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Lecture – 07 

Joule-Thomson Coefficient and Clapeyron Equation 
 

Good morning everyone welcome to the third lecture of our week number two, where we are 

looking to finish of our module on the thermodynamic property relations. So, over the last two 

lectures we have developed the fundamental or generalized relations for changes in several 

thermodynamic properties or the thermodynamic properties which are of most importance to us. 

Basically, the specific internal energy, specific enthalpy, specific entropy and also two kinds of 

specific heats.  

 

Along with them we have also discussed about several important topics like different kinds of 

thermodynamic potentials, the concepts of Helmholtz free energy and Gibbs free energy were 

introduced. We have developed auxiliary relationships such as the merely relation which allows 

us to calculate the difference between the two specific heats for a given substance and we have 

seen that depending upon the pressure and temperature level, there may not be any difference 

between the two specific heats so there may be significant difference. But as a rule, the specific 

heat corresponding to constant pressure that the Cp is always greater than Cv or in the limiting 

case of absolute zero temperature or purely incompressible fluid that can be equal to Cv, but can 

never be less than Cv. We have also defined two new properties which you probably have not 

heard before that particular lecture. 

 

The isothermal compressibility and has which is a somewhat a way of representing the effect of 

pressure on specific volume. And also, we have defined volume expensivity which is a way of 

representing the effect of temperature on specific volume. So, both these isothermal 

compressibility and volume expensivity in a way is related to the PvT characteristic of a system 

that is they relates between these three fundamental parameters pressure volume, specific volume 

and temperature of a substance or a system.  

(Refer Slide Time: 02:26) 



 

Just to have a quick recap, these are the relations that we have developed for changes in specific 

internal energy and specific enthalpy and as is clearly seen from the relations and also. 

𝑑𝑢 = 𝑐𝑣𝑑𝑇 + ൤𝑇 ൬
𝜕𝑃
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൰

𝑣
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𝑃
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We have done a one or two sample numerical problems using them. Here we just need to have 

two kinds of information. One is the PvT relationship for a given substance, which is actually 

known as the equation of state.  

 

So, the first thing that you need to know is the equation of state for the substance which relates 

these three quantities pressure, specific volume and temperature. And second information that 

we need to know is Cv as a function of temperature or Cp as a function of temperature. So, once 

we know that dependence of either of the specific heats on temperature, we can use any one of 

the relations.  

 

And also, as we have seen your example problems it is not generally required in a particular 

problem to make use of both the relations, we can always use the relationship between specific 

internal energy and specific enthalpy to calculate one from the other. Like a for a certain problem 

if a suppose Cv is known to us and we have the PvT relationship then you can use that to 

calculate the changes in internal energy. 



 

And then once we have this u2-u1 known to us then we can easily calculate h2-h1 from there, 

invoking the relationship between u and h. i.e., 

ℎ2 = 𝑢2 + 𝑃2𝑣2 
 

ℎ1 = 𝑢1 + 𝑃1𝑣1 

it becomes  

ℎ2 − ℎ1 = (𝑢2 + 𝑃2𝑣2) − (𝑢1 + 𝑃1𝑣1) 
 

= 𝑢2 − 𝑢1 + (𝑃2𝑣2 − 𝑃1𝑣1)    

that is ‘Pv’ are the corresponding flow works for both state 1 and 2. Or vice versa in a certain 

problem if suppose we are calculating this one because we have Cp known to us then we can 

easily use that to calculate u.  

 

And also, which one if we have information have related to both Cp and Cv, then which one to 

use that depends upon exactly what we are trying to identify and also sometimes depending upon 

what kind of process that we are dealing with. Like if suppose we are dealing with a constant 

volume process and isochoric process then for an isochoric process the dv term goes to 0. 

Therefore 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 

Or it is much easier to operate with the relation for specific internal energy whereas if you are 

dealing with the constant pressure process for that this dp goes to 0. So the entire bracketed term 

does not need any consideration so  

𝑑ℎ = 𝐶𝑝 𝑑𝑇 

 and we can easily calculate the changes in enthalpy and from there you can calculate the 

changes in internal energy. Similarly, we can calculate the changes in specific entropy following 

a relation like this: 

𝑑𝑠 =
𝐶𝑣

𝑇
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𝑣
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where again we need the PvT relationship and also Cv as a function of temperature or alternately 

you can have a different relation where we need to make use of the Cp relation as a function of 

temperature.  



𝑑𝑠 =
𝐶𝑝

𝑇
𝑑𝑇 − ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
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So, we can use either of them in a given scenario. And if we want to know how Cp and Cv varies 

with temperature then this is an example of relation of Cp with temperature. 

(𝐶𝑃 − 𝐶𝑃0)𝑇 = −𝑇 න ቆ
𝜕2𝑣

𝜕𝑇2ቇ
𝑃

𝑑𝑣
𝑃

0

 

 

So, from the knowledge of again just the PvT relationship we can easily calculate Cp as a 

function of temperature. And say if we want to perform one simple analysis say for an ideal gas 

to calculate the expression for Cv. We have already done in our previous module I guess but still, 

suppose our relation is:  

PV = RT 

So, from the known equation step we can easily calculate this differential: 

ቆ
𝜕2𝑣

𝜕𝑇2ቇ
𝑃

= ? ? 

 

 is equal to whatever we get. 

And from there we can easily calculate cp – cp0 corresponding to whatever temperature we are 

looking to identify. And finally, the Mayer relation which gives us the relationship between Cp 

and Cv.  

𝐶𝑝 − 𝐶𝑣 =  
𝑣𝑇𝛽2

𝛼
 

So, these are the generalized relation that we have developed, here these are applicable for any 

kind of thermodynamic system, any kind of process that they are undergoing we can apply this 

particular relation.  

 

Also, to other thermodynamic potentials that we have defined earlier the Helmholtz free energy 

and Gibbs free energy. Now here we have defined or developed relation for changes in two of 

the thermodynamic potentials: the specific internal energy and specific enthalpy because these 

two are the most common ones. But there may be certain situations where you are being asked to 

calculate the changes in specific Helmholtz energy. 

 



Then how you can go for this? Of course, you can again that being quite similar to enthalpy 

being a combination property you can simply use this definition. Suppose you are looking to 

calculate f2 - f1 that is the changes in specific Helmholtz free energy during a particular process. 

Sometimes this is written as f12 which represents the change in value of f from 1 to 2. So, the 

expression will be: 

𝑓12 = 𝑓2 − 𝑓1 = (𝑢2 − 𝑇2𝑠2) − (𝑢1 − 𝑇1𝑠1) 
 

Similarly, if you are looking to calculate the changes in specific Gibbs free energy. Then g12 will 

be: 

𝑔12 = 𝑔2 − 𝑔1 = (ℎ2 − 𝑇2𝑠2) − (ℎ1 − 𝑇1𝑠1) 
 

Of course, we can still develop relationship something like  

df = whatever 

or 

dg = whatever 

but using the Maxwell relation but there is no need for this because we can still just use the 

definition and use the changes in these properties as well.  

 

So, I am a leaving one exercise for you, please try to solve that exercise using the information 

that I am providing you. Say, for example we are dealing with a system where helium is being 

used as the working substance so you are having helium as the working substance which is 

following the equation of state in the form of: 

P(v–a) = RT 

where this a = 0.01 m3/kg.  

 

So, this is the PvT relationship that is given to you and it is said that the system is undergoing a 

change of state from 100 kPa, 20 oC to 600 kPa ,300 oC. So, state 1 corresponds to a 100 kPa, 20 
oC and so i.e.,  

P1 is 100 kPa  

T1 is 20 oC or 293 K 

Similarly  

P2 is 600 kPa  



T1 is 300 oC or 573 K 

So, you have a PvT known and then the value of this constant is also given. So from this you 

calculate that changes in all the corresponding thermodynamic potentials. That is, I am asking 

you to calculate the changes in specific internal energy, changes in specific enthalpy, changes in 

specific Helmholtz energy and changes in Gibbs free energy. And in addition, you also have to 

calculate changes in specific entropy.  

 

I have intentionally have not provided the value of R and Cp or Cv. In this case that you have to 

identify from your text books. Using that try to calculate that, this will be a good exercise for you 

to do. Where do you have to make use of the PvT relationship, make use of the relation for R, T 

and a Cv or Cp and also the relationship between the potentials, which you I am sure you will be 

able to do this. 

(Refer Slide Time: 11:05) 

 

Let us do a little bit of exercise of our own of a different kind. You have been asked to prove this 

particular relationship we are making use of the Maxwell’s equations. Here we do not need to 

bother about the relations for du or dh. We just have to use a Maxwell’s solution to prove this. 

Now for this let us make use of the Maxwell’s square. So this is the Maxwell’s square you have 

which involves all the four thermodynamic potentials and also the four parameters of our 

concern that is pressure, temperature specific volume and specific entropy. So how can we use 



this particular relation or how can we prove this particular relation? Let us go one by one, let us 

take the left-hand side.  

So, 

𝐿𝐻𝑆 = ൬
𝜕𝑃

𝜕𝑇
൰

𝑠
 

 

Now can you get this particular on from Maxwell relation, P and T are there in the same 

horizontal line like this.  However, the diagonal of P is V and not S that means we definitely call 

and do not have any Maxwell’s relation which is directly applicable for this. Then how can you 

proceed with this? Look carefully P and S are not diagonal to each other but T and S they are at 

the diagonal, so we actually making use of something called reciprocity i.e., we are taking the 

inverse of this or we are writing this as: 

𝐿𝐻𝑆 = ൬
𝜕𝑃

𝜕𝑇
൰

𝑠
= ൤൬

𝜕𝑇

𝜕𝑃
൰

𝑠
൨

−1

 

  

Now (∂T/∂P)s , is it there in the Maxwell’s equations? It is there definitely, because T and S are 

opposite to each other and P as neighbour to T. So, see the Maxwell’s square so what the above 

expression will be:  

= ൤൬
𝜕𝑇

𝜕𝑃
൰

𝑠
൨

−1

= ൤൬
𝜕𝑣

𝜕𝑆
൰

𝑃
൨

−1

= ൬
𝜕𝑠

𝜕𝑣
൰

𝑃
 

 

So, we have converted this to some other form. Now let us work on the right-hand side it is a 

much more calculation involved in this. So, we have: 

𝑅𝐻𝑆 =
𝑘

𝑘 − 1
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
 

 

(∂P/∂T)v can be replaced using the Maxwell’s solution, so what can we do for this? P and T again 

are neighbour and v is reciprocal to P. So, this will become: 

=
𝑘

𝑘 − 1
൬

𝜕𝑠

𝜕𝑣
൰

𝑇
 

 

 But before that we have to know what is this ‘K’ parameter? I hope you know the definition of K 

that’s why I have directly gone for this, but K actually this as per the standard thermodynamic 

notation, K is: 



𝐾 =
𝐶𝑃

𝐶𝑣
 

So,  

𝐾

𝐾 − 1
=

𝐶𝑃
𝐶𝑣

ൗ

𝐶𝑃
𝐶𝑣

ൗ − 1
=

𝐶𝑃

𝐶𝑃 − 𝐶𝑣
 

And Cp − Cv, we have developed in the previous lecture can be written as: 

𝐶𝑝 − 𝐶𝑣 = 𝑇 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
 

 

So, we have to make use of this here and therefore though we could have used the Maxwell’s 

relation directly that we are not doing here. What we are doing is we are putting this substitution 

for K. So, the RHS becomes: 

𝑅𝐻𝑆 =
𝑘

𝑘 − 1
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
=

𝐶𝑃

𝐶𝑃 − 𝐶𝑣
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
  

 

 

Replacing Cp − Cv, now using on the relation we have to have Cp/T remaining in the numerator 

multiplied by (∂T/∂P), using the reciprocity multiplying with (∂T/∂v)p and (∂P/∂T)v we can write 

it as: 

=
𝐶𝑃

𝑇
൬

𝜕𝑇

𝜕𝑃
൰

𝑣
൬

𝜕𝑇

𝜕𝑣
൰

𝑃
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
 

 

So what substitution we can do now? Here we have used the reciprocity for the relationship Cp − 

Cv. Now (∂T/∂P)v and (∂P/∂T)v can cancel out leaving us with: 

=
𝐶𝑃

𝑇
൬

𝜕𝑇

𝜕𝑣
൰

𝑃
 

 

Now what kind of substitutions we can do here so that the right-hand side becomes equal to the 

left-hand side? (∂T/∂P)v, Is that available on the Maxwell’s square? That is definitely available 

because, you can see the Maxwell’s square T and v are neighbour to each other and P is opposite 

to this or P actually is a neighbour to this. So, we cannot get this from the equation. But again 

here we can make use of the reciprocity, i.e., (∂T/∂v)P can be written as: 



൬
𝜕𝑇

𝜕𝑣
൰

𝑃
= ൤൬

𝜕𝑣

𝜕𝑇
൰

𝑃
൨

−1

 

 

This can be the written using Maxwell equation as: 

= ൤− ൬
𝜕𝑆

𝜕𝑃
൰

𝑇
൨

−1

 

 

So accordingly, the RHS becomes: 

=
𝐶𝑃

𝑇
൤− ൬

𝜕𝑃

𝜕𝑆
൰

𝑇
൨ 

So, what is the next substitutions that we have to do?  

Now what is the Cp/T? If you can invoke one of the earlier equations that we have used while 

deriving the relation for changes in entropy was: 

𝐶𝑃

𝑇
= ൬

𝜕𝑆

𝜕𝑇
൰

𝑃
 

So again, for these substitutions, there are several ways we can substitute the relations. But some 

of the substitutions that are not required, here we are directly going to substitute what we have 

developed here the relation for Cp/T. 

 

So the RHS is now: 

= ൬
𝜕𝑆

𝜕𝑇
൰

𝑃
൬

𝜕𝑇

𝜕𝑣
൰

𝑃
 

 

So, if we combine them, we have: 

= ൬
𝜕𝑆

𝜕𝑣
൰

𝑃
 

 

So, now your LHS and RHS are equal to each other which proves our relation. So, see the way I 

have developed this particular one. There are several ways we can substitute something make use 

of the Maxwell’s relations, but at least twice we actually use some substitutions and when you 

are in the opposite direction like this is some substitution which was not required. And another 

substitution we have used here by directly putting a Maxwell’s equation that was also not 

required rather we have to make use of the Cp − Cv relation and you have to make use of this 

relation to prove whatever we are supposed to do. This way using the Maxwell’s equation and 



also using the generalized equations that we have developed there are several other relations 

which can be proved and they again have several applications in practice.  

 

Let us have another small problem here we have to prove something involving β and α: 

Prove that,  

𝛽 = 𝛼 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
 

 

So, let us try. What is your expression for α? Alpha is the isothermal compressibility, i.e., 

α = −
1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇

 

 

So here we have  

𝛼 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
= −

1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
 

  

So what should be the substitution we can use here? Anything click in your mind that is cyclic 

relation. What is the cyclic relation between P, v and T, that will be: 

൬
𝜕𝑣

𝜕𝑃
൰

𝑇
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
൬

𝜕𝑇

𝜕𝑣
൰

𝑃

= −1 

something we have used. 

So if we put it in the RHS of the equation in question, it will be: 

= −
1

𝑣
൤൬−

𝜕𝑣

𝜕𝑇
൰

𝑃

൨ =
1

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃

=  𝛽 

 

So, it is a very simple proof that is  

𝛽 = 𝛼 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
 

 

and these are numerous relations can be proved just using the definitions, this using some 

fundamental equations of partial differentials and of course the Maxwell’s relations. These are 

the couple of good exercise to have which I have shown here. Like the second one is quite 

straightforward but on the first one we have seen how we can or we may go in alternate 

direction, just trying to substitute something without understanding exactly where you are trying 

to go.  



I hope I am able to convey the we can approach such kind of problems. Always try to make use 

of the substitutions judicially because there are several ways you can substitute the same 

variable. But there maybe situations where only one may give you the correct result.  

(Refer Slide Time: 21:25) 

 

Let us know move to the discussion of couple of other concepts which are unrelated but again 

very important and gives rise to very important thermodynamic applications. And the first one of 

them is the Joule-Thomson coefficient. The Joule-Thomson coefficient characterize a throttling 

process. Now what do you mean by throttling? When a fluid a liquid or gaseous is allowed to 

pass through a very small restriction like a flow across the valve or flow through a very small 

dimension tube like a capillary tube, then that kind of process is generally known as throttling. 

During the throttling process there is no heat and work interaction involved, there is hardly any 

changes in kind of stick and potential energies. However, there is significant change in the 

pressure the outlet pressure commonly is much lower than the inlet pressure.  

 

Like the situation shown here, if fluid is passing through a value it is coming at 800 kPa pressure 

and 20 0C and outlet pressure on the downstream of the valve is just 200 kPa, so there is a 

significant reduction in the pressure. However, its temperature maybe > 0C, maybe < 20 0C or 

may remain equal to 20 0C, that will depend upon the nature of the process and which can be 

characterized by this Joule-Thomson coefficient. Before defining the Joule-Thomson coefficient, 

let us try to understand the thermodynamic nature of this particular process, and for that we have 



to apply the first law of thermodynamics on this particular process. So, let us assume it is a 

steady flow process where mass is coming with ṁ1, outlet mass is ṁ2. Now under steady state 

applying principle of mass conservation we know that: 

ṁ1 = ṁ2 = ṁ 

Now we apply the first law of thermodynamics on this, so the general expression the change in 

their total energy content for the system or the time rate of change of total energy content of a 

system will be equal to: 

𝜕𝐸

𝜕𝑡
= δ𝑄̇ − δ𝑊̇ +  ෍ 𝑚1̇ 𝜃1

𝑖

 

 

where  

δQ dot is the amount of heat added to the system 

δW dot is the amount of work done by the system  

ṁθ is the amount of energy coming into the system in form of a mass transfer coming in or going 

out.  

Now in this particular case there is no heat transfer, there is no work transfer, and also we are 

talking about the steady flow system, i.e., energy content of the system is not changing with 

time. Therefore we have: 

෍ 𝑚1̇ 𝜃1

𝑖

= 0 

Now there is only one inlet and one outlet for the system. So we have: 

𝑚1̇ 𝜃1 − 𝑚2̇ 𝜃2 = 0 

Here ṁ1 is positive because it is coming to the system and ṁ2 is going out of the system, so that 

is negative. ṁ1 and ṁ2 are equal to each other as per the mass conservation principle. So, we 

have: 

𝜃1 = 𝜃2 
 

Now if we expand this θ1 and θ2 in terms of their components, then what will it be?  

𝜃1 = ℎ1 +
1

2
𝑐1

2 + 𝑔𝑧1 

Similarly,  

𝜃2 = ℎ2 +
1

2
𝑐2

2 + 𝑔𝑧2 
 



That means: 

ℎ1 +
1

2
𝑐1

2 + 𝑔𝑧1 = ℎ2 +
1

2
𝑐2

2 + 𝑔𝑧2 
 

Now changes in kinetic and potential energies can virtually be neglected in this particular case. 

Therefore, what we are getting ultimately is: 

ℎ1 ≈ ℎ2 

i.e., we are talking about the process during which the enthalpy remains constant or we 

conventionally call that as isenthalpic process. So, the throttling process is an isenthalpic process 

during which the enthalpy of the fluid remains constant throughout the system or during the 

process.  

 

Now we are therefore talking about and isenthalpic process there is a reduction in pressure but 

temperature may increase or may decrease and that is being expressed by this Joule-Thomson 

coefficient. Joule-Thomson coefficient is expressed by the symbol μ. Sometimes a subscript JT is 

added to signify that this is Joule-Thomson coefficient because some properties like viscosity etc 

also given in terms of μ. So. this subscript JT is often put into indicate that it is Joule-Thomson 

coefficient only, and the definition of Joule-Thomson coefficient is: 

μ𝐽𝑇 = ൬
𝜕𝑇

𝜕𝑃
൰

ℎ

 

 

i.e., the change in temperature with pressure for a constant enthalpy process. 

 

In a way you can say that it represents the slope of isenthalpic on that TP plane, i.e., if we plot 

the process on a temperature pressure graph T here and P here then and if this is the line during 

which enthalpy remains constant i.e., along this line where starting point 1, and this is ending 

point 2 during which enthalpy remains constant and the arrow indicates from start to end. Then 

the slope of this particular line is the Joule-Thomson coefficient. 

 

Now during the throttling process pressure is always decreasing that is your ∂P is negative. That 

means if we are talking about Joule-Thomson coefficient to be lesser than 0. What does that 

mean? We know that during the process pressure is decreasing, then for process this coefficient 



to be negative temperature has to increase, so a negative value of Joule-Thomson coefficient 

during the throttling process indicates an increase in temperature. 

μ𝐽𝑇 < 0 → 𝑇 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠 
 

If this is equal to 0, that means temperature remains constant or there is no change in temperature 

during the process.  

μ𝐽𝑇 = 0 → 𝑇 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
 

Whereas when the Joule-Thomson coefficient was positive, what does that indicate? ∂P is 

negative then the coefficient can be positive only when ∂T is also negative, i.e., temperature also 

decreases similar to pressure and this magnitude or Joule-Thomson coefficient therefore gives us 

an idea exactly what kind of thermal effect that we are going to get. 

 

If your Joule-Thomson coefficient is negative, temperature at the outlet will be higher than 

temperature in the inlet and therefore you are going to get a heating effect. Whereas when the 

Joule-Thomson coefficient is positive, temperature at the outlet will be lower than the 

temperature at inlet and therefore we are going to get that cooling effect or an application 

towards the refrigeration industry. 

 

So, when Joule-Thomson coefficient is negative its application is a heating effect or when we 

want some room heating kind of application, we can go for this. However, if we are looking at 

our target application is the refrigeration industry that you want the cooling effect then we have 

to ensure that the magnitude of Joule-Thomson coefficient is positive that is then only we are 

going to get the cooling effect. 

 

So, the choice for choosing a refrigerate we have to ensure that under the given circumstances 

the value of the Joule-Thomson coefficient is a positive one. Now, this discussion is for a 

particular enthalpy similarly for every enthalpy or every given value of a inlet enthalpy, the 

nature of Joule-Thomson coefficient will show certain kinds of trend and that is what is shown 

here during this simple experiment. 

(Refer Slide Time: 29:06) 



 

Here we are doing a particular experiment, where we have taken a capillary tube just like this 

where the inlet state is fixed, that is a fluid supplied at a pressure P1 and T1 and outlet pressure is 

controlled, this P2 is outlet pressure which is controlled. As the fluid is flowing through this 

restriction it is losing some pressure for a given value of P2, a certain amount of pressure drop is 

suffering and outlet temperature will keep on varying with the choice of your outlet pressure. 

And therefore, this temperature T2 can be higher than T1 or can be lesser than T1. 

 

Just look at the TP diagram that has been plotted here. This is the state from which you are 

starting and we are moving in this direction that is pressure is reducing during the process. If our 

final state is somewhere here, then the temperature is higher, i.e., what is the value of your Joule 

Thomson-coefficient in this particular state? Here the value of your Joule-Thomson coefficient is 

negative, because pressure is decreasing but temperature is increasing. If pressure is decreased 

further, if we reach our state points somewhere like this there is further increase in temperature 

Joule-Thomson coefficient remains negative. 

 

If we continue this way, we reach this particular state where again temperature is higher but the 

slope of the curve has started to flatten out. So, Joule-Thomson coefficient is still negative, but 

maybe its magnitude is approaching 0. And there is somewhere here the curve becomes a flat 

one that is it reaches the maximum possible temperature we have some kind of inversion. 

 



At this particular point of inversion, the there is no change in temperature with change in 

pressure that is a value of the Joule-Thomson coefficient is 0, at this point of inversion. If the 

pressure is reduced further, so that we reach this particular point, then you can see now there is a 

reduction in temperature or temperature started to reduce, because now Joule-Thomson 

coefficient has become positive. 

 

If we reach a sign further here there is a further reduction in temperature and therefore, we can 

see on this particular side the Joule-Thomson coefficient is positive there is a reduction in 

pressure temperature is also started to reduce. This is the constant enthalpy line, and if we divide 

this particular line into two zones, then you can see on this side Joule-Thomson coefficient is 

negative. 

 

So, if our operation is restricted to this right-hand side you are going to get a heating effect. 

Whereas if we are operating on this side then you are going to get a cooling effect our operation 

can be extended to the refrigeration industries because the Joule-Thomson coefficient is positive. 

And this point of inversion or the point of maximum temperature is very important because for 

the given value of this inlet enthalpy, from the property of the fluid we can identify the 

maximum possible temperature, and accordingly can identify the location of this inversion on 

this constant enthalpy curve. Here now if we repeat the experiments for several such inlet states, 

this inlet state actually specifies your inlet enthalpy which remains constant during the process. If 

we modify the inlet state, the value of the enthalpy also changes and we are going to go to a 

different line. 

 

This way we have got several lines by continuously increasing the enthalpy. And for all of them 

during the experiment we can see that the same nature is repeated. So, for the first line we are 

getting our inversion here for the second line we are getting inversion here for a third value of 

inlet in that we are getting inversion somewhere here if we join all these inversion points then the 

line that we get that is called the inversion line.  

 

So, inversion line is basically the locus of all this inversion points corresponding to individual 

inlet enthalpy curves. And the point where this inversion line touches the vertical axes i.e., the P 



= 0 situation, this line has the restriction or has the equation of P = 0. So, this temperature is 

known as the maximum inversion temperature. It is a characteristic of any fluid. When we are 

operating below the maximum inversion temperature, we can see that we can have both 

situations: 

μ𝐽𝑇 > 0  

or 

μ𝐽𝑇 < 0 
 

Also 

μ𝐽𝑇 < 0 

is on the right-hand side of your inversion line and  

μ𝐽𝑇 > 0  

is on the left-hand side of the inversion line. However, if your operation is on the higher side of 

this maximum inversion temperature, then what we can get? Then the value of μJT is always 

negative, you can never reach the zone where μJT greater than zero. 

 

That means, if your operation is happening at a temperature level above the maximum inversion 

temperature then throttling is going to give you only the heating effect but no cooling effect. 

Whereas if your operation is restricted below the maximum inversion temperature you can get 

both higher heating and cooling effect by choosing the outlet temperature and thereby 

modulating the value of this μJT. 

 

As I mentioned this maximum inversion number is the property of the substance. For example, 

for substances like hydrogen maximum inversion temperature is − 68 0C. That means if we want 

to apply hydrogen for some kind of cooling process or refrigeration process then first we have to 

reduce the temperature lower than this − 68 0C and then only you can use hydrogen as a 

refrigerant. 

 

But if we are operating at the normal ambient condition, then there as this temperature is higher 

than the maximum inversion temperature, so the Joule-Thomson coefficient for hydrogen will 

always be negative for any pressure level and hence it can only give you the heating effect but no 



cooling effect. Whereas if you are operating at cryogenic levels at − 150 0C or something 

hydrogen can also be used as a refrigerant. 

 

Most of the common synthetic refrigerants that we use in refrigerator industries or in air 

conditioning industries they generally have maximum inversion temperatures substantially 

higher than the ambient condition. And therefore, we generally do not need to bother about this. 

Finally let us try to get to some kind of mathematical criteria for the Joule-Thomson coefficient. 

We know that we are talking about an isentropic process. 

 

Now these are the relations that we have developed earlier for changes in enthalpy and is as 

follows: 

𝑑ℎ = 𝐶𝑝 𝑑𝑇 + ൤𝑣 − 𝑇 ൬
𝜕𝑣

𝜕𝑇
൰

𝑃
൨ 𝑑𝑃 

then during the throttling process enthalpy remains constant hence: 

𝑑ℎ = 0 

So, let us rearrange this taking dP on one side and dT on another side. That means we can write: 

𝐶𝑝 𝑑𝑇 = ൤𝑇 ൬
𝜕𝑣

𝜕𝑇
൰

𝑃
− 𝑣൨ 𝑑𝑃 

i.e.,  

൬
𝜕𝑇

𝜕𝑃
൰

ℎ
= μ𝐽𝑇 =

1

𝐶𝑝
൤𝑇 ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
− 𝑣൨ 

  

So, this way we can easily calculate the value of Joule-Thompson coefficient again from the 

knowledge of the PvT characteristic and the value of Cp for a given situation. As a final point the 

magnitude of Joule Thompson coefficient, I repeat is very important in the HVAC industry 

particularly that is what kind of application we are going for the heating application or cooling 

application your outcome or the choice of refrigerant will depend upon the level of Joule 

Thomson coefficient corresponding to that operating conditions. 
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Let us do again a couple of small exercises to calculate the Joule-Thomson coefficient now. And 

for this we are going to choosing an ideal gas: 

Pv = RT 

Now this is the expression for Joule-Thompson coefficient: 

μ𝐽𝑇 = −
1

𝐶𝑝

൤𝑣 − 𝑇 ൬
𝜕𝑣

𝜕𝑇
൰

𝑃

൨ 

So, to get this let us get this ∂v/∂T for this Joule Thompson coefficient first for this ideal gas. So, 

we have: 

Pv = RT 

i.e.,  

𝑣 =
𝑅𝑇

𝑃
 

i.e.,  

൬
𝜕𝑣

𝜕𝑇
൰

𝑃
=

𝑅

𝑃
 

 

 So, if you put this R/T in the expression μJT: 

μ𝐽𝑇 = −
1

𝐶𝑝

൤𝑣 − 𝑇 ൬
𝜕𝑣

𝜕𝑇
൰

𝑃

൨ = −
1

𝐶𝑝

൤𝑣 −
𝑅𝑇

𝑃
൨ = −

1

𝐶𝑝

[𝑣 − 𝑣] = 0 

i.e., Joule-Thompson coefficient for an ideal gas is 0 and that is logical only because we have 

proved in the previous class, that for an ideal gas enthalpy is the sole function of temperature, 

pressure does not have any role. So, enthalpy of an ideal gas can change only when there is 



change in temperature or vice versa. If the enthalpy is constant that means temperature is also 

constant. And during the throttling process, as we are mentioning it to be isenthalpic that is 

enthalpy remains constant, temperature also has to be constant and hence we are getting a 0 

value of the Joule-Thomson coefficient.  

 

Another case, here we have the more complicated Van der Waal’s equation of state: 

ቀ𝑃 +
𝑎

𝑣2ቁ (𝑣 − 𝑏) = 𝑅𝑇 

We have to calculate the expression for the Joule-Thomson coefficient for this. So same 

procedure let us write this as: 

(𝑣 − 𝑏) =
𝑅𝑇

𝑃 + ቀ
𝑎

𝑣2ቁ
 

i.e.,  

𝑣 = 𝑏 +
𝑅𝑇

𝑃 + ቀ
𝑎

𝑣2ቁ
 

So, if we differentiate this with respect to temperature maintaining pressure constant, i.e., 

൬
𝜕𝑣

𝜕𝑇
൰

𝑃
=

𝑅 ቂ𝑃 + ቀ
𝑎

𝑣2ቁቃ − 𝑅𝑇[−2𝑎𝑣−3] ቀ
𝜕𝑣
𝜕𝑇

ቁ
𝑃

ቂ𝑃 + ቀ
𝑎

𝑣2ቁቃ
2  

 

Or if we simplify this then we have: 

ቂ𝑃 + ቀ
𝑎

𝑣2
ቁቃ

2

൬
𝜕𝑣

𝜕𝑇
൰

𝑃
= 𝑅 ቂ𝑃 + ቀ

𝑎

𝑣2
ቁቃ + ൤

2𝑎𝑅𝑇

𝑣3 ൨ ൬
𝜕𝑣

𝜕𝑇
൰

𝑃
 

Or 

൬
𝜕𝑣

𝜕𝑇
൰

𝑃
=

ቂ𝑃 + ቀ
𝑎

𝑣2ቁቃ 𝑅

ቂ𝑃 + ቀ
𝑎

𝑣2ቁቃ − ቂ
2𝑎𝑅𝑇

𝑣3 ቃ
 

 

and therefore the expression for the Joule-Thomson coefficient becomes: 

μ𝐽𝑇 =
1

𝐶𝑝
ቌ

ቂ𝑃 + ቀ
𝑎

𝑣2ቁቃ 𝑅𝑇

ቂ𝑃 + ቀ
𝑎

𝑣2ቁቃ − ቂ
2𝑎𝑅𝑇

𝑣3 ቃ
− 𝑣ቍ 

 

This is a quite complicated expression. Now you can simplify this in whatever way you want. 

And once we have the given information available that is you are talking about the particular 



state point, you know the expression for the pressure, temperature etc. putting this you can get 

with the value of the Joule-Thomson coefficient. So that is the concept of the Joule-Thomson 

coefficient. Let us quickly move on to discuss the final concept in this particular module which is 

of the Clapeyron equation. 
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Clapeyron equation is the application of the Maxwell’s relation during a phase change process. It 

can be any kind of exchange process, a liquid to vapor, a solid to liquid or a solid to vapor or 

vice versa. But the Clapeyron relation provides us a generalized platform of calculating that 

changes in entropy and changes in enthalpy during a phase change process. Now this is one of 

the Maxwell’s relation that we have developed in the very first lecture of this module:  

൬
𝜕𝑃

𝜕𝑇
൰

𝑣
= ൬

𝜕𝑠

𝜕𝑣
൰

𝑇
 

When you are talking about the phase change process, then we know that the saturation pressure 

is a function of temperature alone. That is, during the phase change process thus pressure is a 

sole function of temperature and therefore we can instead of using the partial differential notation 

we can write this: just (dP/dT)sat which actually represent the slope of the saturation called on a 

pressure temperature players and that is: 

൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
= ൬

𝜕𝑠

𝜕𝑣
൰

𝑇
 

Or if we separate them out i.e., 



𝜕𝑠 = ൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
𝜕𝑣 

 

Integrating this say from state point 1 to 2: 

න 𝜕𝑠
2

1

= න ൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
𝜕𝑣

2

1

 

where state point 1 indicates that starting point of his change or starting state of the phase change 

where we have only the first phase available and point 2 refers to exactly the finishing point of 

the phase change where we have the second phase available. Like if you are talking about the 

liquid vapour phase change process then point 1 refers to 100% liquid which is just about to 

vaporize about to start the phase change and point 2 refers to a 100% vapour state where the 

phase change has just completed. So, we can then write this as: 

𝑠2 − 𝑠1 = 𝑠12 = ൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
(𝑣2 − 𝑣1) 

or the changes in the slope of the curve can be retained as: 

൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
=

𝑠12

𝑣12
 

This is a typical saturation curve on PT diagram. This is actually a curve which corresponds to 

all the three processes. I shall be coming to this curve, reviewing this curve in as a part of the 

next module in the very first lecture of the next module. But here, this third curve represents your 

saturation curve and (dP/dT)sat or (∂P/∂T)sat, which is actually a constant at a given temperature it 

represents the slope of this particular curve this is what we are referring.  

 

Now if we are talking about or if our objective is to calculate the changes in entropy you can 

easily do this. How we can do this? Let me just rearrange the above expression. So it is: 

𝑠12 = 𝑣12 ൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
 

Say, for example, we do the experiment for quite a few different temperature levels. Say, at a 

temperature of a 100 0C, we measure the corresponding pressure, that gives us 1 point 

somewhere on this curve. 

 

Then at a temperature of 105 0C, we again allow the water to change its phase then measure 

corresponding pressure. Then we do the experiment at 110 0C and again measure the 



corresponding pressure. Then this way we can get a few points of the curve and then combining 

these points we can calculate the slope of this curve. And now suppose our objective is to 

calculate do this calculation at T=105 0C. 

 

Then at 105 0C starting from phase 1 i.e., 100% liquid it is about to vaporise going to phase 2 

which is 100% vapour just finish the vaporisation. We can easily calculate the change in volume 

thereby knowing the second term. So once we know both of them then we can easily calculate 

the change in entropy during this particular phase change process. And if we want to calculate 

the change in enthalpy, we have to make use of that TdS relation.  

 

What will be a TdS relation? We know that: 

𝑑ℎ = 𝑇𝑑𝑆 + 𝑣𝑑𝑃 
 

Now, when the phase change process is going on i.e., from liquid to vapour or any similar phase 

change process both pressure and temperature remains constant, i.e., dP goes to 0 and 

temperature remains constant. So, if we integrate this one, over the phase change process now 

then: 

න 𝑑ℎ = 𝑇 න 𝑑𝑆 + 𝑣𝑑𝑃 

 

This will be your h12, i.e., 

ℎ12 = ℎ2 − ℎ1 = 𝑇𝑠12 
 

i.e.,  

ℎ12 = 𝑇𝑠𝑎𝑡 𝑠12 

or invoking the earlier relation  

= 𝑇𝑠𝑎𝑡 𝑣12 ൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
 

or if our interest is to know the saturation curve or expression for the saturation curve then you 

can also write: 

൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
=

ℎ12

𝑇𝑠𝑎𝑡 𝑣12
 

This particular relation or its alternative version is known as the Clapeyron equation which 

allows us to calculate the change in enthalpy and consequently the change in entropy during a 



phase change process using the knowledge of the slope of the curve, the measurement of the 

saturation then pressure and also the measurement of the change in specific volume during this 

process. It is a very important relation more application of it can be applied to any kind of phase 

change process we just need to know the slope of the curve properly, which of course its 

complicated. But more on the nature of this curve we shall be learning as a part of the next 

module. 
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An alternate version or an approximate version of the Clapeyron relation is sometimes used to 

know that saturation pressure which is called the Clapeyron-Clausius equation. If we are talking 

about a saturation of very low pressure, as the pressure keeps on decreasing then the pressure of 

the vapour phase particularly if you are talking about the liquid-vapor phase change process. 

This Clapeyron-Clausius equation is particularly applicable to liquid-vapor phase change. 

 

Now when we are talking about very low pressure then this  

𝑣2 ≫ 𝑣1 

such that 

𝑣12 = 𝑣2 − 𝑣1 ≈ 𝑣2 

and we can sometimes assume that this v1 at low pressure again as an ideal gas. As the pressure 

keeps on approaching the absolute 0 pressure the behaviour of vapour also approaches that of an 

ideal gas and therefore, we can approximate this by the ideal gas equation which is: 



=
𝑅𝑇𝑠𝑎𝑡

𝑃𝑠𝑎𝑡
 

 

or if we just drop the subscript just: 

=
𝑅𝑇

𝑃
 

So, if we now invoke the Clapeyron equation where we had: 

൬
𝑑𝑃

𝑑𝑇
൰

𝑠𝑎𝑡
=

ℎ12

𝑇𝑠𝑎𝑡 𝑣12
 

Then using this approximation at low pressure this now becomes v12, we are replacing so we 

have: 

=
𝑃𝑠𝑎𝑡 ℎ12

𝑅𝑇𝑠𝑎𝑡
2  

or if we rearrange the terms now, we have: 

𝑑𝑃𝑠𝑎𝑡

𝑃𝑠𝑎𝑡
=

ℎ12

𝑅
 
𝑑𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
2  

If we integrate this entire thing say for two different saturation point which is 1 and 2, we have: 

න
𝑑𝑃𝑠𝑎𝑡

𝑃𝑠𝑎𝑡

2

1

= න
ℎ12

𝑅
 
𝑑𝑇𝑠𝑎𝑡

𝑇𝑠𝑎𝑡
2

2

1

 

where 1 refers to one particular saturation state 2 refers to a different saturations state which 

correspond to a different saturation pressure and temperature, but they are reasonably close to 

each other so that we can make use of this low-pressure assumption. If this 1 and 2 are again 

reasonably close to each other than this h12 can be approximately taken to be a constant. Then 

this becomes: 

𝑙𝑛 ቆ
𝑃𝑠𝑎𝑡 _2

𝑃𝑠𝑎𝑡 _1
ቇ ≈ ൬

ℎ12

𝑅
൰ ቈ

1

𝑇𝑠𝑎𝑡 _1
−

1

𝑇𝑠𝑎𝑡 _2
቉ 

 

This particular equation is known as Clapeyron-Clausius equation which allows us to calculate 

the changes in saturation pressure from the knowledge of the changes in saturation temperature. 

We just need to know that our corresponding enthalpy or change in enthalpy during the phase 

change and also the value of this R. We shall be finishing of by doing a small numerical example 

which will allow us to understand the use of the Clapeyron-Clausius equation.  
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So here is my problem, we have to assume in that saturation pressure of R-134a which is a 

refrigerant, at − 45 0C using that data available corresponding to − 40 0C and these are the data 

provided: 

R = 81.49 J/kgK 

h12 @ −40 
0
C = 225.86 kJ/kg 

Psat @ −40 
0
C = 51.25 kPa 

 

Therefore,  

Tsat_1 = − 40 0C = − 40 + 273.15 = 223.15 K 

And the second point for which we are looking to the calculation is: 

Tsat_2 = − 45 0C = − 45 + 273.15 = 228.15 K 

The known saturation pressure i.e., 

Psat_1 =  51.25 kPa = 51.25 ×103 Pa  

I will always suggest convert everything to basic SI unit so that there is less chance of making 

any mistake within the units. 

Here R is given as: 

R = 81.49 J/kgK 

so that is given in basic SI unit.  

However, there is a kilo factor in h12 so this can be written as: 

h12 @ −40 
0
C = 225.86 kJ/kg = 225.86 ×103 J/kg 



 

 

So now we have to make use of the Clausius Clapeyron equation and therefore as the one we 

have just developed: 

𝑙𝑛 ቆ
𝑃𝑠𝑎𝑡 _2

𝑃𝑠𝑎𝑡 _1
ቇ = ൬

ℎ12

𝑅
൰ ቈ

1

𝑇𝑠𝑎𝑡 _1
−

1

𝑇𝑠𝑎𝑡 _2
቉ 

  

 

= ቆ
225.86 × 103

81.49
ቇ ൤

1

223.15
−

1

228.15
൨ 

 

And you have to put the expression for Psat_1:  

𝑃𝑠𝑎𝑡 _2 = 𝑃𝑠𝑎𝑡 |−450𝐶 = 39.48 𝑘𝑃𝑎 
 

which is the desired result that we are looking for. So, this way using the Clapeyron equation and 

various approximate version in the form of Clapeyron-Clausius relation we can calculate the 

saturation properties of any fluid easily. And while the Clapeyron equation is applicable for any 

kind of phase change process, Clausius-Clapeyron relation is generally restricted to liquid-vapor 

phase change only.  
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So that takes us to the end of our second module, where we have focused on developing 

generalized relations for changes in most important thermodynamic properties. So, we started 

with the mathematical perspective of property, we understood how to understand whether a 



parameter z is property or not once you that is a function of x and y and both x and y are 

properties. Then we discussed about the four possible thermodynamic potentials: the specific 

internal energy specific enthalpy, specific Gibbs free energy and specific Helmholtz free energy. 

Then we derived the four Maxwell’s relations, from the definition of these four thermodynamic 

potentials. We have also understood the Maxwell’s square and which is an adhoc way of 

remembering this Maxwell’s relations and corresponding TdS relations. Then we have developed 

generalized relations for three most important thermodynamic properties: du, dh and ds. 

 

And then we went on to the generalized relations for changes in specific heat or both the specific 

heats: Cp and Cv, and their relation in form of Mayer relation. Then we have seen several kinds 

of application of each of these relations in different problems, like we can define new properties 

in the form of volume expansivity and isothermal compressibility, we can develop different 

relations between properties and different other kinds of suitable forms can be developed. And 

today we have discussed the concept of Joule-Thomson coefficient which is very important 

regarding the choice of a fluid for heating or refrigeration applications. And finally, we discussed 

about Clapeyron equation which has its application in the phase change processes in order to 

understand the changes in specific enthalpy and specific entropy during a phase change process 

and also sometimes to calculate the saturation pressure for a given saturation temperature using 

the values at some other point. So, all these are actually the application of the Maxwell’s 

relations which allows us to perform thermodynamic analysis in a much easy and better way. So 

that takes us to the end of module number 2. I hope you have understood their discussion that 

you had because I have tried to develop all the relations here. 

 

If you have any confusion first try to develop the relations on your own, listen to the lecture once 

more, may refer to your textbooks and if still, there is doubt please write to me I shall be very 

happy to help. So, the assignment will be online along with this video. You please try to solve 

the assignments and maybe some additional problems you referring to the standard textbooks so 

that you grasp the concept properly. 

 

So next to we shall be again back discussing about the properties of pure substances. Till then, 

take care. 


