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Lecture - 10 

Special 1-D Heat Conduction Situations – Part 2 

 

Good morning everyone, welcome to the second lecture of our module 4, where we are 

talking about some special situations of the application of 1-D steady state heat conduction. 

While in the previous week, we have developed the 1-D steady-state version of the 

generalized heat diffusion equation and introduced the concept of thermal resistance. 

 

In this week, we are talking about situations where the concept of thermal resistance truly 

speaking is not applicable and we have to go for the solution of corresponding ordinary 

differential equation. In the previous lecture, we have talked about the situation involving the 

heat generation in Cartesian and spherical geometry. 

 

So using the corresponding differential equation, we have solved that using suitable boundary 

condition. In both the cases, we have taken boundary conditions; particularly for the 

Cartesian one we have taken the boundary condition to be temperature specified one that is 

the Dirichlet condition on both sides and when both sides are having the same temperature 

then we have got the concept of the plane of symmetry. 

 

And using that concept of plane of symmetry I have analysed the cylindrical coordinate 

system. Now today we shall be seeing a few more cases or rather a different approach of 

solving the equation associated with the heat generation or conduction involving heat 

generation. In addition, couple of other special cases related to the steady state 1-D heat 

conduction will be introduced briefly. 

 

So what we want to do first is to go for a dimensionless approach. The equations that we have 

solved in the previous lecture that is 1-D steady state heat conduction involving heat 

generation, the same kind of equations will be attempted to solve, but following a 

dimensionless approach. Before I proceed, I must answer that why we should going for a 

dimensionless approach. 
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There may be quite a few different reasons that we can identify. Number one is the reduction 

in number of parameters. We can say from here that, in a standard diffusion equation, 

whatever number of parameters that we have; when we convert that equation with suitable 

non-dimensional numbers or dimensionless groups and finally get a corresponding 

dimensionless version of the same equation, then the number of parameters is expected to be 

much lower.  

 

Those who have done the course on fluid mechanics may have got the idea or may have been 

introduced to the concept of Buckingham Pi theorem where again the same way you try to 

convert an equation to a dimensionless form and identify the corresponding important 

dimensionless number. We are not of course using the Buckingham Pi theorem, but idea is 

quite similar. 

 

Another very important outcome of going for this dimensionless approach is the 

generalization of the solutions. Or we can say the conclusions like suppose you are trying to 

solve the heat conduction equation in 2 different systems, both are cylindrical geometries, but 

one is something like our domestic pipe which is having a diameter of say 15 mm and 

another is a microchannel which is having a diameter of 50 µm. 

 

Now both are facing or both are being subjected to the flow of same kind of fluid and 

accordingly some kind of or rather let us forget about the fluid flow situation let us talk about 

the conduction heat transfer. So you are having 2 solid cylindrical bars one is having a 

diameter of 15 mm other is having a diameter of 50 µm. 



 

Now we can easily solve the corresponding conservation equation or corresponding 

governing equation to get that solution or temperature profile; however, how can you 

compare these 2 geometries, you definitely cannot compare them because of such wide 

disparity in their dimensions, but if we allow ourselves to go for the dimensionless version of 

the same equations. 

 

Instead of getting the temperature profile, if we get some non-dimensional version of the 

temperature profile in terms of some non-dimensional coordinate framework then whatever 

solution we are getting that should be equally applicable to both the systems. As long as the 

magnitude of the dimensionless groups remains the same in both the systems, their behaviour 

also should be very similar. 

 

That is why the solutions can be generalized only when we go for a dimensionless approach. 

So this is the primary reason that we go for the non-dimensionalization of the equations. 

Therefore, let us try to see how we can develop a dimensionless version of the equation. Our 

geometry remains the same. We are going for the Cartesian coordinate system. This is our 

primary direction of heat transfer, that is x. 

 

Let us say this is the origin of the coordinate system, so this is x = 0, this is x = L and this 

surface is maintained at some temperature T1, this surface is maintained at temperature T2 

and in between we are having this much of volumetric energy generation which is uniform 

over the entire system. 

 

Now what is the corresponding governing equation? We have already used yesterday that we 

know that the generalized equation can be written as 

 

  
( 

  

  
)    ̇

      

So what are the conditions we are imposing here? We are imposing  

*steady state  

*1D heat transfer  

*uniform heat generation 

*constant properties (K) 



Property means I am talking about the thermo physical properties; the thermal conductivity. 

As temperature is also a property just to avoid confusion let us say the constant K, we are 

talking about constant thermal conductivity. We now know how to solve this equation using 

this boundary condition. 

 

But here our objective is not to go for a solution of this equation rather try to convert this 

equation to a dimensionless form. To convert this to a dimensionless form we have to identify 

what are the most important variables. You can see there are 4 variables. There is x, which is 

independent variable, there is T, which is the dependent variable and also 2 additional 

parameters of thermal conductivity and the rate of volumetric energy generation. 

 

So there are 4 parameters that is involved into this. So we have to identify some non-

dimensional group. Now should we go for all the 4 non dimensional group? Probably that is 

not required. Let us just try to investigate. Let us define  ̅ as some dimensionless temperature 

 ̅  
    
     

 

Now as you can see the dimension of both the numerator and denominator is of temperature, 

so this is a dimensionless group. Similarly, we are defining  ̅ as the dimensionless length as 

 ̅  
 

 
 

Where L can be the length scale of a system like in this case L refers to this particular 

distance from one end to the other end. So these 2 are our dimensionless groups. 

 

So let us try to modify the previous equation. We have taken K as constant, so we could have 

written this one as  

   

   
 

  ̇
   

 
    

Now,  

      ̅        

Here T1 and T2 are constants because these are the boundary temperatures. So if you 

differentiate this equation with respect to x once then we have 

  

  
 

  ̅

  
        

Differentiating once more 



   

   
 

   ̅

   
        

 

And now we have to convert this x in terms of this  ̅. How we can do this? You know the 

same way we can get a relation between dx and   ̅ . So we can replace this x as  ̅ ; 

accordingly it becomes  

   

   
 

   ̅

  ̅ 

       

  
  

Now, take it back here 

   ̅

  ̅ 

       

  
 

  ̇
   

 
    

   ̅

  ̅ 
  

  ̇
     

        
    

Let us call this parameter to be equal to S. 

 

Because you can see this entire term is a constant as per the imposed condition, thermal 

conductivity and this volumetric energy generation rate they are constants, L is the dimension 

on the system. T1, T2 are the boundary temperature, so everything is constant. So S is also a 

constant. Therefore, you can easily find the solution for this. So our final dimensionless 

equation becomes 

   ̅

  ̅ 
    

This is the dimensionless form of the corresponding equation. What will be your boundary 

conditions to find a solution for this? Your boundary conditions are given as 

                ̅     ̅    

                ̅     ̅    

These are your modified boundary conditions. Now if you attempt to solve the newly 

developed dimensionless equation what we are going to get? By differentiating it once we get 

  ̅

  ̅
    ̅     

 

C1 is the constant of integration. Integrating for second time, it becomes 

 ̅  ̅   
  ̅ 

 
    ̅     

 



Now you know how to find a solution. You can easily put the boundary conditions. So it will 

be 

 ̅  ̅            

 ̅  ̅        
 

 
       (  

 

 
) 

Accordingly final dimensionless temperature profile becomes something like this 

 ̅  ̅   
  ̅ 

 
 (  

 

 
)  ̅ 

  ̅  
  ̅

 
    ̅  

So this becomes the dimensionless temperature profile. Now look at this equation first, this 

equation that I am talking about. Initially we had 4 variables, 4 parameters to deal with as I 

have reported here, but in this equation how many parameters we have? We have 3. We 

have  ̅, we have  ̅.  ̅ is the dependent variable,  ̅ is the independent variable. And that K and 

  ̇
   , the 2 other parameters which are associated with the system definition they are now 

being clubbed into this parameter S along with the dimension of the system that is L and also 

the 2 boundary temperature T1 and T2, everything is incorporated within this S. So S is also 

very important parameter. 

 

Change in any one of this, that is either the length of the system L, or the rate of volumetric 

energy generation   ̇
    or any of the boundary temperatures T1 and T2, S is going to change. 

S has been defined as 

  
  ̇

     

        
 

We can clearly see there is a reduction in at least one parameter. And secondly, as the 

solution is a dimensionless one so it is applicable to any kind of system of any dimension and 

having any boundary temperature values as long as it is having an uniform volumetric energy 

generation within this and the boundary temperatures are specified. You can easily find the 

value of the S using the system dimensions and the boundary temperatures and the value of 

  ̇
    and you can impose this temperature profile. 

 

Absolute magnitude of temperature of course will vary from one system to another but their 

temperature profile in dimensionless sense will be exactly the same. So this dimensionless 

approach is very useful particularly when this end temperatures T1 and T2 are known to us. 
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Let us see another situation of applying this boundary condition. Now our geometry, we are 

going to go for a symmetrical geometry in this case. Let us take Cartesian geometry only but 

a symmetrical one. That is we have a block, this is the centre line of the block, the coordinate 

starts from here. So this is identified at x = 0. Let us say the block is having a thickness of 2L. 

 

Thickness of 2L such that one end is marked at x = L, other end is marked at x =- L. We can 

easily solve this if the boundary temperatures are known because that is what exactly we have 

done instead of just having the length scale as L we are having 2L. But here it is said that 

both sides of this particular block is being subjected to flow of a fluid stream. 

 

Fluid is flowing with the temperature T∞ on both sides and corresponding characteristic 

convective heat transfer coefficients are h, the same. So now we can see it is a very 

symmetric geometry and on both sides, you are having same boundary conditions and also 

the volumetric energy generation is uniform over this, plus constant properties, in that case, it 

is a symmetrical geometry. 

 

Therefore, instead of going for the solution of this complete geometry, we can just stick to 

half of this, because then this particular plane will act like a plane of symmetry. So let us take 

half of this particularly domain for the further processing. So this is our geometry, this is x 

coordinate direction x = 0, x = L, this distance is L. We are having volumetric energy 

generation inside this and of course external fluid stream is flowing with temperature T∞ and 

convective heat transfer coefficient is h. 

 



Let us mark the centreline temperature to be T0 but we actually do not know the value of T0, 

and let us mark the surface temperature to be Ts, again this is something that also we do not 

know. T0 and Ts are not known, we have to identify them by using the other information. The 

only thing that we know is only temperature is this T∞. 

 

The external fluid stream temperature is known, dimension of the system that is this L, 

volumetric energy generation rate, convective heat transfer coefficient h, thermal 

conductivity K, these are all known, but this internal temperature T0 and Ts these are not 

known. You have to identify them using the dimensionless approach and the boundary 

condition that is given. 

 

So we know that as we are assuming constant thermal conductivity then in this particular case 

again our governing equation will be  

   

   
 

  ̇
   

 
   

What are your boundary conditions? What can be your boundary condition in this case? We 

do not know any of this temperature T0 or Ts, but we know that this dotted line where this T0 

prevails is a plane of symmetry. 

 

We know there will be no heat transfer across this because the centre line is behaving like a 

mirror. So that whatever happens on one side can exactly be converted to its mirror image to 

get the idea on the other side, so rate of heat transfer across this will be 0, that means your 1 

boundary condition is  

  

  
|
   

   

 

What is happening at x = L? at x = L, we are having a convective boundary condition. So 

whatever amount of energy that is receiving by conduction to this x = L surface is getting 

carried away by convection by the external stream. So we can write again the boundary 

condition of the third kind there. So you can say boundary condition of the second kind the 

Neumann boundary condition is provided at x = 0. 

 

Whereas we are having at x = L, the boundary condition of the third kind. So it is 



  
  

  
|
   

    |        

So these are your boundary conditions in dimensional form. Now you have to convert this to 

a dimensionless form. So  

 ̅  
 

 
 

Problem is that T0 and Ts none of them are known to us. And therefore, we cannot go for a 

definition like before; then what we have to do? See the standard form of non-

dimensionalizing temperature is 

 ̅  
      

     
 

The       is some reference temperature difference. So in the numerator we need to have a 

reference temperature and in the denominator we need to have a reference temperature 

difference. Now your      from the given information, if I list what are the information is 

given to us. Given informations are   ̇
   , thermal conductivity, heat transfer coefficient, 

external fluid temperature and length of this particular domain L. 

 

Then maybe T∞ is the only temperature that is known to us and we can use this one as our 

    . Now what about      , of course       is not there we have just only one temperature 

like in the previous case we had both T1 and T2 known to us. So accordingly we can easily 

define a       as T1 -T2 or T2 -T1, but here we know only one temperature that is T∞. 

 

Then how can you define a temperature difference or a reference temperature difference, just 

check it out what can be the solution that you can identify? Remember you have to use the 

specified variables. If you look carefully if you form a group of this form 

  ̇
     

 
 

What is the dimension of this quantity? Just check it out.   ̇
    is energy generation rate per 

unit volume. So it is W/m
3
, L

2
 is m

2
, K is W/mK,. So we can see that the dimension leaves to 

be only K or rather it has a dimension of temperature and this is the one that we are going to 

use as the      . So the definition of  ̅ now becomes 

 ̅  
    

  ̇
     

 

 



See here though we have only 1 temperature specified still we can define a suitable reference 

temperature difference by logical combination of the parameters. So now we have to 

dimensionalize this equation,  

 ̅  
    

  ̇
     

 

 
       

  ̇
     

 

Or, 

          ̅   ̇
   
     

Differentiating with respect to x, 

  
  

  
 

  ̅

  
   ̇

       

Differentiating once more, 

  
   

   
 

   ̅

   
   ̇

       

Remember here K and   ̇
    and L all are constants. We have to now convert this x to  ̅. So to 

convert x to  ̅ we have to replace this one with   ̅ and accordingly this becomes  

  
   

   
 

   ̅

  ̅ 
   ̇

     

 
   

   
 (

   ̇
   

 
 )

   ̅

  ̅ 
 

So if we put this expression back into the original equation that is here. Now just see what we 

are getting. So we now can replace this second derivative as 

(
   ̇

   

 
 )

   ̅

  ̅ 
  

  ̇
   

 
 

That gives our final dimensionless equation as, 

   ̅

  ̅ 
    

So such a simple form of equation we have got. Like in the previous case when we had 2 

boundary temperatures specified, we actually had 3 variables available or rather 3 parameters 

available in the final dimensionless equation. 

 

So from 4, the number of parameters was reduced to 3. Look at this case; here we have more 

parameters involved. Like we have already made a list, see we have the parameters involved 

as temperature. We have x as the independent variable, then we have the length scale L and 

all this that I have listed which is 7 parameters. But now it has converted only to 2, may not 



be 2 actually because we are yet to treat the boundary condition, but as of now we have got 

just 2 variables that is  ̅ and  ̅. At least you can look at the governing equation. In the 

governing equation itself there were 4 variables and here you have only 2. So we have 

successfully reduced the total number of variables. 
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Now let us treat the boundary conditions. So now our equation is 

   ̅

  ̅ 
    

This is the converted form of the ordinary differential equation, the governing equation. Now 

our boundary condition was 

  

  
|
   

   

Now let me go back to the previous slide see here we had something a form of the dT/dx or 

we can differentiate this also. So from the temperature if I just check out the definition we 

already had  

          ̅   ̇
   
    

This was from the definition of  ̅, and now if we differentiate it once,  

  
  

  
 

  ̅

  
   ̇

       

Exactly this we have done earlier. Now if we replace this x in terms of  ̅ and then it becomes 

  
  

  
 

  ̅

  ̅
   ̇

      (
 

 
) 

Accordingly  



 
  

  
 (

  ̇
    

 
)
  ̅

  ̅
 

Now, 

  

  
|
   

   (
  ̇

    

 
)
  ̅

  ̅
 

Now the term in the bracket that these are all constant   ̇
    L and K, so you can neglect that, 

therefore your first boundary condition now becomes 

  ̅

  ̅
   

So this is the first boundary condition, boundary condition number 1. Now what was the 

second boundary condition, the convective boundary condition, that is,  

  
  

  
|
   

    |        

So putting the expressions 

    ̇
     

  ̅

  ̅
|
 ̅  

  (
  ̇

     

 
)  ̅|

 ̅  

 

So simplifying 

 
  ̅

  ̅
|
 ̅  

 (
  

 
)  ̅| ̅   

Now the term in the bracket hL/k what is that, what is the dimension of this quantity? That 

has to be dimensionless and this dimensionless number is generally called as biot number. Bi 

is the symbol for this. What is the physical significance of this? If you just inspect that term 

hL/k, here if we just reorient the term as 

   
  

 
 

(
 
  )

(
 
  )

 
     

     
 

Now what is L/KA, when you are going for such 1D concept of the or rather 1D formulation 

using the thermal resistance concept, the numerator is the conduction resistance, the 

denominator is the convection resistance. So accordingly  

 
  ̅

  ̅
|
 ̅  

 (
  

 
)  ̅| ̅       ̅| ̅   

So finally, the second boundary condition now becomes 

  ̅

  ̅
|
 ̅  

      ̅| ̅   



So this is the boundary condition number 2. So look at one important change. The total 

number of variables now as I have mentioned in the equation we had two variables  ̅ and  ̅ 

and after non-dimensionlising the boundary condition we have a new one that is involved that 

is the Biot number. So instead of 2 we are having actually 3 variables in this dimensionless 

formulation. 

 

So we have reduced, successfully reduced the total number of parameters from 7 to 3 and we 

have converted the equation to a dimensionless form. Corresponding boundary conditions to 

dimensionless forms as well and we have a generalized situation when we are talking about a 

such a symmetrical geometry subjected to convective boundary condition and very easily you 

can solve this set of equation and you can get the solution for this. 

 

Like if we are looking for the solution then what we are going to have? What solution you 

can expect from this? So if we just go back to the equation 

   ̅

  ̅ 
    

Integrating it  

  ̅

  ̅
   ̅     

 ̅     
 ̅ 

 
    ̅     

So if we put the boundary conditions, now the first boundary condition 

  ̅

  ̅
   

Which gives C1 equal to 0. Second boundary condition 

  ̅

  ̅
|
 ̅  

      ̅| ̅       ( 
 

 
   ) 

d ̅ /d ̅ at  ̅ = 1 is -1, so now we have C2 to be equal to 

   (
 

 
 

 

  
) 

So correspondingly the final solution is, 

 ̅     
 ̅ 

 
 

 

 
 

 

  
 

 
 

 
    ̅   

 

  
 



So this is the final temperature profile that we are getting for this case. Again as long as we 

are dealing with such a geometry we do not need to look for different solution for different 

configurations. 

 

Once the geometries are similar that is a symmetric Cartesian geometry with convective 

boundary condition specified on both sides then we can just calculate the value of 

corresponding biot number and we can go for this solution or rather this final equation that 

we have developed to create the corresponding temperature profiles. And now putting  ̅ =0 

you can get the value of T0. Putting  ̅ = 1 you can get the value of Ts as well. So the values 

are, 

   
 

 
 

 

  
 

   
 

  
 

So we have the extreme temperatures also as outcome of the solution, but we could have also 

calculated the temperature from a different ways, following a different pattern. See here we 

have solved the dimensionless equation to get the corresponding temperature profile and then 

putting different values of  ̅ we are getting the corresponding values of temperature. 

 

Like putting  ̅ = 1 we have just got the value of Ts, but there is something else also you could 

have tried. Just think about over the half of the geometry how much is the total amount of 

energy that got generated? What is the magnitude of this total energy that got generated? 
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  ̇
    is the amount of energy generation per unit volume and over half geometry how much is 

the volume, its cross section area multiplied by length L. Now in order to maintain the steady 

state exactly the same amount of energy must be convected away by the convective stream. 

So from the convective stream we know that this should be is equal to 

  ̇
                  

         
  ̇

    

 
 

Now just think about what are the dimensionless definition of temperature, if we divide this 

Ts -T∞ by
  ̇

     

 
, it becomes the dimensionless value. So dividing both side 

 
       

  ̇
     

 

 

  ̇
    
 

  ̇
     

 

 

Then what is the left hand side? As per our definition this is  

 ̅   ̅| ̅    

Hence simplifying the right side 

 ̅   ̅| ̅    
 

  
 

 

  
 

We got the same solution there also. So the surface temperature you could have calculated 

just by performing an energy balance as well. However, to know the value of T0 of course we 

need to go for the final solution. So this is a situation of uniform energy generation. 
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Let us quickly take care of one situation with non-uniform heat generation and for that, we 

are choosing a spherical geometry. We have not dealt spherical geometry in this week, that is 



why I have gone for this problem, the spherical geometry with non-uniform energy 

generation. Let us just assume one big sphere made of some nuclear material and because of 

the decay heat generation it is having energy generation within it, but in a non-uniform way. 

 

So the entire energy generation is happening in the radial direction of the sphere and the 

energy generation can be represented as some 

  ̇
      ̇

      ( 
  

 
) 

  ̇
   is a constant number. Where R is the radius of the sphere that we are concerned about 

and this   ̇
   and a are constants; r of course is the radial coordinate direction. 

 

So what will be your conservation equation or governing equation in this case? Just think 

about the spherical version of the generalized heat diffusion equation that you have 

developed earlier, here we are talking about the 1D steady state version of that. So we have 

 

  

 

  
(   

  

  
)    ̇

      

Let us assume K to be constant, so we can take this K out as well. In that case it becomes 

 

  

 

  
(  

  

  
)  

  ̇
   

 
   

This is the governing equation here. This   ̇
    is not constant rather that is a function of r. So 

to get that into picture let us represent the form of this   ̇
   , so we have 

 

  

 

  
(  

  

  
)  

  ̇
      ( 

  
 )

 
   

Now we have to dimensionalize this equation. So we go for again our boundary condition. 

Let us say we are talking about a sphere. I am extremely poor in these drawings but this is the 

centre of this, this is the radius R, so this is our radial coordinate direction r and it is being 

subjected to convective boundary condition a stream of temperature T∞ and convective heat 

transfer coefficient of h. 

 

So the only known temperature here is T∞ and therefore we have to go for some definition of 

that       using the   ̇
   . So use something very similar to what we have done in the 

previous case. So we define  ̅ as 

 ̅  
    

  ̇
     

 

 
       

  ̇
     

 



And  ̅ has been non dimensionalized. This is quite straightforward we can easily define this  

 ̅  
 

 
 

So we have to convert this equation to its non-dimensional form. So how we can do this? We 

have 

     (
  ̇

     

 
)  ̅ 

Accordingly  

  

  
 (

  ̇
     

 
)
  ̅

  
  

 

So if we are going back to the corresponding governing equation we now have r being 

replaced by  ̅ , so  

 

   ̅ 

 

  
( ̅   (

  ̇
     

 
)
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  ̇
   

 
   ( 
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Now let’s convert remaining r into the  ̅  notation. We have now putting  ̅  
 

 
 

 

   ̅ 

 

  ̅
( ̅   (

  ̇
   

 
)
  ̅

  ̅
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  ̇
   

 
       ̅    

 
 

 ̅ 

 

  ̅
( ̅ 

  ̅

  ̅
)         ̅    

So this is the converted form the equation where we are taking care of the spatial variation in 

the rate of heat generation as well. And what about the boundary condition in this case? 

 

In this case your boundary conditions will be; at the centre line again there should not be any 

kind of the heat flux, or it has to be 0 to maintain a symmetry to have a finite value of the 

temperature. 
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So you should have 

  

  
|
   

   
  ̅

  ̅
|
 ̅  

   

Similarly, 

  
  

  
|
   

    |        
  ̅

  ̅
|
 ̅  

      ̅| ̅   

Where the definition of biot number is the same as in the previous case, 

   
  

 
 

So we now have the governing equation and we have solved the 2 boundary conditions and 

from this now we can easily solve this, actually I am not going for the complete solution, but 

generally one transformation we do to get the solution done just seeing this equation you 

have this  ̅ and  ̅ both are involved into this. 

 

Therefore, we generally define a new variable u as  

   ̅  

Once you use this then in the governing equation we can change this term  

( ̅ 
  ̅

  ̅
)   ̅

  

  ̅
   

And differentiating once more with respect to d/d ̅  

 

  ̅
( ̅ 

  ̅

  ̅
)   ̅

   

  ̅ 
 

 



So your final equation now becomes 

   

  ̅ 
   ̅       ̅  

Even simpler form then what we had in the previous slide. Both the boundary condition can 

be converted in terms of u also.  It is not required, but we can easily perform the integration 

to be the solution in terms of u; I am just going to give you the final form in terms of u that is 

a quite complicated form that why I am not solving it. 

 

I am just going to give you the final solution which I have written  

     
 ̅

  
[           ̅  

 

  
[          ̅ ]  (

 

  
  )              ]

 
 

  
[         ̅ ]  

 

So a really complicated form of equation that we are getting from the solution because of this 

spatial variation in the volumetric energy generation. So this problem I have chosen just to 

give you an idea about what may happen or how to approach when the energy generation is 

not constant rather it is variable. So we have discussed the situation with 1D steady state heat 

conduction with volumetric energy generation mostly uniform volumetric energy generation, 

and also special case with non-uniform volumetric energy generation. I would like to close 

this lecture by discussing quickly 2 special cases. One case is conduction with variable 

thermal conductivity. So far we have always assumed that K to be constant, but if K is a 

variable then what will happen. 
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Just sticking to the Cartesian coordinate system let us say we have our governing equation as 

 

  
( 

  

  
)    ̇

      

Let us assume that the volumetric energy generation is constant here in this case. Then by 

integrating it once, we have 

 
  

  
     ̇

         

Now the problem is that K may have some spatial dependency. 

 

For most of the common heat transfer situations that we deal with K may be assumed to be 

constant, but if you are talking about a very large temperature change over the system that 

you are dealing with the K can also vary. K generally follows a linear profile of temperature, 

but if you go to higher temperature then it can follow quadratic or even cubic behaviour as 

well. 

 

Just to demonstrate one simple case let us assume K to have a form something like 

    [          ] 

Where T0 is some reference temperature, K0 is a value of thermal conductivity at the 

temperature and this β is referred as the thermal coefficient of thermal conductivity. Just to 

remove that T - T0 part sometimes we will represent this one as 

    [     ] 

Where θ is nothing but T -T0, accordingly 

  

  
 

  

  
 

So putting this into situation we now can write the equation as 

  [     ]
  

  
     ̇

         

Now the situation is definitely more complicated than we had in a previous case. 

 

But this still can be solved once the mathematical variation of K with temperature is known 

we can go for mathematical solution, but the equations are definitely more complicated like 

we can see in this case. Another special case of 1D conduction is where we have to go for a 

conjugate approach and they take the convection into picture with much further detail. 
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Let us take the situation where we have 2 plates, 2 surfaces rather. This surface is maintained 

at temperature T1, this one is maintained at temperature T2 and these 2 surfaces are connected 

by a long solid bar or rod like this. So this bar is being subjected to temperature T1 at this end, 

temperature T2 at this end. Let us assume T1 greater than T2, so there will be a conduction 

heat transfer in this direction. 

 

If we assume the length of the bar is L, so this L is too large compared to the dimension in the 

other 2 directions. Accordingly, conduction in this direction from T1 to T2 from the left 

surface to the right surface will be the prevalent mode of heat transfer, hence we can virtually 

treat this one as a 1D conduction problem. 

 

But if this bar is open to the surrounding which is having a temperature of T∞ and if  this T∞ 

is significantly different compared to this T1 and T2 then this bar is also going to lose energy 

via convection to the surrounding. This convection can also be quite significant if you are 

talking about large difference between T1, T2 and this T∞ and in that case though we are still 

talking about a 1D conduction situation we have to go for a conjugate heat transfer approach. 

 

Let us take a general situation. Let us take the bar is also having a variable cross section area 

as we are moving in this direction the cross section area is also changing. These are x 

direction, this is x = 0, this is x = L. The conduction is happening in this direction, but 

convection losses are also happening. 

 



Now as conduction and convection both are present and it is not 1D, we cannot go for the 

thermal resistance concept. Uniform cross-section area or variable cross-section area that 

does not matter either, and in fact we also cannot go blindly for the generalized heat diffusion 

equation. Rather it is more suggested to develop the equation for this situation on it is own 

starting from the first principle. 

 

Let us take an infinitesimally small segment of this rod. This position is x, this position is 

x+Δx. This segment is receiving  ̇  amount of energy by conduction and  ̇     amount of 

energy is leaving, and  ̇     is amount of energy leaving via convection. 

 

Then if we write an energy balance then 

 ̇   ̇      ̇      

Now if Δx is sufficiently small we can assume this entire block to be more or less at the 

uniform temperature and assuming Δx to be sufficiently small we can expand that first term 

using Taylor series 

 ̇   ̇      ̇     * ̇  
  ̇ 

  
     

   ̇ 

   

     

 
  +   ̇       

 

So we can cancel out  ̇   from both side, and neglecting tasks from second order onwards 

assuming Δx to be sufficiently small, we are just left with  

 
  ̇ 

  
      ̇     

  ̇ 

  
                    

Convection of course will be equal to the heat transfer coefficient h multiplied by dAs. which 

refers to the surface area through which the convection is taking place. 

 

Remember conduction is taking place or rather conduction heat transfer is associated with 

this cross section area, which is also varying in this direction, whereas convection is 

happening from the surface from the peripheral area. Now conduction heat transfer can be 

represented using the Fourier law of heat conduction. 

 

So you can write this one as 

 

  
(    

  

  
)   (

   

  
)          



 Ac is the variable crossection area and as Δx is sufficiently small, we can write dAs/ Δx to be 

dAs/dx. 

Now how we can relate this As, the surface here to x? If it is a uniform geometry very easy to 

calculate this, if it is not an uniform geometry then not so easy to calculate, but still As can 

probably be written as 

       

Where P refers to the perimeter, of course this perimeter is also changing, as we are moving 

in this. So this dAs/dx can be replaced with the perimeter. Now instead of using the partial 

derivative notation actually as it is a 1D steady state situation, so we can go for the ordinary 

derivative notation 

 

  
(    

  

  
)             

Remember here we have not assumed anything, this K, thermal conductivity h, convective 

transfer coefficient cross section area Ac and perimeter P. They all can be function of x, they 

all can vary or they can remain constant giving a special situation. However, this is the 

equation that we get for such conjugate conduction-convection situation. More application of 

this one will be coming in the next week when we shall be going for the discussion of 

extended surfaces or fins, which we will start from an equation of this particular form. 

 

So this is where I would like to finish on module 4 where we have discussed about some 

special situation of 1D steady state heat conduction. 
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We discussed in detail about conduction with uniform heat generation in Cartesian and 

cylindrical geometries and also we have discussed today a dimensionless approach to solve 

similar problem particularly when we are having either dirichlet or convective boundary 

conditions or maybe Neumann boundary condition, then we discussed one case of conduction 

with non-uniform heat generation. 

 

Then very quickly, the situation of conduction variable thermal conductivity and conjugate 

conduction convection problem has also been discussed. So I hope you have been able to 

understand what we are trying to communicate here, if you have any query please write back 

to me because I shall be very happy to respond to you. 

 

That is where the module 4 is finishing and also that is where my role in this course is 

finishing for the moment. I am going to take a break from the next week onwards professor 

Amaresh Dalal will be coming in and he will be taking your lecture for the next 4 weeks 

covering the remaining part of conduction heat transfer. I shall be back again in week number 

9 with radiation heat transfer. Till then see you all, take care, bye bye.  


