Tm+1,n + Tm—l,n + Tm,n—l + Tm,n+1

1
Tm,n = Z (Tm+1,n + Tm—l,n + Tm,n—l + Tm,n+1)

So, all these temperatures at (m + 1, n), (m - 1, n), (m, n+ 1) and (m, n- 1) are all
temperatures at the neighboring points and T (m, n) is the main nodal point, so what will be
the main nodal point temperature? It will be just the arithmetic average.

So, you can see that if you have a uniform mesh that means Ax = Ay and if there is no heat
generation then in two-dimensional case, the temperature at main nodal point T (m, n) is

equal to arithmetic average of all the neighbor temperatures.

So, today I will stop here. In the next class, we will use this energy balance method and treat

the different boundary conditions. Thank you.



