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Numerical Examples 
 

Hello friends, welcome for the second time in this week where we are talking about the gas 

mixtures. In the previous lecture we have discussed about the possible scenario that we can 

have with a mixture of gases both ideal and real gases. And today which I will be using the 

discussion to calculate the properties of gas mixtures. Now to calculate the properties of gas 

mixtures we of course have to deal with two kinds of properties: one is extensive and other is 

intensive.  

(Refer Time Side: 00:59) 

 

When we are talking about some extensive property, let us start with extensive property. For 

extensive properties the situation is very simple to identify the magnitude of any extensive 

property for the mixture we just have to add that corresponding extensive property for all its 

components. That is very simple. We just have to add for each of the components to get the 

final value of the extensive property for the mixture. 

 

Let us say we talk about a mixture comprising of k number of components and mi represents 

the mass of each of the components ni represent the number of moles for each of the 

components corresponding you will have the mass fraction of xi and mole function of yi. And 

m is the total mass for the mixture where the summation is performed from i equal to 1 to k.  



𝑚 = ෍ 𝑚𝑖

𝑘

𝑖=1

 

Whereas n is the total number of moles again summation is performed from i equal to 1 to k. 

𝑛 = ෍ 𝑛𝑖

𝑘

𝑖=1

 

So, we now know the definition of this mass fraction and mole fraction, so I do not need to 

explain xi and yi. Some very common extensive properties that we can have let us say if you 

talk about U, what is U referring to? The internal energy of course U for the mixture can 

simply be written as: 

𝑈𝑚 = ෍ 𝑚𝑖

𝑘

𝑖=1

𝑢𝑖  

 

where  

ui is the specific internal energy for that particular component 

Similarly, if we write say enthalpy that again, very similarly, 

𝐻𝑚 = ෍ 𝑚𝑖

𝑘

𝑖=1

ℎ𝑖  

 

hi is the specific enthalpy for that particular component 

And entropy can be expressed as: 

𝑆𝑚 = ෍ 𝑚𝑖

𝑘

𝑖=1

𝑠𝑖  

Generally, these three are the most common extensive properties that you have to deal with in 

thermodynamics. Internal energy is related to the energy balance of application of first law of 

thermodynamics for a closed system. Enthalpy again, the application first law of 

thermodynamics, but for open system whereas entropy we have not used entropy that much 

in this course, but entropy is associated whenever you are looking for a second law analysis 

or exergy analysis. So, these three properties that we most commonly use, all of them are 

written in using capital letters and therefore they represent the extensive property of the 

mixture.  

 

And this is the way we can calculate just by adding the contributions coming from each of the 

components. And quite often we may have to deal with the change in this properties. In fact 

in thermodynamics we hardly bother about the absolute magnitude of this properties rather 



we are always concerned about the change in this properties during the process or over a 

cycle. Then if ΔUm refers to the change in the mixture internal energy, it can be easily 

represented as: 

∆𝑈𝑚 = ෍ ∆

𝑘

𝑖=1

𝑈𝑖 = ෍ 𝑚𝑖(

𝑘

𝑖=1

𝑢𝑖,2 − 𝑢𝑖,1) 

Similarly, the change in enthalpy for the mixture can be written as: 

∆𝐻𝑚 = ෍ ∆

𝑘

𝑖=1

𝐻𝑖 = ෍ 𝑚𝑖(

𝑘

𝑖=1

ℎ𝑖,2 − ℎ𝑖,1) 

And the same way we can write for the change in total mixture entropy as well.  

∆𝑆𝑚 = ෍ ∆

𝑘

𝑖=1

𝑆𝑖 = ෍ 𝑚𝑖(

𝑘

𝑖=1

𝑠𝑖,2 − 𝑠𝑖,1) 

Generally, we always go by these extensive notations for the mixture. Sometimes we may 

have to go for an intensive notation. In that case, if you want to define the specific internal 

energy for the mixture, then we can use ‘um’ which is nothing but: 

𝑢𝑚 =
𝑈𝑚

𝑚
 

where  

Um is the total energy of the mixture  

Or if we want to define in a molar sense then it will be again: 

𝑢ത𝑚 =
𝑈𝑚

𝑛
 

 

where  

n is the total number of moles 

Here this over bar notation represents the molar definition. Whereas the um without the over 

bar represents the mass base definition or the gravimetric definition. Similarly, we can also 

define the specific versions of the enthalpy and entropy for the mixture though we generally 

do not need to go by that route.  

 

If now we want to define the intensive properties for the mixture. Most common intensive 

property is temperature and that if we can we easily understand. If suppose your mixing two 

gases and both of them at the same temperature, then you can expect the final temperature 

also be the same. Or other way actually that statement is not truly correct as we shall be 

correcting that later on. Let us come on from the other way around that is, if the mixture 

temperature is given, then you can easily assume that all the components are at the same 



temperature. So, for intensive sense we do not have to go for any calculation if temperature is 

given then you can easily calculate the temperature for each of the constituents because that 

will be equal to this temperature Tm only. Where Tm refers to the mixture temperature and 

also the component temperatures and this is applicable for both ideal and real gases. 

 

Whatever you are writing in the slide they are applicable for both ideal and real gases. Now 

let us just go by the specific definition again. So um, the specification that is you know that 

the specification of any extensive property itself is an intensive property. So similarly, we 

should have written it here only, 

𝑢𝑚 =
𝑈𝑚

𝑚
 

and now if we expand the definition, we can write as: 

=
𝑈𝑚

𝑚
=

1

𝑚
෍ 𝑚𝑖

𝑘

𝑖=1

𝑢𝑖 = ෍ ቀ
𝑚𝑖

𝑚
ቁ 𝑢𝑖 =

𝑘

𝑖=1

෍ 𝑥𝑖

𝑘

𝑖=1

𝑢𝑖  

In the same way we can write: 

ℎ𝑚 = ෍ 𝑥𝑖

𝑘

𝑖=1

ℎ𝑖  

 

the specific version of the mixture enthalpy and specific version of the mixture entropy as: 

𝑠𝑚 = ෍ 𝑥𝑖

𝑘

𝑖=1

𝑠𝑖  

Similarly, if you have to write in molar sense: 

𝑢ത𝑚 =
𝑈𝑚

𝑛
=

1

𝑛
෍ 𝑚𝑖

𝑘

𝑖=1

𝑢𝑖 = ෍ ቀ
𝑚𝑖

𝑛
ቁ 𝑢𝑖

𝑘

𝑖=1

 

Before doing anything let us change this mi to something, how can represent this in mi, in 

terms of the number of moles or the molecular weight. When we that mi can be written as the 

molecular weight into the number of moles for this. So, this becomes: 

= ෍ 𝑦𝑖𝑀𝑖𝑢𝑖

𝑘

𝑖=1

 

But sometimes when we are writing the molar sense definition on the left inside each of the 

components also should be represented in terms of mole. So now here this ui that is that you 

have written that is a specific internal energy for the component is written in mass basis. That 

is its unit is kJ/kg. Now, if you want to convert to mole, then what we have to do? ui bar 



represents the specific internal energy per unit mole that is having the unit of kJ/kmol. Then 

what will be the relation between this ui bar and this ui? Of course, this: 

𝑢ത𝑖 =
𝑢𝑖

𝑀𝑖
 

or I should write: 

𝑢𝑖 = 𝑢ത𝑖𝑀𝑖  

Now look at the expression that we have here, if we get them into one bracket then we have: 

෍ 𝑦𝑖(𝑀𝑖𝑢𝑖)

𝑘

𝑖=1

= ෍ 𝑦𝑖

𝑘

𝑖=1

𝑢ത𝑖  

Earlier, I have made a mistake actually. What is the unit of molecular weight? 

Mi  kg/kmol 

if we multiply this ui with mi. Then what will be the final unit of this is kJ/kmol? That is this 

one only that is what we have here. And so, 

𝑢ത𝑚 = ෍ 𝑦𝑖

𝑘

𝑖=1

𝑢ത𝑖  

Similarly,  

ℎത𝑚 = ෍ 𝑦𝑖

𝑘

𝑖=1

ℎ𝑖  

 

and  

𝑠̅𝑚 = ෍ 𝑦𝑖

𝑘

𝑖=1

𝑠𝑖  

 

here all the bar quantities represent the per unit mole definition, whereas the quantities same 

symbols represent without the bar represent per unit mass definition. So, this way we can 

calculate the specific values for each of the components. Two other intensive properties 

which are very important are specific heat, so, similarly Cp for the mixture just the way you 

have written for interspace internal energy or enthalpy or entropy. Just the same way we can 

write this one as: 

𝐶𝑝,𝑚 = ෍ 𝑥𝑖

𝑘

𝑖=1

𝐶𝑝,𝑖  

 

And Cv, the specific heat at constant volume again can be represented as: 



𝐶𝑣,𝑚 = ෍ 𝑥𝑖

𝑘

𝑖=1

𝐶𝑣,𝑖  

And similarly, we can also write the over bar quantities, that is the per unit mole definition, 

 

𝐶̅𝑝,𝑚 = ෍ 𝑦𝑖

𝑘

𝑖=1

𝐶𝑝̅,𝑖  

 

Cp over bar for the highest component represents its specific heat on molar basis specific heat 

at constant pressure. Similarly, the isochoric specific heat for the mixture can be represented 

as: 

𝐶𝑣̅,𝑚 = ෍ 𝑦𝑖

𝑘

𝑖=1

𝐶𝑣̅,𝑖  

So, the way we are calculate the properties both extensive and intensive here they are 

applicable for both real and ideal gas mixtures. Now let us reduce this to the specific case of 

ideal gas mixtures. We are going to apply these solutions for ideal gas mixture. Then we shall 

be moving to the real gas mixtures to see the same relations how can expand to the specific 

form for the gases. 

(Refer Slide Time: 12:59) 

 

Now, when we are talking an ideal gas mixture, we know that the pressure for the ith 

component can be represented as: 

𝑃𝑖 = 𝑦𝑖𝑃𝑚  

where Pm is the mixture pressure and this Pi is known as the partial pressure. Because during 

yesterday’s lecture we have seen that the component pressure which is nothing but 



𝑃𝑖

𝑃𝑚
 

 

becomes equal to the partial pressure or  

𝑃𝑖 𝑏𝑒𝑐𝑜𝑚𝑒𝑠 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 𝑦𝑖𝑃𝑚  𝑓𝑜𝑟 𝑖𝑑𝑒𝑎𝑙 𝑔𝑎𝑠𝑒𝑠 
 

So, we use this sum partial pressure of partial volume only for ideal gases. Whereas generally 

you should call them component pressure. Like  

𝑃𝑖

𝑃𝑚
→ 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 

and that definition is applicable for both ideal and real gases. Whereas for ideal gases which 

generally go with this partial pressure, where  

𝑃𝑖

𝑃𝑚
→ 𝑐𝑜𝑟𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑖𝑛𝑔 𝑚𝑜𝑙𝑎𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑦𝑖  

Now we also know that the common properties something like enthalpy, internal energy, Cp, 

Cv, etc, they are all functions of temperature alone for ideal gases. That is only for ideal gases 

their independent of pressure, they are functions of only temperature. This thing we are 

proved in a module number 2. I hope you remember or if you cannot remember properly you 

can go back to the corresponding lecters are concerned chapter in the textbook. Where from 

here we know that enthalpy, internal energy, Cp, Cv etc, they are all function of temperature 

alone for ideal gases. Whereas for real gas they are functions of both temperature and 

pressure. Now as they are functions of temperature alone, therefore any change in them like 

change in internal energy should be function of corresponding change in temperature or 

similarly change in specific enthalpy that is should be a function of the change in 

temperature. Therefore, if we know the change in temperature, we should be able to identify 

the corresponding change in this property values same for Cp and Cv. We just need to know 

the relation between u and T which you already know from the P-v-T relationship.  

 

Once we know the P-v-T relationship for ideal gases, we know the P-v-T relationship is given 

as: 

Pv = RT 

Then you already know what is the relation between pressure and from where we can get the 

expression for this or we can just use the value of the specification and we can go by the 

route also. The situation is not that straight forward for entropy of course.  

 



Because, even for ideal gaseous also entropy is a function of both temperature and pressure. 

What was the relation, do you remember? Tds relations or using Tds relation you can get the 

definition of entropy as a function of temperature and pressure. Do you remember the forms? 

We have to start with that Tds relation something like  

Tds = dh − vdP.  

Then use the thermodynamic property relations and using the Maxwell’s equations, we get 

equations of for ideal gases specifically. Something like that change in specific entropy can 

be written as: 

∆𝑠𝑖 = 𝐶𝑝,𝑖  𝑙𝑛 ቆ
𝑇𝑖,2

𝑇𝑖,1
ቇ − 𝑅𝑖 𝑙𝑛 ቆ

𝑃𝑖,2

𝑃𝑖,1
ቇ 

Here 2 and 1 refers to the final state initial state respectively. Here we are writing this for the 

change in specific entropy for the ith component. If you can evaluate the change in all the 

components these by just adding them together, we can get the final change in the mixture. 

Whereas in this case, we can always write: 

∆𝑢𝑖 = 𝑓(∆𝑇) 

Because as we have mentioned that all the components are filling the temperature at the same 

way. So, the change in temperature is the same for all the components and therefore here 

writing T1 and T2 instead of Ti1 and Ti2 in the change in entropy equation, we can write as: 

∆𝑠𝑖 = 𝐶𝑝,𝑖  𝑙𝑛 ൬
𝑇2

𝑇1
൰ − 𝑅𝑖 𝑙𝑛 ቆ

𝑃𝑖,2

𝑃𝑖,1
ቇ 

 

as they are in thermal equilibrium at both state 1 state 2. But this Pi2 and Pi1 can be different 

because as this relation shows us so,  

𝑃𝑖,1 = 𝑦𝑖,1𝑃𝑚,1 

Similarly 

𝑃𝑖,2 = 𝑦𝑖,2𝑃𝑚,2 

this way we can calculate the change in entropy for the ith component. If you want to write 

this one in molar sense, then just dividing everything in terms of moles we can write this one 

as: 

∆𝑠̅𝑖 = 𝐶𝑝̅,𝑖  𝑙𝑛 ൬
𝑇2

𝑇1
൰ − 𝑅ത 𝑙𝑛 ቆ

𝑃𝑖,2

𝑃𝑖,1
ቇ 

 

Here we are actually multiplying everything is the molecular weight, then, 

𝑅𝑖𝑀𝑖 = 𝑅ത  

So, this way we can convert the same definition to the molar scale as well. This we can 



calculate the change in all the five most important thermodynamic properties for an ideal gas 

mixture.  

(Refer Slide Time: 18:22) 

 

Here, this particular relation that we use here is often known as a Gibbs-Dalton Principle or 

Gibbs-Dalton law of additive pressures. I should have in a way not have written this one as 

Gibbs-Dalton law of additive pressure, it is more like Gibbs-Dalton principle which states 

that: under ideal gas approximation the properties of a gas does not influence the presence of 

other gases and each gas component the mixture behaves as if it exist alone in the mixture 

temperature Tm and mixture volume Vm. So, the gas molecules you probably can remember 

that ideal gas approximation we take when the gas molecules whose density is extremely low 

that is either at low pressure or at high temperature.  

 

So, that gas molecules are far apart from each other and therefore each molecule is not at all 

influenced by its neighbouring molecules. Because of neighbouring molecules is far apart to 

put any kind of influence on this. And therefore, the way single ideal gas behaves, a mixture 

of ideal also be as the same way. And therefore, the properties of not at all influence by the 

presence of other gases and each gas component in the mixture behaves like it is staying 

alone at the mixture temperature and mixture volume. From there we can calculate the 

pressure of the mixture for this.  

 

 

 

 



(Refer Slide Time: 19:50) 

 

Let us try to solve one example to apply the same principle. Here we are talking about a rigid 

tank; I have the diagram here. It is divided into two compartments by partition, one side 

contains 7 kg of oxygen. This is having 7kg of oxygen at 40 0C and 100 KPa. On the other 

side we have nitrogen, 4 kg of nitrogen, the one shown in pink at 20 0C and 150 kPa. 

 

Now, the partition has been removed, allowing the gases to mix with each other. We have to 

determine the final temperature and pressure of the mixture. So, this problem is very straight . 

The initial state for both the components are given. Initially they are unmixed but at the end 

of the process there mixed with each other. So, we have to get this final temperature and 

pressure once they are fully mixed to each other that is they have been in some kind of 

equilibrium. Now to start with, we have to analyse whether we are dealing with ideal gases 

are real gases. For that, how we can identify whether the given conditions oxygen and 

nitrogen or ideal gas or real gas? You know that we have to check their Pr and Tr values. 

Pressures and temperatures for both the components are given and you can get the 

corresponding critical point values, say for oxygen and also for nitrogen.  

 

And for oxygen at 40 0C, first it should be converted to Kelvin and then divided by the 

critical temperature of oxygen to check whether this value is close to 2 or not. Similarly, the 

100 kPa pressure has to be divided by the critical pressure for oxygen to check whether it is 

an extremely small number or not. Repeat the same procedure for nitrogen.  

 



And in this case both gases you will find that both gases should be like an ideal gas. And 

therefore, their mixture also should be treated as an ideal gas mixture. Now we are assuming 

the tank to be ideally insulated, has no information given about any heat interaction with the 

surrounding. So we are assuming the tank to be insulated and no work transfer involved and 

your also change neglecting any changes in kinetic and potential energies.  

 

So, we know some properties the specific is that I am going to use here is: 

cv,O2 = 0.658 kJ/kgK 

cv,N2 = 0.743 kJ/kgK 

So, how can you calculate this? We have to applying an energy balance on this one? Show let 

us say E1 is the initial state and E2 is the final state, then this is a transient process. So, over 

the entire process if we write the first law of thermodynamics the answer is found. 

𝐸2 − 𝐸1 = ∆𝐸𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑣𝑜𝑙𝑢𝑚𝑒  

Now here we are neglecting the changes in kinetic and potential energies, so we can also 

write: 

𝑈2 − 𝑈1 = ∆𝑈𝑐𝑜𝑛𝑡𝑟𝑜𝑙  𝑣𝑜𝑙𝑢𝑚𝑒  

Now the system is ideally insulated and also there is no work transfers, that means there is no 

heat interaction and work interaction with the surrounding.  

 

Then the total internal energy for this system or control volume should remain the same over 

the entire process which gives us: 

U2 = U1 

Now initially, what is your internal energy? And finally, what is the internal energy that we 

have to identify? So initially U1 refers to oxygen and nitrogen being separated. So for U, we 

can write: 

𝑚𝑂2𝑐𝑣,𝑂2൫𝑇𝑖,𝑂2 − 𝑇𝑟𝑒𝑓 ,𝑂2൯ + 𝑚𝑁2𝑐𝑣,𝑁2൫𝑇𝑖,𝑁2 − 𝑇𝑟𝑒𝑓 ,𝑁2൯ 

where the first term of the above equation is the initial internal energy for the oxygen part and 

second term is the initial internal energy for nitrogen part.  

This sum should be equal to that of the mixture. And in the mixture as you know that both 

components remain separately, so we can treat them separately also, we can write: 

ൣ𝑚𝑐𝑣൫𝑇2 − 𝑇𝑟𝑒𝑓 ൯൧
𝑂2

+ ൣ𝑚𝑐𝑣൫𝑇2 − 𝑇𝑟𝑒𝑓 ൯൧
𝑁2

 

i.e.,  



𝑚𝑂2𝑐𝑣,𝑂2൫𝑇𝑖,𝑂2 − 𝑇𝑟𝑒𝑓 ,𝑂2൯ + 𝑚𝑁2𝑐𝑣,𝑁2൫𝑇𝑖,𝑁2 − 𝑇𝑟𝑒𝑓 ,𝑁2൯ = ൣ𝑚𝑐𝑣൫𝑇2 − 𝑇𝑟𝑒𝑓 ൯൧
𝑂2

+ ൣ𝑚𝑐𝑣൫𝑇2 − 𝑇𝑟𝑒𝑓 ൯൧
𝑁2

 

If we reorient them now, we can probably write it as: 

[𝑚𝑐𝑣(𝑇2 − 𝑇1)]𝑂2
+ [𝑚𝑐𝑣(𝑇2 − 𝑇1)]𝑁2

= 0 

Now T2 is a final temperature, while initially they are separated, so, T1 for oxygen and T1 for 

nitrogen are different, but their T2 has to be same. So, this T2 let us called this Tm which is the 

mixture temperature. Now mass for both the components are given, for oxygen mass is 7 kg, 

for nitrogen it is 4kg, Cv I have given to the values, T1 for oxygen in this case is equal to 40 
0C  that is, 313 K,  T1 for nitrogen is equal to 20 0C  that is, 293 K. Putting everything 

together we are going to get, 

Tm = 32.2 0C. 

So, we have got the mixture temperature. Now to get the mixture pressure, to get the mixture 

pressure, we need to know the mixture volume. We do not know the volume, once we have 

the temperature and volume both we can go for the ideal gas equation of state over the 

mixture. Hence, we can write something like say, 

𝑃𝑚 𝑉𝑚 = 𝑛 𝑅ത𝑇𝑚  

but Tm we have calculated what you need to know is Pm and Vm. So, let us calculate the total 

number of moles involved here.  

𝑛𝑂2
= ቀ

𝑚

𝑀
ቁ

𝑂2

=
7

32
= 0.129 𝑘𝑚𝑜𝑙 

 

𝑛𝑁2
= ቀ

𝑚

𝑀
ቁ

𝑁2

=
4

28
= 0.143 𝑘𝑚𝑜𝑙 

So, the total number of moles for the mixture: 

𝑛 = 𝑛𝑂2
+ 𝑛𝑁2

= 0.362 𝑘𝑚𝑜𝑙 

So, we have the total number of moles, this one and now I have to get the total volume. Now 

total volume we have already learned the Amagat’s law also the Dalton's law of partial 

pressure. So, we can also say that the total volume has to be equal to their component 

volumes.  

 

So, what is individual volume? V1 for oxygen, we know the mass and other things. so from 

where we can easily calculate it should be equal to: 



𝑣1,𝑂2
= ቆ

𝑛𝑅ത𝑇1

𝑃1
ቇ 

Now number of moles of oxygen we have calculated R bar is a universal gas constant T1 and 

P1 are a given, so putting that it will be coming as: 

= 5.7 m3 

and  

𝑣1,𝑁2
= ቆ

𝑛𝑅ത𝑇1

𝑃1
ቇ

𝑁2

 

= 2.32 m3 

Now, look at this, here this V1,O2 refers to the volume for this side of the compartment and 

V1,N2 refers for the volume for this side of the compartment. And once you have removed the 

partition both the gases are mixed with each other and therefore the total mixture is able to 

occupy the entire chamber that is both the compartments together. So, what should we have 

V2 or Vm? It should be equal to: 

𝑣𝑚 = 𝑣1,𝑂2
+ 𝑣1,𝑁2

 
 

= 8.02 𝑚3 

So, from there, we can get: 

𝑃𝑚 =
𝑛 𝑅ത𝑇𝑚

𝑉𝑚
 

 

= 114.5 kPa. 

So, this we can calculate for an ideal gas mixture the final pressure temperature and any other 

properties you want.  
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Now let us quickly move to the real gas mixtures. Here we have a situation for a real gas 

mixture, we have gas A and gas B. Their initial conditions are given, both are at the same 

temperature and pressure. But their volumes are different: 0.4 m3 for gas A and 0.6 m3 for gas 

B. Now they are allowed to mix with each other, just like the previous question that we have 

solved.  

 

Both the gases are now occupying the entire compartment and therefore the final volume is 

given which will be equal to the initial volume of 0.4 m3 for gas A plus 0.6 m3 that is total 1 

m3. And also, as both are at the same temperature, their temperature may be same their 

volume is definitely 1 m3, but what will be the pressure? Should the pressure will remain at 

100 kPa?  

 

If they are ideal gases then it should remain at 100 kPa, but if they are real gases like in this 

example it may not be 100 kPa, it may be something like this, it may be higher or lower. 

Therefore, for real gases we cannot separately analyse both the components rather we have to 

combine all of them together. Because for real gases we know that all these properties: 

h, u, Cv, Cp = f (T, P or V) 

temperature and either pressure or volume should be specified, one of them is necessary. So, 

it is a function of two of the given components. And entropy was of course already a function 

of both the components. So now if we write, say, the second law of thermodynamics using 

the Tds relation of second law of thermodynamics for the mixture, probably you can 

remember that earlier we had this Tds relation: 



 

dhm = Tmdsm + vmdPm 

we have written this one for the mixture now. You know the expression for hm and these 

components, so the above equation can be expressed in the summation of components form 

as: 

𝑑 ቌ෍ 𝑥𝑖

𝑘

𝑖=1

ℎ𝑖ቍ = 𝑇𝑚 𝑑 ቌ෍ 𝑥𝑖

𝑘

𝑖=1

𝑠𝑖ቍ + ቌ෍ 𝑥𝑖

𝑘

𝑖=1

𝑣𝑖ቍ 𝑑𝑃𝑚  

 

 Now, xi generally is constant at least in this particular example because the mass is not 

changing for any of the components and mass as there is no nuclear reaction kind of thing 

going on. So, you can assume mass to be in non-destructible or non-creatable. And therefore, 

xi remains constant so taking that out. We can write this one now as: 

෍ 𝑥𝑖

𝑘

𝑖=1

(𝑑ℎ𝑖 − 𝑇𝑚  𝑑𝑠𝑖 − 𝑣𝑖  𝑑𝑃𝑚 ) = 0 

again, as xi is not changing so we can write: 

𝑑ℎ𝑖 = 𝑇𝑚  𝑑𝑠𝑖 − 𝑣𝑖  𝑑𝑃𝑚  

So, this gives us a way of estimating the change in enthalpy for the ith component by 

estimating the changes entropy and change in pressure. So that if we somehow can calculate 

by knowing the property is the change in enthalpy and entropy, that problem will help us to 

calculate the change in the final pressure. For now, how to get the values for each of the 

components? For each of the component we have to get the reduced properties TR and PR, but 

initial state and also the final state and then from there we can compute the values of this Tm 

and Pm, quite similar to the Amagat’s law approach. If Vm and Tm are given, then using that 

Vm we have to calculate an approximate value of Pm using ideal gas equation of state. And 

then putting it here we can get the value of Tm and Pm. Let me show you want numerical 

example which may make this particular concept clearer.  
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Here the situation is, we are treating with air which can be viewed as a mixture of 79% 

nitrogen and 21% oxygen on mole basis. So here we can write, say,  

yN2 = 0.79 

yO2 = 0.21 

This is a steady flow process so air is cooled from 220 K to 160 K at constant pressure of 10 

MPa. So, pressure remains constant temperature changes from 220 K to 160 K. See the 

temperature is too small for these two gases to be considered as ideal gases. Because you are 

talking about particularly the end temperature as 160 K which is very small, quite close to the 

boiling point of oxygen. Then therefore we cannot consider or cannot assume either of the 

gases to be ideal gases for this particular combination of temperature and pressure, the 

pressure is also much higher. So, we have to now determine the amount of heat transfer 

during the process per kilo mole of air using the ideal gas approximation case rule and also 

Amagat’s rule. So, we need to know the critical point values for nitrogen, I have noted the 

numbers: 

Tcr = 126.2 K  

Pcr = 3.39 MPa   

For oxygen,  

Tcr = 154.8 K  

 

See final temperature is 160 K, it is just about 5 K higher than the boiling point of oxygen. 

And  

Pcr for oxygen is 5.08 MPa. 



So, the working pressure is also much higher and no way we can assuming the any of the 

gases to be ideal gas in this scenario. And let me just put it here in this case,  

y for nitrogen = 0.79  

and  

y for oxygen = 0.21  

So, let us go by the ideal gas approximation first. But during this particular process, this 

being a steady flow process so we can easily write that the energy coming in minus energy 

going out as to be equal to zero, i.e.,  

ein − eout = 0 

that is neglecting the changes in kinetic and potential energies and also assuming mass to be 

remaining constant. So, we can write that the state number 1, let us be the state 1 and this is 

state 2.  Then, 

ℎത1 = ℎത2 + 𝑞ത𝑜𝑢𝑡  
 

where 

h1 bar is the amount of energy coming in per unit mole of air 

h2 bar is the amount of energy going out per unit mole of air 

qout is the amount of heat rejected per unit mole  

or  

𝑞ത𝑜𝑢𝑡 = ℎത1 − ℎത2 

We do not yet know h1 bar or h2 bar, which one is higher, if this quantity comes to a positive 

then, we can say that the direction we have assumed to be correct, that is heat is being 

rejected.  If h1 is lesser than h2 then heat is being absorbed by the system.  

 

Now h1 bar and h2 bar for molar sense, how we can write this? We can break this to two 

components. So, we can write: 

= 𝑦൫ℎത1 − ℎത2൯|𝑁2
+ 𝑦൫ℎത1 − ℎത2൯|𝑂2

 

And now we have to identify this h1 bar and h2 bar for both the components, first using the ideal 

gas equation.  

 

Using ideal gas equation, we know that given temperature  

T1 = 220 K  

then we can either use ideal gas equation of state or we can directly take the values from the 

tables. Here we are going to take the values directly from the tables. So 



ℎത1,𝑁2 = 6391 𝑘𝐽/𝑘𝑚𝑜𝑙 
 

In any thermodynamic book you will find in appendix several deductibles are given, I have 

taken the value here from the book of Cengel and Boles. 

  

So, 

h1 bar for oxygen = 6404 kJ/kmol 

T2 = 160 K  

So, corresponding to 160 K, 

 h2 bar for nitrogen = 4648 kJ/kmol 

and  

h2 bar for oxygen = 4657 kJ/kmol 

so, we know the values of enthalpies and we can done directly put it there now. Then amount 

of heat rejection per unit mole of the mixture or of air should be equal to: 

𝑞ത𝑜𝑢𝑡 = (0.79)(6391 − 4648) + (0.21)(6404 − 4657) = 1744 𝑘𝐽/𝑘𝑚𝑜𝑙 𝑜𝑓 𝑎𝑖𝑟 
 

The value is coming to be positive that means our assumed direction is correct. Heat is being 

rejected by the system. So that is for the ideal gas part, now we have to apply the  Kay’s rule 

that is when we are going to treat the it as a real gas.  
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To apply the Kay’s rule, do you remember the Kay’s rule that we have studied in the previous 

lecture? I hope you do so just apply that. To get the Kay’s rule, we have to identify the 

pseudo critical temperature for the mixture. How we can do this? This will be equal to: 



𝑇′𝑐𝑟,𝑚 = ෍ 𝑦𝑖 𝑇𝑐𝑟,𝑖

2

𝑖=1

= 132.2 𝐾 

So, in this case here I have already written the critical temperature for nitrogen and oxygen, 

also in their mole fraction. So, using the mole fractions, so can easily calculate this to be 

132.2 K. 

And similarly, the critical pressure for the mixture is: 

𝑃′𝑐𝑟 ,𝑚 = ෍ 𝑦𝑖 𝑃𝑐𝑟 ,𝑖

2

𝑖=1

= 3.74 𝑀𝑃𝑎 

So, we have got the pseudo critical values for the mixture using their mole fractions. And 

now we have to identify the value of the compressibility factor for both the components. So, 

for that we need to know the reduce pressure at state number 1 which is: 

𝑇𝑅,1 =
𝑇1

𝑇′𝑐𝑟 ,𝑚
=

220

132.2
= 1.66 

 

The reduced temperature at state 2 is: 

𝑇𝑅,2 =
𝑇2

𝑇′𝑐𝑟 ,𝑚
=

160

132.2
= 1.21 

Reduced pressure for both state 1 and 2, because pressure remains constant, i.e., 10 MPa 

which is: 

𝑃𝑅 =
𝑃

𝑃′𝑐𝑟,𝑚
 

 

which is an isobaric process. So, P1 and P2 both are equal to each other, which is coming to 

be:  

=
10

3.74
= 2.67 

be very careful about the unit which you are using here. Everything is given MPa, so I do not 

have any issue. Otherwise I had to convert this. So, it is coming to be equal to 2.67. So, using 

this Tr1 and Tr2 you have to calculate the compressibility factor which is coming in this case 

to be quite close to 1. And Z2 using Pr and Tr2, Z1 for the mixture is 1.0 and Z2 for the mixture 

is coming to be 2.6.  

 

Now we have to calculate this particular thing for the mixture. How can we calculate this? 

Assume ideal gases, so initial enthalpy for this component should be equal to: 

ℎത𝑚 1,𝑖𝑑𝑒𝑎𝑙 = 0.79 × 6391 + 0.21 × 6404 = 6394 𝑘𝐽/𝑘𝑚𝑜𝑙 
 



ℎത𝑚 2,𝑖𝑑𝑒𝑎𝑙 = 0.79 × 4648 + 0.21 × 4657 = 4650 𝑘𝐽/𝑘𝑚𝑜𝑙 
 

So now, 

𝑞ത𝑜𝑢𝑡 = ℎത1 − ℎത2 = ൫ℎത1,𝑖𝑑𝑒𝑎𝑙 − ℎത2,𝑖𝑑𝑒𝑎𝑙 ൯ − 𝑅ത𝑇′
𝑐𝑟 ,𝑚 (𝑧1 − 𝑧2) 

 

the second term in the equation corresponds to the deviation because of the non-ideal gas 

behaviour or ideal gas behaviour. 

Now we have just got these values: 

= (6394 − 4650) − 8.314 × 132.2(1 − 2.6) = 3503 𝑘𝐽/𝑘𝑚𝑜𝑙 𝑜𝑓 𝑎𝑖𝑟 

So, when we assume ideal gas our calculated number of 1744 whereas in this case the 

calculate value is much larger almost double of that.  

 

So, and as we can estimate from these values at least from exit value it is far away from the 

critical point, whereas the first one is quite close, this is equal to 1 we can almost assume the 

ideal gas behaviour but definitely we can’t do for the second situation. And for the Amagat’s 

rule I am leaving it to you. Just try using the Amagat's law like in the previous lecture we 

have solved 1 problem of calculating the pressure and temperature using Amagat’s law. Once 

we have that easily, we can get the corresponding enthalpy values also. Using the Amagat’s 

law the results will be coming as 3717 kJ/kmol of air, which is a quite close to that one that 

we have calculated here. Try and see whether you can get this number or not. So, this way we 

can calculate most of the common intensive and extensive properties for a gas mixture, for 

both ideal gas and real gases.  
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One final concept that I would like to introduce here, is which is known as the chemical 

potential. Now, chemical potential refers to the creation of the mixture. When you create a 

mixture, like suppose from the previous example, you have taken a certain quantity of oxygen 

and certain quantity of nitrogen and you are mixing them together. These two are miscible 

with each other and therefore very easily it creates a mixture. 

 

Similarly, if we take suppose, say water and ethyl alcohol and we mix them together. They 

both are liquids and their very much miscible each other so that also creates aa very perfect 

mixture. But can you separate them now? We cannot, at least we cannot separate them 

directly. We have to put some kind of energy because the separation process will not be 

spontaneous. We have to spend some kind of exergy to get the separation between the strong 

components, separation between nitrogen and oxygen from air, or separation of water and 

ethyl alcohol from this liquid solution. And therefore we can easily see that this mixing 

process is irreversible in nature. It is highly irreversible in nature and it can go only in one 

direction. To get the reverse direction done we have to spend some exergy for this.  

 

And that is exactly where, in order to calculate how much of work that we need to separate 

this, this concept of chemical potential comes into picture. I shall be discussing this one only 

very briefly and leaving the rest part to you. This is actually slightly advanced level topic, if 

you are interested you can proceed further from following any standard textbook. 

 

Now in week number 2, when we discussed about different thermodynamic potentials, I 

introduced something known as the Gibbs free energy. Do you remember the expression? 

Gibbs free energy was defined using a symbol g and it was defined as: 

g = h − Ts 

or 

dg = dh − Tds  −  sdT 

and if we combine this one with the other Tds relation, we can write this one as: 

= vdP −  sdT 

because  

dh − Tds  = vdP 

from the second Tds relation. Or if we go to the extensive definition, we can write this as: 

 dG = VdP − SdT 



So, this was the definition of Gibbs free energy that was provided earlier. And as long as you 

are dealing with the pure substance, this is sufficient. For a pure substance, we can easily say 

that this G, this function of only pressure and temperature. However, when we are dealing 

with a mixture then this also because functions of all the compositions that is for a mixture G 

is a function of pressure, temperature and all the mole fractions. 

𝐺 = 𝑓(𝑃, 𝑇) 

or I should say the number of moles for all the components if their k number of components. 

So that we can write: 

𝐺 = ൬
∂𝐺

∂𝑃
൰

𝑇,𝑛
𝑑𝑃 + ൬

∂𝐺

∂𝑇
൰

𝑃,𝑛
𝑑𝑇 + ൬

∂𝐺

∂𝑛1
൰

𝑇,𝑃,𝑛𝑗

𝑑𝑛1+. . . . . . . . . . + ൬
∂𝐺

∂𝑛𝑘
൰

𝑇,𝑃,𝑛𝑗

𝑑𝑛𝑘   

  

Hence apart from this we have to the last one nj dnk if where I do the summation form when 

we write this in the form: 

= ൬
∂𝐺

∂𝑃
൰

𝑇,𝑛
𝑑𝑃 + ൬

∂𝐺

∂𝑇
൰

𝑃,𝑛
𝑑𝑇 + ෍ ൬

∂𝐺

∂𝑛𝑖
൰

𝑇,𝑃,𝑛𝑗 𝑗 =1→ 𝑘,𝑗 ≠𝑖

𝑘

𝑖=1

𝑑𝑛𝑖  

  

with T, P and nj remaining constant, dni, where j varies from 1 to k, but j is not equal to i. If 

we are talking about a pure substance or a single component substance then the third term is 

equal to zero.   

 

So, this will be back to the pure substance equation. But when we are having the multi 

compound mixture then, of course the third term is also relevant. And if you now compare 

this one with the form for this pure substance then probably, we can get a unified form as: 

dG = 𝑉d𝑃 –  𝑆d𝑇 + ෍ 𝜇
𝑖

𝑘

𝑖=𝑘

𝑑𝑛𝑖 

 

where  

𝜇𝑖 = ൬
∂𝐺

∂𝑛𝑘
൰

𝑇,𝑃,𝑛𝑗

 

This is called the chemical potential that I am talking about. So, this chemical potential 

represents the changes in Gibbs function of the mixture in a specified phase, when a unit 

amount of component i in the same phase is added or removed from the mixture, as the 

pressure temperature and amount of all other phases are maintained constant. Quite often we 

also represent this one by something like: 



𝑔෤𝑖 = ℎ෨𝑖 − 𝑇𝑠̃𝑖  

Here these are for the ith component, and these quantities g tilde, h tilde, s tilde are also called 

the partial molar properties for the mixture or for the ith component in the mixture. 

 

So, this μi is the chemical potential that comes into picture, whenever we are talking about a 

multicomponent mixture. Now, you probably have observed several situations when we mix 

two components whatever we expect that does not happen. Like suppose you have mixed a 

certain quantity of, say, 200 ml of water and 100 ml of ethyl alcohol. And then what you have 

mixed, you can expect the final volume of the mixture to be equal to 300 ml, but that does not 

happen. Generate the final volume is slightly less than this or sometimes when we mix two 

substances together, there is a change in temperature, either the temperature reduces or the 

temperature increases. And that happens because of the presence of this chemical potential.  
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So, once we want to calculate the final volume for the mixture, then we can expect this final 

volume to be equal to: 

𝑉𝑚
∗ = ෍ 𝑚𝑖𝑣𝑖

𝑘

𝑖=1

 

if we write this in molar sense maybe we can also write this one as: 

= ෍ 𝑛𝑖𝑣𝑖ഥ

𝑘

𝑖=1

 

 

But practically it does not happen for several very common kind of scenarios. Therefore, let 

us denote this one as V*.  



 

Practically, 

𝑉𝑚 = ෍ 𝑛𝑖𝑣෤𝑖

𝑘

𝑖=1

 

 

where 

vi tilde is the partial molar specific volume that we have just defined. 

Similarly, 

𝐻𝑚 = ෍ 𝑛𝑖ℎ෨𝑖

𝑘

𝑖=1

 

 

where we defined a starred quantity as: 

𝐻𝑚
∗ = ෍ 𝑛𝑖ℎ𝑖

ഥ

𝑘

𝑖=1

 

and we can define the entropy for the mixture as: 

𝑆𝑚 = ෍ 𝑛𝑖𝑠̃𝑖

𝑘

𝑖=1

 

And where Sm*represents: 

𝑆𝑚
∗ = ෍ 𝑛𝑖𝑠𝑖ഥ

𝑘

𝑖=1

 

these two quantities are not equal. only if you are talking about an ideal gas mixture then 

these two quantities are equal. But for real situations there not at all equal to each other. And 

therefore, there is a deviation between the two. If we consider this deviation, we can define: 

∆𝑉𝑚,𝑛 = 𝑉𝑛 − 𝑉∗ 
 

= ෍ 𝑛𝑖

𝑘

𝑖=1

(𝑣෤𝑖 − 𝑣𝑖ഥ) 

  

Similarly, we can define an enthalpy of mixing, ΔHmixing which is nothing but: 

∆𝐻𝑚𝑖𝑥𝑖𝑛𝑔 = 𝐻𝑚 − 𝐻∗ 
  

= ෍ 𝑛𝑖

𝑘

𝑖=1

൫ℎ෨𝑖 − ℎ𝑖
ഥ ൯ 

and the entropy of mixing the same way, 

∆𝑆𝑚 𝑖𝑥𝑖𝑛𝑔 = 𝑆𝑚 − 𝑆∗ 
 



= ෍ 𝑛𝑖

𝑘

𝑖=1

(𝑠̃𝑖 − 𝑠𝑖ഥ) 

 

Now, mixing process being an irreversible one, so entropy of mixing is always positive.  

Entropy of mixing is always positive therefore; entropy of the mixture is always higher than 

the summation of the mixture components or before the mixing process taken place. Whereas 

enthalpy of mixing can be positive, can be negative, can be zero also in special cases. When it 

is positive then heat is being produced, we call that reaction to be exothermic or that mixing 

process are called to be exothermic. Whereas when it is negative, we call that mixing process 

to be endothermic and when that is zero, then we call the mixing process to be isothermal. In 

an isothermal mixing, during the process there will be no change in temperature. During 

exothermic and endothermic mixings, there is a change in temperature of the final mixture 

compared to the initial temperatures. So quite often we may have to define specific versions 

of these quantities also. Like if we want to define the specific volume of this mixture then 

that should be: 

𝑣𝑚 =
𝑉𝑚

𝑛
= ෍ 𝑦𝑖

𝑘

𝑖=1

𝑣෤𝑖  

Similarly, specific enthalpy of the mixture: 

ℎ𝑚 =
𝐻𝑚

𝑛
= ෍ 𝑦𝑖

𝑘

𝑖=1

ℎ෨𝑖  

And for specific entropy of the mixture: 

𝑠𝑚 =
𝑆𝑚

𝑛
= ෍ 𝑦𝑖

𝑘

𝑖=1

𝑠̃𝑖  

So, this why we can calculate the values for the mixture taking into the taking this chemical 

potential into account. I am not going any further in this chemical potential, but by using this 

concept it is possible to calculate the work requirement for the separation. I am leaving that to 

anyone who is interested to learn, because that is more and advanced thermodynamic kind of 

concept. That is where I would like to finish this particular week. 
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Here, we have learnt about the mass and mole fraction, the P - v - T behaviour of gas 

mixtures both ideal and real gas mixtures, then the properties of gas mixtures we have 

discussed today and finally a very brief introduction to the chemical potential. There are 

several other concepts that could have been discussed in conjunction with gas mixtures, but I 

do not want to go any for that because that is not relevant to this course as well.  

 

As I just told that can be the topics of advanced thermodynamics, which is beyond the scope 

of this particular course. So that is where our week number 10 finishes. In the next week I 

shall be starting with another kind of mixture, where we shall be talking about the mixing of 

ideal gas and or I should say a non condensable gas and condensable vapour which has its 

application in the field of air conditioning. Till then you rehearse this lecture and if you have 

any queries, please write back to me. Thank you. 


