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Lecture – 06 

Generalized relations for entropy and Specific heats 
 

Good morning everyone, welcome to the second lecture of our week number two and we are 

talking about the thermodynamic property relations. So how was the previous lecture? I hope it 

has gone down well to you where we have tried to develop the Maxwell’s relation using the Tds 

equations and from there we have got some generalized expressions for the changes in internal 

energy and enthalpy of any thermodynamic system. 

 

Now if the lectures are clear to you that is excellent, if that is not, I request you to go back to the 

previous lecture and just listen the lecture once again. If required, go through the books there are 

several standard textbooks available on thermodynamics. I have told earlier also I am particularly 

following the book of Cengel and Boles. However, you can also refer to the book of Sonntag 

which is a very standard book or any other traditional book on thermodynamics. 

 

And all these topics are always covered there. So please proceed with this lecture only when you 

are clear with the development of the Maxwell’s equations. Now just to quickly summarize what 

we have done in the previous lecture, we have seen that there are four primary thermodynamic 

potentials namely, the internal energy, enthalpy, Helmholtz free energy and Gibbs free energy 

each of them having their own implications in different kinds of thermodynamic systems. 

 

Now once we express the rate of change or change in each of those thermodynamic potentials in 

terms of entropy and combination of other thermodynamic parameters, then correspondingly we 

can get four Maxwell’s relations. The Maxwell’s relations are basically partial differential 

equations which relate the changes in temperature, pressure, specific volume and entropy. 

 

Remember that the first three properties temperature, pressure and specific volume they are 

directly measurable properties whereas entropy cannot be measured directly and therefore 

Maxwell’s equation solve the basis of calculation of entropy as a function of the other three. We 



have also discussed about the Maxwell’s square which is one of the easier ways of remembering 

all the four Tds equations and the four Maxwell’s relations. 

 

I hope the use on the Maxwell’s square you have understood, please try to develop the 

Maxwell’s equations and all the four Tds relations in terms of the Maxwell’s square so that you 

are in a better position to make use of that. And then we have developed generalized expressions 

for the changes in internal energy and enthalpy, quite a bit of mathematics was involved there. 

 

I hope you have a tried to do that on your own  also,tried to develop the final expressions for du 

and dh. If you have not done that then please pause this lecture here, just take your pen and paper 

and develop those relations. If you have any doubt you can refer to the previous video and also 

the textbooks but please proceed with this video only when you are able to develop the relations 

for du and dh on your own. 

 

Because not only in this course in several other scenarios you have to make use of those 

relations. And, it is very rare that you are asked to develop the equations for du or dh. So you 

may be thinking that what is a need of that? but there are several situations where you have to 

calculate some other parameters or maybe the changes in enthalpy or changes in internal energy 

of a thermodynamic system, where you have to make use of those relations and therefore you 

need to remember those relations. Now those are quite complicated relations even I am also not 

in a position to remember that. But that is much easier to develop the relations by taking one or 

two minutes before solving any particular problem and therefore it is important that you know 

how to develop those relations. So today we shall be developing the similar relation for changes 

in entropy to start with and then we shall be seeing examples of applying those relations. 

(Refer Slide Time: 04:26) 



 

So, our first target is to develop a generalized relation for changes in entropy. Now while we had 

only a single equation for changes in internal energy and a single equation for changes in 

enthalpy. Changes in entropy can be expressed in two possible ways. And which one to use that 

depends / the available information. Once I develop the equation you will be able to see how we 

can use each of them in separate situations. 

 

Now in the first phase we are assuming entropy to be a function of temperature and specific 

volume i.e., 

S = S(T, v) 

So, what we can write for ds? ds can be written as: 

𝑑𝑠 = ൬
𝜕𝑠

𝜕𝑇
൰

𝑣
𝑑𝑇 + ൬

𝜕𝑠

𝜕𝑣
൰

𝑇
𝑑𝑣 

 

Here now there are two relations that we have to make use of to substitute for each of these 

partial differentials, one of the relations that we have developed while developing the expression 

for du. 

 

Remember that I told you to keep this quantity separate there also we encountered this quantity: 

(∂s/∂T)v what was this expression for this I asked you to remember this one to keep it separately 

because I have to make use of that in future. So, it was in the form: 



൬
𝜕𝑠

𝜕𝑇
൰

𝑣
=

𝐶𝑣

𝑇
 

whereas so (∂s/∂T)v can be replaced with the above in the initial expression for ds. To replace the 

next term (∂s/∂v)T in the ds equation you have to make use of one of the Maxwell’s relation. So, 

what is that? These are ones that we are going to make use of. 

 

So correspondingly we can say this to be: 

𝑑𝑠 =
𝐶𝑣

𝑇
𝑑𝑇 + ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 

And therefore, if a system is undergoing a change of state from state 1 to state 2 then we can 

easily represent the corresponding changes in specific entropy as: 

𝑠2 − 𝑠1 = න
𝐶𝑣

𝑇
𝑑𝑇

𝑇2

𝑇1

+ න ൬
𝜕𝑃

𝜕𝑇
൰

𝑣

𝑣2

𝑣1

𝑑𝑣 

 

where 

T1 is the initial state temperature  

T2 is the final state temperature  

v1 is the initial specific volume 

v2 is the final specific volume 

So, what are the information we need to calculate the change in specific entropy following this 

way? We of course need to know the PvT relationship again because that will helping us to 

calculate this particular differential (∂P/∂T)v and also we need to have information about Cv. So, 

this is one of the expressions for changes in entropy. 

 

The other one we can develop by assuming s to be a function of temperature and pressure i.e.,  

s = s (T, P) 

 So, following the similar procedure, we can write ds as: 

𝑑𝑠 = ൬
𝜕𝑠

𝜕𝑇
൰

𝑃
𝑑𝑇 + ൬

𝜕𝑠

𝜕𝑃
൰

𝑇
𝑑𝑃 

Now how to replace the first differentials? I hope now you have got the idea (∂s/∂T)P. What is 

this? This one while developing the expression for dh we encountered this term, it was: 

൬
𝜕𝑠

𝜕𝑇
൰

𝑃
=

𝐶𝑝

𝑇
 

 



So accordingly, we can write it as the first term of the initial expression for ds here. Now, how 

can we replace the second term of the equation one using any Gibbs equation or using any 

Maxwell’s relation. Like in the previous one we used this particular Maxwell’s relation what we 

have to make use of? (∂s/∂P)T. I hope we are able to use the Maxwell’s square now and from 

there we can develop, so this is the corresponding equation this will become: 

𝑑𝑠 =
𝐶𝑝

𝑇
𝑑𝑇 − ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
𝑑𝑃 

 

Please try to use the Maxwell’s square instead of directly taking the Maxwell’s reaction to 

substitute these partial differentials. Now for change of state from 1 to 2, we can write: 

𝑠2 − 𝑠1 = න
𝐶𝑝

𝑇
𝑑𝑇

𝑇2

𝑇1

− න ൬
𝜕𝑣

𝜕𝑇
൰

𝑃

𝑃2

𝑃1

𝑑𝑃 

 

So, this is the second relation so in both the cases or in the second case particularly what are the 

information that we need to know? Again, we need to know the PvT relationship to evaluate that 

partial differential and also you need to know Cp as a function of temperature. So, in a given 

situation which one you should select, as I have mentioned that depends upon the available 

information. Of course, you need to make use of the PvT relationship in both the cases. But what 

is the difference between the two? The first expression makes use of Cv whereas the second one 

makes use of Cp. And therefore, if we have information available in terms of Cp as a function of 

temperature which one you should go for? 

 

If you have Cp as a function of temperature then you should go for the second expression for s1 − 

s2, whereas if we have Cv as a function of temperature we should go for the first expression for s1 

− s2. Or let us take another scenario where we have both Cp and Cv available with us we shall 

shortly be deriving the expression for Cp − Cv or relationship between Cp and Cv so generally if 

we know the expression for one of them, the other one is also directly available. 

 

Then if we have information available about both Cp and Cv then which one you should go for? 

that depends upon what kind of process we are dealing with. If we are dealing with the constant 

pressure process suppose, then what we should do? Constant pressure process means dP = 0, 

then for the constant pressure process the second term will automatically go to 0 and then your 



relation will involve only as a simple term i.e., for a constant pressure process you will be 

having: 

𝑠2 − 𝑠1 = න
𝐶𝑝

𝑇
𝑑𝑇

𝑇2

𝑇1

 

 

which is a very simple relationship and we should go for this.  

 

Similarly, if we are going for a constant volume process then what we should do? Constant 

volume process means dv = 0. So, the second is term in the first expression for s1 − s2 will go to 

0 for a constant volume process. And therefore, it will be much easier to evaluate the change in 

entropy as: 

𝑠2 − 𝑠1 = න
𝐶𝑣

𝑇
𝑑𝑇

𝑇2

𝑇1

 

 

Because in the second expression, we have to evaluate both the ones for a constant volume 

process. However, it will reduce to only a single integration following the first approach. Of 

course, if we are processing neither constant volume and neither constant pressure then both are 

equivalent, we can choose any one of them depending on our convenience or depending upon 

other scenario. So, these are the generalized expressions for changes in entropy. So, we have 

now got expressions for changes in internal energy, changes in enthalpy and changes in entropy 

or specific for all of this quantities, specific internal energy, specific enthalpy and specific 

entropy. 
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Let us try to make use of those expressions for a known PvT relationship, so the first expression 

one handicap that we have here actually is we do not know too many PvT relationship because 

that is something that we are going to covered in the next week where shall be talking about the 

properties of pure substances. But one PvT relationship that you definitely know is the ideal gas 

equation of state which is: 

Pv = RT 

Let us try to make use of this expression to evaluate the expressions for changes in specific 

internal energy, specific enthalpy and specific entropy for ideal gases. So, this is ideal gas 

equation of state EoS in general is an acronym is often used for equation of state which is the 

PvT relationship for an ideal gas. Here R is the gas constant so that is a constant but PvT all of 

them can be variable. 

 

Then first is changes in internal energy, this is the expression that we have developed in the last 

lecture: 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 + ൤𝑇 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
− 𝑃൨ 𝑑𝑣 

So, to use this expression we have to evaluate this differential first, then go back to the ideal gas 

equation of state, we have: 

Pv = RT 

or 



𝑃 =
𝑅𝑇

𝑣
 

therefore (∂P/∂T)v  that is the one that we are trying to evaluate. So, what it will be here? Here v 

and R is constant. So differentiating with respect to temperature will reduce to: 

൬
𝜕𝑃

𝜕𝑇
൰

𝑣
=

𝑅

𝑣
 

 

So now what do we have? Here we have the expression for internal energy as: 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 + ൤
𝑅𝑇

𝑣
− 𝑃൨ 𝑑𝑣 

 

Now what is RT/v? i.e., P only. So it is: 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 + [𝑃 − 𝑃]𝑑𝑣 = 𝐶𝑣𝑑𝑇 
 

And therefore, the changes in internal energy or specific internal energy during a particular 

process will be: 

𝑢2 − 𝑢1 = න 𝐶𝑣𝑑𝑇
𝑇2

𝑇1

 

 

And in a special case if Cv is constant or if we can use some average value of Cv over this given 

temperature range. Then this one will become: 

𝑢2 − 𝑢1 = න 𝐶𝑣(𝑇2 − 𝑇1)
𝑇2

𝑇1

 

where 

Cv bar is average Cv. 

It can be shown that the specific heat generally is a function of at least for ideal gases is a 

function of only temperature and therefore we can see here that the specific internal energy is 

also as sole function of temperature. This is something that we have actually used in the previous 

one: 

du = Cv dT 

for an ideal gas. But may not be true for real gas where the equation of state is something else. 

 

Now changes in enthalpy, for changes in enthalpy what we have? We have the expression for 

enthalpy as: 



𝑑ℎ = 𝐶𝑝 𝑑𝑇 + ൤𝑣 − 𝑇 ൬
𝜕𝑣

𝜕𝑇
൰

𝑃
൨ 𝑑𝑃 

 

Here we have to evaluate this particular differential (∂v/∂T)P. 

So  

Pv = RT 

now  

𝑣 =
𝑅𝑇

𝑃
 

 

which gives  

൬
𝜕𝑣

𝜕𝑇
൰

𝑃
=

𝑅

𝑃
 

 

So, putting in the expression of dh, it becomes: 

𝑑ℎ = 𝐶𝑝 𝑑𝑇 + ൤𝑣 −
𝑅𝑇

𝑃
൨ 

 

As, RT/P = v, i.e., it becomes only CpdT. So, we can clearly see that for an ideal gas enthalpy is a 

sole function of temperature.  

 

What about changes in entropy? Here we can calculate changes in entropy following two of the 

approaches, these are the two expressions which we have just derived in the previous slide. So, 

which one we should use now? Let us try both of them, because here we are not restricting 

ourselves to any constant volume or constant pressure process.  

If you are trying to follow the first approach then we need to evaluate this particular differential 

which we have already done. We have the expression of entropy for constant volume process as: 

𝑑𝑠 =
𝐶𝑣

𝑇
𝑑𝑇 + ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 

 

Putting (∂P/∂T)v  that was (R/v)dv, remember this was the expression that we have actually 

developed as a part of first module to calculate the changes in entropy. Therefore, following this 

is: 

𝑠2 − 𝑠1 = න
𝐶𝑣

𝑇
𝑑𝑇

𝑇2

𝑇1

+ 𝑅 න
𝑑𝑣

𝑣

𝑣2

𝑣1

 

 

Or we can write this as if Cv is a constant: 



= 𝐶𝑣 𝑙𝑛 ൬
𝑇2

𝑇1
൰ + 𝑅 𝑙𝑛 ൬

𝑣2

𝑣1
൰ 

 

where Cv is average Cv. 

Similarly, if we use the second expression, we have the expression of entropy for constant 

pressure process as:  

𝑑𝑠 =
𝐶𝑝

𝑇
𝑑𝑇 − ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
𝑑𝑃 

 

Putting (∂v/∂T)P  that was (R/P)dP, then we have to develop these differential so this becomes: 

=
𝐶𝑝

𝑇
𝑑𝑇 −

𝑅

𝑃
𝑑𝑃 

 

Accordingly, we have is: 

𝑠2 − 𝑠1 = න
𝐶𝑝

𝑇
𝑑𝑇

𝑇2

𝑇1

− 𝑅 න
𝑑𝑃

𝑃

𝑃2

𝑃1

 

  

= 𝐶𝑝  𝑙𝑛 ൬
𝑇2

𝑇1
൰ + 𝑅 𝑙𝑛 ൬

𝑃2

𝑃1
൰ 

 

where Cp is average Cp. 

These are the expressions that we actually have developed in the previous module itself for an 

ideal gas using the Tds relationship directly. Now this is another way of proving the same 

relationship. But remember the expression that we have got here they are applicable only for 

ideal gases and generally we are assuming a constant specific heat constant values of Cp and Cv 

or some average value of Cp and Cv are applicable for this. Similarly, if we know the PvT 

relationship we can do it for any other kind of substances as well. 
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Let us try another example. Here we are having another PvT relationship of this form: 

ቀ𝑃 +
𝑎

𝑣2ቁ (𝑣 − 𝑏) = 𝑅𝑇 
 

This is a very famous Van der Waals equation of state, the development of this one will be part 

of the next module. Here we are just taking it for granted. And it is also given for this particular 

problem cv is a function of temperature is a linear function of temperature given as: 

𝑐𝑣 = 𝑐1 + 𝑐2𝑇 
 

So, we have to calculate the expressions or evaluate the expressions for changes in internal 

energy and changes in entropy or specific internal energy and specific entropy using this 

equation of state and this particular expression for cv as a function of temperature. So, this the 

expression for du that we had: 

𝑑𝑢 = 𝑐𝑣𝑑𝑇 + ൤𝑇 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
− 𝑃൨ 𝑑𝑣 

Let us try to develop the expressions for du for this particular scenario. So, using the equation of 

state first, we have: 

ቀ𝑃 +
𝑎

𝑣2ቁ (𝑣 − 𝑏) = 𝑅𝑇 
 

by the way here R, a and b are constants. So, we can write: 

𝑃 =
𝑅𝑇

𝑣 − 𝑏
−

𝑎

𝑣2
 

 

So, what is your (∂P/∂T)v,? As we are differentiating this respect to temperature, v also becomes 



a constant so it becomes (R/v-b) all constant and the second term becomes 0 because v is a 

constant. 

 

So, if we put it in the initial expression for du, we have: 

 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 + ൤
𝑅𝑇

𝑣 − 𝑏
− 𝑃൨ 𝑑𝑣 

 

To evaluate the term inside the square bracket, let us look back into the expression for the 

equation of state or maybe here, so from here if we rearrange the terms we can also write: 

𝑅𝑇

𝑣 − 𝑏
− 𝑃 =

𝑎

𝑣2
 

 

So we can reduce the second term and write the expression for du as: 

𝑑𝑢 = 𝐶𝑣𝑑𝑇 +
𝑎

𝑣2 𝑑𝑣 
 

Therefore, for a change of state from 1 to 2 changes in specific internal energy will be: 

𝑠2 − 𝑠1 = න 𝐶𝑣𝑑𝑇
𝑇2

𝑇1

− න
𝑎

𝑣2
𝑑𝑣

𝑣2

𝑣1

 

 

Now if we put the expression for cv here, then we have: 

= න (𝑐1 + 𝑐2𝑇)𝑑𝑇
𝑇2

𝑇1

− 𝑎 න
𝑑𝑣

𝑣2

𝑣2

𝑣1

=  𝑐1(𝑇2 − 𝑇1) +
𝑐2

2
൫𝑇2

2 − 𝑇1
2൯ − 𝑎 ൬

1

𝑣2
−

1

𝑣1
൰ 

 

So, this is the final expression for the changes in specific internal energy that we are going to get 

in this particular scenario.  

Similarly, if we want to calculate the changes in specific entropy, this is the expression for 

specific entropy: 

𝑑𝑠 =
𝐶𝑣

𝑇
𝑑𝑇 + ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 

 

So there also we have to make use of this (∂P/∂T)v. So, what we have? We are putting it here in 

the above expression and we have: 

=
𝐶𝑣

𝑇
𝑑𝑇 +

𝑅

𝑣 − 𝑏
𝑑𝑣 

 

Putting the expression for cv now: 



=
𝑐1

𝑇
𝑑𝑇 + 𝑐2𝑑𝑇 +

𝑅

𝑣 − 𝑏
𝑑𝑣 

 

 

Therefore,  

𝑠2 − 𝑠1 = 𝑐1 න
𝑑𝑇

𝑇

𝑇2

𝑇1

− 𝑐2 න 𝑑𝑇 + 𝑅
𝑇2

𝑇1

න
𝑑𝑣

𝑣 − 𝑏

𝑣2

𝑣1

 

 

Now, performing the integration and putting the limit, so we are going to have: 

= 𝑐1 𝑙𝑛 ൬
𝑇2

𝑇1
൰ + 𝑐2(𝑇2 − 𝑇1) + 𝑅 𝑙𝑛 ൬

𝑣2 − 𝑏

𝑣1 − 𝑏
൰ 

 

So, here again we are able to calculate from the knowledge of the PvT relationship and cv as a 

function of temperature we are able to calculate the expressions for changes in internal energy 

and changes in entropy. If we want to calculate the changes in enthalpy, we need to know the 

expressions of cp or relationship of cp with temperature if we can assume cp to be a constant or if 

somehow you can evaluate relationship between cp and cv. Then we shall also be able to evaluate 

the changes in enthalpy.  

 

But truly speaking in a given scenario we hardly have to go for changes in both internal energy 

and changes in enthalpy. Because even without any knowledge of cp you can calculate the 

changes in enthalpy in this particular case. How can you do that? I am repeating my question, 

here now we have already developed one relation for changes in specific internal energy that is 

u2-u1 and expression for changes in a specific entropy s2-s1. Now I am trying to say that we do 

not need to do any further differentiation or we do not need to have any information about cp. 

But still we can calculate h2-h1, how can you do that? Just try to remember the relationship 

between u and h. What is h2?  

ℎ2 = 𝑢2 + 𝑃2𝑣2 
 

Similarly, 

ℎ1 = 𝑢1 + 𝑃1𝑣1 
 

so, we can write this as: 

ℎ2 − ℎ1 = (𝑢2 + 𝑃2𝑣2) − (𝑢1 + 𝑃1𝑣1) 
  



= 𝑢2 − 𝑢1 + (𝑃2𝑣2 − 𝑃1𝑣1)    
 

u2-u1, you already have evaluated right here and now you know the PvT relationship, you know 

state 1 and state 2. So both P2v2 and P1v1, these two products are known to you. So you can 

easily calculate this h2-h1. Therefore, in a given problem we generally never have to calculate 

both the changes in specific enthalpy and specific internal energy. One alone is sufficient 

because from one we can get the knowledge about the other one. And therefore, we hardly need 

to have information both about cp and cv, knowledge about one is sufficient. Like for ideal gases, 

we have developed the relation we generally know that Cp – Cv = R but that is true only for ideal 

gases, but for real gases for non-ideal gases this is not true so. There is some generalized 

relationship that is available between cp and cv and that is the next one that we are looking to 

perform. 

(Refer Slide Time: 27:06) 

 

So, changes in specific heat is very important to know, because specific heat gives you an idea 

about the amount of heat required to cause one degree change in temperature for unit mass of a 

substance and therefore in any heat transfer application or sensible heat transfer application 

specific heat or knowledge about specific heat is very important. Now specific heat for ideal 

gases, it is more or less constant but general it is a strong function of temperature. 

 

Even for ideal gases also at high temperature specific heat can vary a lot with temperature and 

for non-ideal gases even pressure also can have some role on the magnitude of specific heats and 



therefore along with enthalpy, entropy and internal energy it is also important to know how 

specific heat is varying with temperature and pressure and that is our next job.  

 

So, to start with we shall be making use of the relationship that we have already developed 

earlier for the changes in entropy. We had two relations:  

First one, instead of trying to remember this let us develop them again from scratch. So, we are 

assuming entropy to be a function of T and v from where we can write: 

𝑑𝑠 = ൬
𝜕𝑠

𝜕𝑇
൰

𝑣
𝑑𝑇 + ൬

𝜕𝑠

𝜕𝑣
൰

𝑇
𝑑𝑣 

 

Similarly, if we assume entropy to be a function of T and P. Then we get: 

𝑑𝑠 = ൬
𝜕𝑠

𝜕𝑇
൰

𝑃
𝑑𝑇 + ൬

𝜕𝑠

𝜕𝑃
൰

𝑇
𝑑𝑃 

 

We are not going to put any expression for Cp or Cv here. Let us use the Maxwell relations now, 

to get the final expressions for ds that we had that will actually help our analysis or make it much 

shorter. So we can write for the first ds expression: 

𝑑𝑠 = ൬
𝜕𝑠

𝜕𝑇
൰

𝑣
𝑑𝑇 + ൬

𝜕𝑠

𝜕𝑣
൰

𝑇
𝑑𝑣 =

𝐶𝑣

𝑇
𝑑𝑇 + ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 

 

Similarly, for the second one we know we can write as: 

𝑑𝑠 = ൬
𝜕𝑠

𝜕𝑇
൰

𝑃
𝑑𝑇 + ൬

𝜕𝑠

𝜕𝑃
൰

𝑇
𝑑𝑃 =

𝐶𝑝

𝑇
𝑑𝑇 − ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
𝑑𝑃 

 

So these are the 2 relations for changes in entropy we have developed earlier and we also used in 

the previous slides. Now we know that entropy is a property similarly temperature and specific 

volume is also a property, here we are talking about the first one.  

 

Now temperature and specific volume both are properties. So, if entropy is a property then we 

can use the definition of property in terms of differentials and therefore we can write that: 

𝜕

𝜕𝑇
൬

𝐶𝑣

𝑇
൰

𝑇
=

𝜕

𝜕𝑇
൬

𝜕𝑃

𝜕𝑇
൰

𝑣
 

 

Now temperature being constant we can take it out. So, we can write: 



൬
𝜕𝐶𝑣

𝜕𝑇
൰

𝑇
= 𝑇 ቆ

𝜕2𝑃

𝜕𝑇2ቇ
𝑣

 

 

So, this is an expression for changes in specific volume at constant volume i.e., Cv with volume 

itself at constant temperature.  

Similarly, if we use a second definition, again knowing that temperature and pressure have 

properties so for entropy to be a property it should satisfy the condition i.e.,  

𝜕

𝜕𝑇
൬

𝐶𝑝

𝑇
൰

𝑇
=

𝜕

𝜕𝑇
൬−

𝜕𝑣

𝜕𝑇
൰

𝑃
 

 

 So, this way we can express Cv as a function of volume or Cp as a function of pressure. And 

using this expression integrating them along an isotherm between two given state points you can 

easily calculate expressions for Cp and Cv. Say for example if we take of the second expression 

and integrate this from a given state point 1 to another state point 2. 

 

Then we can integrate this, for say: 

න 𝜕𝐶𝑝 𝑇

𝐶𝑝

𝐶𝑝 0

= −𝑇 න ቆ
𝜕2𝑣

𝜕𝑇2ቇ
𝑃

𝑑𝑃
𝑃

0

 

 

And if we put the integration limits say from absolute zero pressure to a certain pressure P, then 

Cp0 we generally they call the absolute pressure absolute zero specific heat or ideal gas specific 

heat.  So, 

𝐶𝑃(𝑇, 𝑃) = 𝐶𝑃0(𝑇) − 𝑇 න ቆ
𝜕2𝑣

𝜕𝑇2ቇ
𝑃

𝑑𝑃
𝑃

0

 

 

So, this is one expression which represents the Cp as a function of temperature and pressure. 

Cp0the ideal gas specific heat or absolute 0 specific heat is a function of temperature alone 

because they are talking about the absolute 0 pressure no effect of pressure on the magnitude of 

this but for different temperature this Cp0 can have different values even for ideal gases also. 

 

And second integral can be evaluated only if we know that PvT relationship because then we can 

express this and differentials and then we can perform this. A similar expression can also be 

obtained for Cv using this particular expression. But generally, the separate expression for Cp and 

Cv both are not required like we have seen for ideal gases Cp and Cv are separated by the gas 



constant only similar relationship exist for even for real gases as well and let us try to evaluate 

that relation.  

 

So, what we are going to do now look at the two expressions for ds, from the two expressions for 

ds let us equate both of them so from that first expression, we have: 

 

𝐶𝑣

𝑇
𝑑𝑇 + ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 

and from the second one we have: 

𝐶𝑝

𝑇
𝑑𝑇 − ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
𝑑𝑃 

both of them giving the expressions for changes in specific entropy and therefore they can be 

equated to each other. 

𝐶𝑣

𝑇
𝑑𝑇 + ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 =

𝐶𝑝

𝑇
𝑑𝑇 − ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
𝑑𝑃 

 

And let us now separate out dT from this so to do this we are writing: 

൬
𝐶𝑝 − 𝐶𝑣

𝑇
൰ 𝑑𝑇 = ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
𝑑𝑣 + ൬

𝜕𝑣

𝜕𝑇
൰

𝑃
𝑑𝑃 

 

keeping dT on one side, we can get the following expression:  

𝑑𝑇 = ቈቆ
𝑇

𝐶𝑝 − 𝐶𝑣
ቇ ൬

𝜕𝑃

𝜕𝑇
൰

𝑣

቉ 𝑑𝑣 + ቈቆ
𝑇

𝐶𝑝 − 𝐶𝑣
ቇ ൬

𝜕𝑣

𝜕𝑇
൰

𝑃

቉ 𝑑𝑃 

 

We are doing quite long expressions is it getting boring? If you feel bored you can pause the 

video just turn go back take a break and come back after five minutes. But still I am doing each 

of the steps in detail. 

 

So that you are able to understand exactly what I am trying to do. I repeat, here I have just 

equated the two expressions for ds and then from there we have separated out this dT quantity. 

Now as per the PvT relationship we can always write that temperature is a function of v and p so 

from there we can also write: 

𝑑𝑇 = ൬
𝜕𝑇

𝜕𝑣
൰

𝑃
𝑑𝑣 + ൬

𝜕𝑇

𝜕𝑃
൰

𝑣
𝑑𝑃 

  



This is the simple relationship about changes in temperature. Now we have two expressions for 

dT here, say, first one, equation number (1) and second one equation number (2). On the right-

hand side of both the equations we have dv and dP. So, we can equate the coefficients for them 

we can take any one of them let us speak up the coefficients for dv we could have done with dP 

also that should lead to the same result. 

 

But here we are picking up the coefficients for dv so we have: 

ቆ
𝑇

𝐶𝑝 − 𝐶𝑣
ቇ ൬

𝜕𝑃

𝜕𝑇
൰

𝑣
= ൬

𝜕𝑇

𝜕𝑣
൰

𝑃
 

Or just taking Cp − Cv out, we have here: 

𝐶𝑝 − 𝐶𝑣 = 𝑇 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
 

So, this is the expression for Cp − Cv we are getting. And it is a quite simple expression again if 

we know the PvT relationship. 

We can evaluate both the differentials it involves both the two differentials, this one which gives 

a change in pressure with temperature along a constant volume line and one which represent the 

changes in specific volume with temperature along a constant pressure line. We also have 

absolute temperature here, from here we can calculate the Cp − Cv. But instead of directly 

evaluating these two differentials there are easier ways of expressing the same. 

(Refer Slide Time: 38:36) 

 

To do that let us write this once more, we have: 



𝐶𝑝 − 𝐶𝑣 = 𝑇 ൬
𝜕𝑃

𝜕𝑇
൰

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
 

 

Here we are going to make use of something known as the cyclic rule of partial differentials. If 

we are given with three partial differentials say P, T and V, then the cyclic rule can be 

represented as: 

൬
𝜕𝑃

𝜕𝑇
൰

𝑣
൬

𝜕𝑇

𝜕𝑣
൰

𝑃
൬

𝜕𝑣

𝜕𝑃
൰

𝑇
= −1 

  

This is a cyclic rule look we are considering all the three partial differentials as possible among 

these three variables and will be equal to very standard rule in partial differential this is equal to 

−1. Now look at the present expression that we have, let us separate out the first term, so we will 

have: 

൬
𝜕𝑃

𝜕𝑇
൰

𝑣
= − ൬

𝜕𝑃

𝜕𝑣
൰

𝑇
൬

𝜕𝑣

𝜕𝑇
൰

𝑃

 

 

So, we are putting it back in the expression for Cp − Cv and can be written as follows: 

𝐶𝑝 − 𝐶𝑣 = −𝑇 ൬
𝜕𝑃

𝜕𝑣
൰

𝑇
൤൬

𝜕𝑣

𝜕𝑇
൰

𝑃
൨

2

 

 

Now what are these two partial differentials representing? One is (∂P/∂v)T, and the other one is 

(∂v/∂T)P. First let me write (∂v/∂T)P what is this one representing? This one is giving you the 

change in specific volume with temperature with pressure remaining constant. Therefore this 

quantity or just slightly modified version of this quantity where we divide this by specific 

volume say, 

1

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
 

  

Now what we have is the change in specific volume per unit volume with temperature with 

pressure constant or along an isobar. What is this quantity called? Can you guess? This, you had 

in school level physics itself, change in volume with temperature per unit volume. So, this is 

called somewhat similar to the thermal expansion coefficient in thermodynamics we commonly 

call it volume expansivity. We call it volume expansivity with just the thermal expansion of gas 

or whatever medium that we are dealing with per unit volume and this commonly represented by 

the symbol β. 



1

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
→ 𝑣𝑜𝑙𝑢𝑚𝑒 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑣𝑖𝑡𝑦 (β) 

 

And what is the other quantity?  We take the inverse of that: 

1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇
 

 

Now what this particular quantity is giving? It is giving you the effect of pressure on specific 

volume per unit volume along an isotherm at constant temperature. So, if temperature is 

maintained constant this quantity is going to give you how volume is going to change with 

change in pressure and this particular quantity in thermodynamics is define as isothermal 

compressibility commonly represented by α.  

1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇
→ isothermal compressibility (α) 

 

Actually, to make it positive we always know for any substance as a pressure increases as 

volume decreases. So, v and T goes in the opposite direction and therefore this differential is a 

negative one to make it positive we only put a − sign in front of this i.e., 

−
1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇
→ isothermal compressibility (α) 

 

So, 

α = −
1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇

 

 

whereas  

β =
1

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
 

 

So, take this back to our expression for Cp − Cv. Putting these in the expression for Cp − Cv , we 

get: 

𝐶𝑝 − 𝐶𝑣 = −𝑇 ൬
1

−𝛼𝑣
൰ (β𝑣)2 

  

So, simplifying it, we get as 

=
𝑇

𝛼𝑣
(β𝑣)2 =  

𝑣𝑇β2

𝛼
 

Or if we write formally then, 



𝐶𝑝 − 𝐶𝑣 =  
𝑣𝑇β2

𝛼
 

 

This particular relation is known as Mayer relation. It is a very important relationship in 

thermodynamics because it allows us to relate that two specific heats: specific heat at constant 

volume and specific heat at constant pressure, in terms of four properties: specific volume, 

temperature and these two newly defined properties volume expansivity and isothermal 

compressibility which are denoted by β and α respectively. To calculate the difference between 

Cp and Cv for any particular gas we need to know the PvT relationship, because using PvT 

relationship we can always calculate the expressions for this β and α, and then putting that for at 

a particular state point we can calculate the difference between Cp and Cv. But there are several 

direct consequences that we can obtain from this relation. What are those? First, consider the at 

the expression for α,  

α = −
1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇

 

Is it positive or negative? We know that for any substance as the pressure increases the volume 

will decrease or vice versa i.e., volume and pressure go in opposite direction. Therefore, (∂v/∂P)T 

is always negative. Now to define α, we are putting a − sign before that and therefore this αis 

always a positive quantity. What other expressions we have in Cp − Cv? We have specific 

volume, volume has to be a positive, T is the absolute temperature so that also has to be positive 

α is also positive now that leaves us with β. Now β is positive or negative β is volume 

expansivity which gives the change in volume with temperature. Now generally for substances, 

as the temperature increases volume also increases and therefore v and T goes in the same 

direction so β is also a positive one. 

 

So, we can write β is also a positive one. But is it true always? It is not true always for most of 

the general situation volume keeps on increasing with temperature. Just think about the 

anomalous expansion of water. Water as the temperature keeps on decreasing its density keeps 

on increasing but till that 4 0C, below 4 0C it goes in the opposite direction. 

 

Like, if we plot specific volume with temperature, for most of the common substances with 

temperature specific volume keeps on increasing. But that does not happen for water, for water 



as the temperature decreases specific volume keeps on decreasing till 4 0C. At 4 0C it reaches a 

minima or density reaches a maxima and if the temperature is reduced further the volume keeps 

on increasing till the 0 0C or till the freezing point as a constant at that corresponding pressure. 

That is why ice is having lesser density compared to water and ice is able to float in water. 

Because the volume of ice is higher, specific volume of ice higher than liquid water or density of 

ice is lower than liquid water. Now if we divide this region of the plot into two parts, towards the 

right of the graph temperature and specific volume both are going in same direction. Therefore, β 

is positive. But what about the left-hand side? Here as the temperature is decreasing volume is 

increasing so β is negative such anomalous expansion though very rare but can be found in a few 

other substances as well and therefore β can be positive or can be negative. But all this 

discussion does not matter in this context of the Cp − Cv expression because here we are having a 

β2. So β2 is always a positive quantity and therefore the Cp − Cv given by the Mayer relation is 

always a positive quantity. Or we can write Cp − Cv is always greater than 0 or maybe greater 

equal to the in some limiting case. Therefore, Cp is always greater equal to Cv, i.e., specific heat 

at constant pressure is always greater than the specific heat at constant volume for any substance. 

Now how much greater it will be that will depend upon the PvT relationship but it can never be 

less than Cv, at the limiting case it can be equal to Cv.  

 

Second important conclusion as the temperature keeps on decreasing Cp − Cv difference also 

keeps on decreasing or magnitude of Cp − Cv. When absolute temperature becomes 0 then Cp = 

Cv that is the limiting case that we are mentioning, the Cp and Cv will be equal to each other 

when that we reach that absolute 0 temperature. But in general, as the temperature keeps on 

reducing, the difference between both specific heats also starts to diminish.  

 

And in the third conclusion when you are talking about a truly incompressible substance, truly 

incompressible substance means whose specific volume does not change. Then what will be the 

expression for Cp − Cv? It is difficult to obtain from Mayer relation but just look at this. Here 

when we are talking about a truly incompressible substance. 

 

This particular differential is equal to 0 because specific volume is not changing. And therefore 

Cp − Cv is also equal to 0 that means for a truly incompressible substance both the specific heats 



are identical to each other. And that is why when you are talking about an incompressible 

substance generally for solids or liquids, we do not need to bother about two specific heats, we 

can just equate a single specific heat generally given by c.  

 

However, when we are talking about gases, they have much higher level of compressibility. And 

therefore, for gases we need to consider Cp and Cv separately. So, with the Mayer relation now 

we know how to calculate the difference between the two specific heats for any given situation. 

(Refer Slide Time: 50:53) 

 

I would like to close up on this particular lecture by discussing another example. Again, we have 

the ideal gas equation of state but here we shall be talking about the expressions for specific heat 

Cp and Cv. There are two expressions we have developed; one is a Mayer relation but before that 

we developed another relation for Cp as a function of temperature and pressure as: 

𝐶𝑃(𝑇, 𝑃) = 𝐶𝑃0(𝑇) − න 𝑇 ቆ
𝜕2𝑣

𝜕𝑇2ቇ
𝑃

𝑑𝑃
𝑃2

𝑃1

 

 

So, this was the relation that we already had we have developed for Cp. Now let us try to apply 

this for an ideal gas situation. For ideal gas: 

Pv = RT 

or 



𝑣 =
𝑅𝑇

𝑃
 

So, if we differentiate this specific volume with respect to temperature maintaining pressure 

constant then what it will be? It will be equal to: 

൬
𝜕𝑣

𝜕𝑇
൰

𝑃
=

𝑅

𝑃
 

If you differentiate it once more to get the differential this particular differential we shall be 

having: 

ቆ
𝜕2𝑣

𝜕𝑇2ቇ
𝑃

=
𝜕

𝜕𝑇
൬

𝑅

𝑃
൰

𝑃
= 0 

So, for this scenario what we have in the expression for Cp as a function of temperature and 

pressure? 

𝐶𝑃(𝑇, 𝑃) = 𝐶𝑃0(𝑇) 
 

i.e., for ideal gases pressure has no role on the magnitude of specific heat we can get it only from 

the information of temperature. Whatever absolute zero pressure ideal gas in specific heat it has, 

the same will continue for any pressure level. Therefore, when we are talking about an ideal gas 

or specific heat for an ideal gas, we do not need any information about pressure, temperature 

alone is sufficient so here we get Cp. Now let us try to evaluate the relationship between Cp and 

Cv, i.e., Mayer equation. For this first we evaluate β. So,  

𝛽 =
1

𝑣
൬

𝜕𝑣

𝜕𝑇
൰

𝑃
=

1

𝑣
൬

𝑅

𝑃
൰ =

𝑅

𝑃𝑣
 

and if we put the expression again Pv = RT, 

=
𝑅

𝑅𝑇
=

1

𝑇
 

 

i.e., for an ideal gas the volume expansivity is inversely proportional to temperature and that also 

gives you the dimension of this β. What it will be? It is a reciprocal to temperature. S,o its 

dimension is inverse of temperature or in SI unit it will be K-1.  

 

Now look at α,  

α = −
1

𝑣
൬

𝜕𝑣

𝜕𝑃
൰

𝑇

 

  

Pv = RT 



or 

𝑣 =
𝑅𝑇

𝑃
= (𝑅𝑇)𝑃−1 

 

So, 

൬
𝜕𝑣

𝜕𝑃
൰

𝑇
= −

𝑅𝑇

𝑃2
 

 

So, if we put it back in the expression for α, we have: 

α = −
1

𝑣
൬−

𝑅𝑇

𝑃2
൰ =

𝑅𝑇

𝑃2𝑣
=

𝑃𝑣

𝑃2𝑣
=

1

𝑃
 

 

So, what is the unit of this isothermal compressibility? That is the reciprocal of pressure. The SI 

unit of it can be Pa-1 or kPa-1 or MPa-1 whatever we would like to represent. So, for an ideal gas 

isothermal compressibility is just that the reciprocal of pressure and volumetric expansivity is a 

reciprocal of temperature. 

 

Now, we use the Mayer equation where we have: 

𝐶𝑝 − 𝐶𝑣 =  
𝑣𝑇𝛽2

𝛼
 

So, we are putting the expressions for α and β in terms of P and T, here we have: 

=  
𝑣𝑇𝑃

𝑇2
 

So, we have: 

 

=
𝑃𝑣

𝑇
 

Using 

𝑃𝑣

𝑇
=

𝑅𝑇

𝑇
= 𝑅 

i.e., for an ideal gas the difference between Cp and Cv is a constant which is given as the gas 

constant itself. It is expressed as follows: 

𝐶𝑝 − 𝐶𝑣 =  𝑅 
 

 



I just wrote this equation just a few slides back is the proof for this. For an ideal gas, we can 

calculate the difference between Cp and Cv using Mayer equation to get the gas constant itself. 

For any real gas, we need to use the corresponding equation of state, I would like to request you 

to perform the same exercise for the Van der Waals equation of state i.e., when you have: 

ቀ𝑃 +
𝑎

𝑣2ቁ (𝑣 − 𝑏) = 𝑅𝑇 

as your equation of state or the PvT relationship. Then calculate the expression for Cp and also 

the difference between Cp and Cv for this Van Der Waals equation of state that will be your 

exercise for this particular lecture. So, I would like to complete here for today’s work.  
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So today we have talked developed the generalized relationship for ds, then we have done 

several exercises about how to use the generalized expressions for du, dh and ds, then we have 

developed the generalized relations for specific heats and finally the Mayer relation which gives 

the difference between Cp and Cv. So that’s it for today, in the next lecture we shall be discussing 

about two unrelated topics which are the Joule-Thomson coefficient and also, the enthalpy 

calculation for phase change processes. Till then you review this particular lecture and as I have 

asked you to develop the relationship between Cp and Cv for a Van der Waals equation of state. 

Please try that, so that once you start the next lecture you will be in a better position to handle 

any other kind of problems. So, thanks for your attention. Take care. 


