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Lecture - 03 

Concept of Entropy and Entropy Generation 
 

Hello friends. Welcome back for the third lecture of this particular week where we are 

reviewing our principles of basic thermodynamics, with the focus of setting up for the 

concept which we may have to use in the subsequent weeks. Now, in the first and second 

lectures, we have discussed about some very fundamental aspects like the concept of 

thermodynamic system, property, state, equilibrium. Then, we discussed about the different 

laws of thermodynamics like in the first week or in the first lecture, I mentioned about the 

zeroth law of thermodynamics which gave us the concept of the property named temperature 

and in the previous lecture, I mentioned about both first and second law of thermodynamics. 

Now, from the first law of thermodynamics, we got the concept of internal energy or total 

energy of a system is a property. we have also seen how to apply the first law principle for 

both closed and open system analysis. The second law was also introduced where generally 

we talk about two different statements, the Kelvin-Planck statement, which is the suitable one 

for heat engines whereas the Clausius statement which is a suitable one for heat pumps and 

refrigerators or in one word the reverse heat engines. 

 

Now, while the analysis of a system following the first law of thermodynamics is quite 

straightforward i.e., we just have to go for the balance of energies which are either coming to 

the system or going out of the system. Or in a way, we can say that whatever energy 

interactions are taking place within the system and surrounding, we just have to take a 

balance of that and that should give you an idea about the change in the total energy content 

of the system. 

 

However, for second law of thermodynamics, we do not have such straightforward approach. 

We generally have two kinds of approach to choose from, one based upon the property called 

entropy, other based on the concept called exergy. So, in today's lecture, I am going to talk 

about entropy, introduce the property entropy to you and see how we can calculate entropy 

for a system. 

 



And in the next lecture, which is going to fourth and last one for this week, I shall be 

introducing the property exergy and then we shall be seeing how to analyze a thermodynamic 

system following the second law of thermodynamics based upon the exergy approach.  

 

So, let us start with our discussion on entropy. Now, in the previous lectures, we have seen 

that there are two different statements of thermodynamics and depending on what kind of 

system we are talking about, we can choose any one of them. And we know that though the 

statements look quite different, they are actually equivalent to each other i.e., any violation of 

the Kelvin-Planck statement leads to violation of the Clausius statement or vice-versa. If you 

are not sure about how to prove that, you can refer to any standard thermodynamics book. 

 

Now, the first term that I would like to introduce today which comes straight as a corollary or 

a consequence of the second law of thermodynamics is the reversible process. 

(Refer Slide Time: 03:28) 

 

Now, the reversible process refers to a process that can completely be reversed without 

leaving any trace of proof on the surrounding. It means we are talking about changing the 

direction of a process without keeping any mark on the surrounding.  

 

If we draw a very basic property diagram, let us say I draw a property diagram where we are 

using some properties a1 and a2 based upon which we are plotting. This a1 and a2 can be any 

properties of our choice like pressure and specific volume, pressure and temperature or 

maybe something else. Let us say this is our initial point 1 and this is state point 2. So, this is 

our state point 1 and state point 2. So, we are having a process somewhat like this which has 



taken place. So, during the process, all properties are changing, if we talk about any standard 

extensive property say X, then the change in this extensive property during the process will 

be: 

න 𝑑𝑋
2

1

=  𝑋2 − 𝑋1 

And also, certain interactions are taking place between system and surrounding during this 

process. Let us say this is our system, so during this forward process, the system receives this 

amount of heat (δQ) from the surrounding and gives this much of work output (δW). So, this 

is the scenario during this process 1 to 2. Now, if this process 1 to 2 is a reversible one, then 

we can reverse its direction thereby moving from this so-called final state back to the initial 

state without leaving any mark on the surrounding. That we say now we are talking about 

while the points remain the same 1 to 2, we shall be following exactly the same path. but now 

the direction will be opposite going back from 2 to 1. 

 

Now, what about the change in the properties? Properties are point functions i.e., whatever 

maybe the nature of the process, the final change in the property will always remain the same. 

In the second process, the change in same property X will be from, will be again: 

න 𝑑𝑋
1

2

=  𝑋1 − 𝑋2 

 

properties being point functions we do not need to bother about them. 

 

But we are talking about without leaving any trace of proof on the surrounding or mark on 

the surrounding that will be coming in terms of whatever interactions that are taking place. 

That is, if the process has to be completely reversed without giving any mark on the 

surrounding, then it would be the same process. Then, in the first case we have moved from 1 

to 2. Now, we are going back from 2 to 1 and to make this process perfectly reversible, then 

during the second process the system should reject exactly same amount of heat (δQ) to the 

surrounding and receives exactly same amount of work (δW) from the surrounding. Then 

only, whatever energy interactions that has taken place during the forward process 1 to 2, we 

can completely reverse all those energy interactions during the backward process and thereby 

getting both system and surrounding back to its initial condition. 

 

If there is any mass transfer involved, let us say δm amount of mass also moved in during the 

forward process. Then, during the reverse process, exactly the same amount i.e., δm, amount 



of mass must move back from the system to the surrounding. So, when we are performing the 

reverse process that is going back from 2 to 1, the system is always restored. Because we are 

back to the initial point, so all the system properties will go back to its initial value. However, 

the surrounding may not be restored if the process is not a reversible one. Because just think 

about during the forward process, if we neglect that mass transfer for the moment, then how 

much is the net energy that system has received? So, δE for the system is expressed as: 

𝛥𝐸𝑠𝑦𝑠 =  𝛿𝑄 − 𝛿𝑊 
 

where 

δQ is the amount of heat received 

δW amount of work given 

 

Now, δE for the surrounding, how much is that? If we consider to have just two systems, one 

is that so-called system, other is the surrounding. Then, for the surrounding how much is 

energy interaction? It can be expressed as follows: 

𝛥𝐸𝑠𝑢𝑟 =  𝛿𝑊 − 𝛿𝑄 
 

So, once we are performing this reverse process, the system is coming back to its initial state. 

So, all system properties are restored. However, to restore the surrounding also back to its 

initial condition, we must take away this amount of heat from the surrounding so that during 

the reverse process, the energy interaction corresponding to the surrounding is: 

𝛥𝐸𝑠𝑢𝑟 =  𝛿𝑄 − 𝛿𝑊 
 

thereby restoring the surrounding as well. So, we can identify system to be reversible only 

when during the reverse process both the system and the surrounding has been restored back 

to its initial condition. Otherwise, it is not a reversible one. The most common situation is the 

system gets restored to the initial situation but the surrounding does not and thereby the 

process is not a reversible one what we call is an irreversible process. Truly speaking, all 

practical processes are irreversible in nature because this particular condition that is without 

leaving any mark or trace or proof on the surrounding that is extremely difficult to achieve. 

 

Let us take an example. Let us take a cup of tea. So, we have taken a cup of tea, let us say we 

have a paper cup which is filled with some tea and now I have dropped that cup to the floor. 

So, as I drop the cup to the floor then what will happen, the tea or the liquid that I had in the 

cup gets splashed everywhere i.e., poured on the floor and there may be scattered drops also 



all around. So, if we want to now reverse that process, then what should happen, that tea 

which is now scattered everywhere that should come back to the cup and that cup filled with 

tea should come back to my hand. Now, that is practically looking quite impossible and that 

is why reversible process, the term is only an idealization, all real processes are irreversible in 

nature. 

 

Despite mentioning that no real processes are reversible, then why you are so much interested 

with this term? Because it can we proved that and you must have learnt that in your basic 

thermodynamics that whenever a heat engine is undergoing a reversible process, then it is 

expected to produce the highest possible work output among all the engines operating 

between the two same reservoirs. 

 

Similarly, when we are talking about energy absorbing device like a compressor or a pump. If 

a reversible reversed heat engine consumes work. When we are working on a reversible 

process, it will consume the least possible work input among all the reversed engines 

operating between again the same two reservoirs. So, once we fix up the two reservoirs that is 

the upper and lower temperature limits of the operation, then, for a reversible heat engine you 

are going to get the maximum possible work output and from a reversible heat pump or 

refrigerator, we need to provide the minimum possible work input. So, that is the most ideal 

process that we would always like to achieve. That is why we are very much interested in a 

reversible process because reversible process sets up the upper limit of operation both in case 

of heat engines and reversed heat engines. 

 

But practically there are several hindrances because of which a process can move away from 

the reversible nature. The most common causes are friction, because friction is a kind of 

irreversible effect. Like, suppose, I move my right hand over my left one, then what will 

happen? As I am moving forward there is some kind of rubbing of friction action that is 

taking place and because of which some energy is being lost. So, if I want to reverse this 

action completely, then what should happen? Whatever amount of energy that I have lost 

because of friction which eventually gets converted to heat that should come back to my hand 

thereby enabling my hand to move back into the original position. But that is never possible 

because you know that whenever hand is moving in this direction, friction is acting opposite 

to motion. Similarly, when I am moving the hand back into the original position, again 

friction is opposing the motion. It is always acting opposite to the motion and immediately 



converting that corresponding mechanical energy or lost mechanical energy to thermal 

energy thereby making it possible to recover that lost energy. So, friction is the biggest 

source of irreversibility. 

 

Under certain situation, we may have unrestrained or uncompressed or I should say 

unrestricted expansion of certain gases, in very specific situation you may get that. But the 

third one is a very common source again, heat transfer through a finite temperature 

difference. From the Clausius statement of the second law of thermodynamics, we know that 

heat can move only from a high temperature body to a low temperature body. 

 

And to have any kind of heat transfer, we need to have a certain amount of temperature 

difference between the two bodies. If both the bodies are at the same temperature, then we 

can never have any kind of heat transfer because heat transfer requires the temperature 

difference as its driving potential. If the temperatures are same, there is no driving potential 

so there will be no heat transfer. 

 

However, as heat can flow only from high temperature body to a low temperature body and 

the reverse is impossible therefore that is also a kind of irreversibility. Now, the first two 

friction and unrestrained expansion or primarily friction are generally referred as the reasons 

for internal irreversibility. That means if the system is frictionless and there is no unrestrained 

expansion, then we can call the system to be internally reversible. 

 

Similarly, when there is no heat transfer through a finite temperature difference, then we call 

the system to be externally reversible. It is possible for a system to be internally reversible 

but externally irreversible and similarly a system can be internally irreversible because of the 

presence of friction but maybe externally reversible.  

 

Let us take this example here. So, here I have got a system which is kept at 20 ᴏC. Now, if I 

want to transfer some heat from the surrounding to the system following a reversible manner, 

then the surrounding has to be at the same temperature but if it is at the same temperature 

then there will be no heat transfer. So, we can assume that surrounding is at an infinitesimally 

small temperature difference higher than the system thereby facilitating this heat transfer. So, 

here the heat transfer is taking place because of an infinitesimally small temperature 



difference between system and surrounding. So, it is a totally reversible process, of course 

assuming there is no friction, it is externally reversible.  

 

Now, look at the second example where the surroundings at a much higher temperature, there 

is a distinct temperature difference existing between system and surroundings. However, 

inside the system temperature is same everywhere i.e., system itself is in thermal equilibrium. 

This is the situation of internally reversible but externally irreversible process because there 

is a heat transfer taking place with finite temperature difference 30 ᴏC on one side, 20 ᴏC on 

the other side, there is a finite temperature difference of 10 ᴏC and this heat transfer is taking 

place because of the finite temperature difference, so the system is externally irreversible but 

internally reversible. 

 

We can also have the other example when a system is internally irreversible because of the 

presence of friction, but externally reversible. Externally reversible is possible when this heat 

transfer is taking place because of extremely small temperature difference or if there is no 

heat transfer at all. If there is no heat transfer at all, then this point never comes into picture. 

So, there also the system can be externally reversible. 

 

Therefore, for a system to be externally reversible, we need to have either an adiabatic 

process i.e., no heat transfer or an isothermal heat transfer process during which system and 

surrounding are at the same temperature, that takes us to the concept of a reversible cycle. 

(Refer Slide Time: 16:07) 

 



Practically, all power producing or power consuming systems has to work on certain cycle, so 

that they can keep on repeating the same action over a long period of time. And as we are 

going to get the largest possible work output from a reversible process, so a cycle which 

works only using reversible processes is expected to give the largest possible work output and 

that is the interest of talking about a reversible cycle. 

 

So, a cycle is called a reversible if all the constituent processes are reversible in nature i.e., 

they are frictionless and none of the processes involved heat transfer with finite temperature 

difference. The most common cycle that we talk about as a reversible one is a Carnot cycle, 

which is again an idealization but it is possible to have any other kind of reversible cycles 

also. In a Carnot cycle, we generally consider four processes to constitute the cycle. 

 

Process number 1, which is from this process or point 4 to 1, this is an adiabatic process and 

also frictionless adiabatic process. So, during this process, it is frictionless so internally 

reversible and also adiabatic so externally reversible. Therefore, this 4 to 1 is a perfectly 

reversible process or totally reversible process. 

 

Next process 1 to 2, 1 to 2 refers to an isothermal heat addition process, so QH amount of heat 

gets added to the system during which its temperature remains constant at TH, 2 to 3 is again 

an adiabatic process during which the temperature reduces from this high temperature TH to 

low temperature TL and 3 to 4 another isothermal heat rejection process. So, the first process 

is an adiabatic one, it is a frictionless adiabatic. 

 

Similarly, third one, this is also a frictionless adiabatic process. This second process 1 to 2 is 

an isothermal process performed at the temperature TH. Similarly, this fourth process 3 to 4 is 

another isothermal process performed at the temperature TL during which QL amount of heat 

is rejected to the surrounding. So, this is how we talk about the Carnot cycle. 

 

Now in a Carnot cycle then how can we calculate the efficiency of the cycle? So, you know 

that efficiency for any heat engine can be written as: 

𝜂 =
∮ 𝑊

𝑄𝐻
=  

∮ 𝛿𝑄

𝑄𝐻
=  

𝑄𝐻 − 𝑄𝐿

𝑄𝐻
= 1 −

𝑄𝐿

𝑄𝐻
 

 

where 



  

QH is the amount of heat added to the system 

QL is the amount of heat rejected 

This expression is true for any heat engines. 

 

Now, somehow you have to establish a relation between this ‘QL/QH’ to this ‘TL/TH’ and then 

only we can represent the efficiency of this Carnot cycle in terms of temperatures only and in 

this context, couple of Carnot principles comes into picture.  

 

The first Carnot principle says that the efficiency of an irreversible heat engine is always less 

than the same for a reversible heat engine operating between the same two reservoirs. It 

means suppose if we decide two reservoirs one at temperature TH and another at temperature 

TL and heat engine operating between the two getting suppose QH amount of heat from the 

high temperature body rejecting QL to the low temperature body and producing W amount of 

work. Then, it is saying that once we have fixed up these two reservoirs, then whatever may 

be the nature of this heat engine, whatever may be the magnitude of QH, W and QL, the 

efficiency of any reversible heat engine working between these two reservoirs will always be 

greater than any irreversible heat engine i.e., a reversible heat engine is going to give the 

maximum possible efficiency. 

𝜂𝑟𝑒𝑣 > 𝜂𝑖𝑟𝑟  
 

Second Carnot principle talks about the efficiency of all reversible heat engines operating 

between the same two reservoirs are the same, means again we are fixing up two reservoirs, 

one at temperature TH, other at temperature TL. Now, you are talking about two engines, both 

are reversible in nature. So, engine 1 is giving you W amount of work output, engine 2 is 

giving W2 amount of work output. Both 1 and 2 are reversible nature but they are having 

different kinds of heat interaction producing different amount of work. Now, the second 

Carnot principle says that efficiency of 1 and efficiency of 2 has to be equal and this 

whatever may be the nature of the reversible cycle as long as that is reversible that efficiency 

will be always the same. What does it indicate? 

 

So, once we specify the two end temperatures, the efficiency does not change, whatever may 

be the magnitude of heat drawn by the system or whatever may be the working fluid, you will 



always get the same efficiency. That means this has to be a function of these two 

temperatures TH and TL.  

𝜂1 = 𝜂2 = 𝑓(𝑇𝐻, 𝑇𝐿) 
 

Once you fix up these two temperatures, the efficiency of any reversible heat engine is fixed. 

From there, we get the concept of a thermodynamic temperature scale and using the Joule 

postulate, it can be shown that: 

𝑄𝐿

𝑄𝐻
=

𝑇𝐿

𝑇𝐻
 

 

i.e., the ratio of heat transfer can be directly equal to the ratio of corresponding temperatures. 

And accordingly, we get efficiency for any reversible heat engine, Carnot cycle, or any other 

kind of reversible heat engine, it is:  

𝜂𝑟𝑒𝑣 = 1 −
𝑇𝐿

𝑇𝐻
 

 

So, once you know these two temperatures, you can calculate the efficiency of any reversible 

heat engine. The same principle is also applicable to reversed heat engines. So, like COP for 

a reversible heat pump, we know COP for any heat pump is: 

𝐶𝑂𝑃𝐻𝑃,𝑟𝑒𝑣 =
𝑄𝐻

𝑄𝐻 −  𝑄𝐿
=  

𝑇𝐻

𝑇𝐻 −  𝑇𝐿
 

 

Similarly, COP for a reversible refrigerator is: 

 𝐶𝑂𝑃𝑅,𝑟𝑒𝑣 =
𝑄𝐿

𝑄𝐻 −  𝑄𝐿
=  

𝑇𝐿

𝑇𝐻 − 𝑇𝐿
 

 

Say for example, if we consider a situation of a heat engine which is operating between the 

temperatures where TH=1000 K and TL=300 K. Then, without knowing anything else we can 

say that the efficiency of this reversible heat engine or the maximum possible efficiency 

following this principle once we have fix up these two temperatures, the maximum possible 

efficiency any heat engine can be given as: 

𝜂𝑟𝑒𝑣 = 1 −
300

1000
= 0.7 

 

So, that is the maximum possible efficiency a heat engine operating between these two 

temperatures can give you. If the engine is a reversible one, you are going to get the 70% 

efficiency. If the engine is an irreversible one, your efficiency will be much lesser and how 

much less it will be? That depends upon the level of irreversibility is present in the system.  

 



Similarly, if we talk about the example of a refrigerator, so I give you refrigerator which is 

operating between the temperatures.  

TL = 280 K 

TH = 300 K 

Then, the maximum possible COP this refrigerator can have is the one corresponding to its 

reversible version which is: 

𝐶𝑂𝑃𝑅,𝑟𝑒𝑣 =
280

300 − 280
=

280

20
= 14 

  

So, this way we can calculate the upper limit of efficiency or COP for a heat engine or 

reversed heat engine respectively once the two temperature limits are given. 

(Refer Slide Time: 24:26) 

 

Now, let us use this concept to derive another important principle known as the Clausius 

inequality, for which we consider a heat engine. This TH and TL are the two temperatures, we 

have the heat engine which is drawing QH amount of heat rejecting QL amount of heat and 

producing W amount of work. This heat engine can be reversible, can be irreversible, we do 

not care. 

 

Now, if we apply the first law of thermodynamics on this over cycle, we know 

that

ර 𝛿𝑄 = ර 𝛿𝑊 

Now, amount of heat it is taking is  

QH-QL=W 



 

QH definitely is higher than QL; otherwise there will be no W. So, 

ර 𝛿𝑄 = 𝑄𝐻 − 𝑄𝐿 > 0 

 

Now, we take the quantity,  

ර
𝛿𝑄

𝑇
=

𝑄𝐻

𝑇𝐻
−

𝑄𝐿

𝑇𝐿
 

 

 

where T is the absolute temperature so that is always a positive quantity. So, the symbol of 

this one will depend upon the symbol of Q, so you have ‘QH/TH-QL/TL’ because QL is 

negative.  

Now, we have just seen that following the Carnot principle, for a reversible one, we can say 

that: 

𝑄𝐿,𝑟𝑒𝑣

𝑄𝐻
=

𝑇𝐿

𝑇𝐻
 

 

So, if we use that for first, we consider the reversible heat engine. So, reversible means we 

are indicating QL as QL,rev. Then, using this particular principle, we can write that by 

rearranging them, we can write: 

 

𝑄𝐻

𝑇𝐻
=

𝑄𝐿,𝑟𝑒𝑣

𝑇𝐿
 →  ර ൬

𝛿𝑄

𝑇 𝑟𝑒𝑣
൰ = 0 

 

Now, we take an irreversible heat engine where QL=QL, irr. 

Now, this we know that work output from the Carnot principle, the work output in this case 

will be lesser than the reversible one i.e.,  

𝑊𝑖𝑟𝑟 < 𝑊𝑟𝑒𝑣  

If QH remains the same that means: 

𝑄𝐿,𝑖𝑟𝑟 > 𝑄𝐿,𝑟𝑒𝑣  
 

i.e., larger fraction of heat will be rejected, only lesser fraction will be converted to work. So, 

if we take now: 

 

𝑄𝐻

𝑇𝐻
−

𝑄𝐿,𝑖𝑟𝑟

𝑇𝐿
=

𝑄𝐿,𝑟𝑒𝑣

𝑇𝐿
−

𝑄𝐿,𝑖𝑟𝑟

𝑇𝐿
=

1

𝑇𝐿
൫𝑄𝐿,𝑟𝑒𝑣 − 𝑄𝐿,𝑖𝑟𝑟 ൯ < 0 

 

That means 



ර ൬
𝛿𝑄

𝑇
൰

𝑖𝑟𝑟
< 0 

 

So, if we combine this particular one for reversible one and this particular one for an 

irreversible one, then together we can write:  

ර ൬
𝛿𝑄

𝑇
൰

𝑖𝑟𝑟
≤ 0 

 

where the equality holds for a reversible one which is the limiting case. It is possible to prove 

the same thing for a heat pump cycle also. Only for a heat pump, you are going to get, if this 

particular situation we have derived for heat engine, if we do the same thing for heat pump, 

you are going to get:  

ර ൬
𝛿𝑄

𝑇
൰ < 0 

 

However, 

Therefore, we can conclude that for any kind of system, heat engines or reversed heat 

engines, reversible or irreversible; we can always write:  

ර ൬
𝛿𝑄

𝑇
൰ ≤ 0 

This is called the Clausius inequality which sets up with us with the concept of entropy. 

(Refer Slide Time: 29:54) 

 

So, to discuss the concept of entropy, let us briefly consider again a property diagram where 

we move from a point 1 to 2 following this particular process ‘a’, and then we go back from 2 

to 1 following the process ‘b’. Let us say this is a reversible cycle that is both ‘a’ and ‘b’ are 

reversible processes. Then, following Clausius inequality we have just derived that  



 

ර ൬
𝛿𝑄

𝑇
൰ = 0 

 

That means: 

ර
𝛿𝑄

𝑇
+

2

1𝑎

ර
𝛿𝑄

𝑇

1

2𝑏

= 0 

  

Now, if we consider another cycle which is quite similar, again we have the same two 

endpoints 1 and 2 and the same process ‘a’, i.e., from 1 to 2 we are going following the same 

process a. However, during return we are taking a different route something like this a ‘c’ 

which is again a reversible process. So, in the first case, we had reversible cycle comprising 

of ‘a’ and ‘b’, in the second case, we had reversible cycle comprising of ‘a’ and ‘c’. So, in 

this case also we can use the Clausius inequality and accordingly we can write: 

ර
𝛿𝑄

𝑇
+

2

1𝑎

ර
𝛿𝑄

𝑇

1

2𝑐

= 0 

 

So, if we compare these two, then we can say that for both the situations 

 is the same. 

 

And this way, we can choose any process to go back from 2 to 1, as long as that is reversible, 

the magnitude of this will remain the same. Therefore what does that indicate? That 

definitely indicates that the change or rather the magnitude of this quantity is independent of 

the process path that has been followed that is whatever may be the process path we are 

following between 2 to 1 as long as that is reversible, this quantity remain the same and 

therefore that has to be some property. 

 

Also, cyclic integral of some quantity to be 0 does mean that that has to be a property and that 

property is called entropy, which is generally denoted by the symbol S. 

So it has to denote change in property as S1-S2.  

So, the change in any property dS is defined as:  

𝑑𝑆 = ൬
𝛿𝑄

𝑇
൰

𝑟𝑒𝑣
 

 

following a reversible path.  



As long as you are following a reversible path, just this δQ/T this quantity is going to give 

you the change in property. 

 

However, one thing you have to be careful, here we are going from one state point to another 

state point that is from 1 to 2 or 2 to 1. So, regardless of you are following a reversible path 

or irreversible path, the change in entropy will always remain the same because you are 

talking about a property. 

 

However, the magnitude of that change in entropy, magnitude of that property can be 

calculated using the heat transfer value only if you are following a reversible path. Like take 

this example, where we have plotted two processes between point 1 and 2. Now, during 1 to 

2, the change in entropy is from point 3 to point 7. So, the ΔS, the change in entropy is 

ΔS = 𝑆2 − 𝑆1 = 0.4 kJ/K 
 

Now, if we follow an irreversible process, even in that case also, the change in entropy will 

remain the same because again you are going away from the same initial state back to the 

same final state. So, the change in entropy which is there also will remain to be 0.4 kJ/K. 

However, in the first case, as we are following a reversible path, so the change in entropy in 

this case will be: 

𝑑𝑆 =
𝛿𝑄

𝑇
 

 

However, in this case,  

𝑑𝑆 ≠
𝛿𝑄

𝑇
 

 

So, if we are following a reversible path and we are plotting that on a TS diagram using 

temperature and entropy as the two axes, then the area under this particular curve that is this 

shaded portion will be giving you the amount of heat transfer involved with this. However, 

that is not true for the irreversible path. So, entropy can be defined as the property which 

satisfies this particular relation that is the magnitude of this ‘δQ/T’ following a reversible 

path. 
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Now, we consider another cycle which is actually an irreversible cycle. It comprises of one 

irreversible and a reversible process. So, process 1 to 2 is irreversible, in fact that can be 

reversible as well but process 2 to 1 is internally reversible. Now, we are applying the 

Clausius inequality on this. 

ර ൬
𝛿𝑄

𝑇
൰ ≤ 0 

If 1 to 2 is reversible, then the equality will hold, otherwise it will be that less than zero. So, if 

we write this now, break this: 

න
𝛿𝑄

𝑇

2

1

+ න ൬
𝛿𝑄

𝑇
൰

𝑟𝑒𝑣
≤ 0

1

2

 

 

න ൬
𝛿𝑄

𝑇
൰

𝑖𝑟𝑟

2

1

+ (𝑆1 − 𝑆2)  ≤ 0 

 

න ൬
𝛿𝑄

𝑇
൰

𝑖𝑟𝑟

2

1

≤ (𝑆1 − 𝑆2)  

 

Or, if we write formally then  

(𝑆1 − 𝑆2) ≥ න ൬
𝛿𝑄

𝑇
൰

2

1

 

 

As long as we are following a reversible path then the equality will hold and the change in 

entropy can directly be related to this ‘δQ/T’ quantity. However, if we are following an 

irreversible path, then ‘δQ/T’ alone is not sufficient rather, we need some other contribution. 

That is in differential if we write: 

𝑑𝑆 ≥
𝛿𝑄

𝑇
 

 



So, informally if we want to avoid this inequality sign, we can write this: 

𝑑𝑆 =
𝛿𝑄

𝑇
+ 𝛿𝑆𝑔𝑒𝑛  

 

which relates to the entropy generation. So, during the irreversible process, we can see that 

entropy change cannot be related fully to this term but there will be some additional 

contribution coming from the entropy generation which actually is a result of all the 

irreversibilities that are present inside the system. 

 

For a reversible process, we do not need to bother about this particular part i.e., δSgen. 

However, when we are following an irreversible process, then this entropy generation will 

always be there and that itself a very important principle known as the increase in entropy 

principle. So, even if we are talking about a reversible process, then there is no entropy 

generation. However, entropy generation is always a positive term. At the limiting case of a 

reversible process, it can be 0 and therefore during any real process the entropy of the system 

or entropy of the system surrounding combination will always keep on increasing. 

 

Let us take an example. So, this is our system, outside we have the surrounding and during 

this δQ amount of heat moves from system to the surrounding. So, if suppose T1 is the system 

temperature, T2 is the surrounding temperature. Then, how much will be the entropy change 

for the system? It will be equal to: 

𝑑𝑆𝑠𝑦𝑠 =
𝛿𝑄

𝑇1
+ 𝛿𝑆𝑔𝑒𝑛 ,𝑠𝑦𝑠  

 

And entropy change for the surrounding will be: 

𝑑𝑆𝑠𝑢𝑟𝑟 =
−𝛿𝑄

𝑇2
+ 𝛿𝑆𝑔𝑒𝑛 ,𝑠𝑢𝑟𝑟  

 

Here δQ is positive for the system because it is receiving heat but it is negative for the 

surrounding. Now, if the limiting case of T1 + T2 or rather T1 = T2, how much is the net 

entropy generation? If we combine these two, dSnet , the net entropy generation or net entropy 

exchange here is:  

𝑑𝑆𝑛𝑒𝑡 = 𝛿𝑄 ൬
1

𝑇1
−

1

𝑇2
൰ + (𝛿𝑆𝑔𝑒𝑛 ,𝑠𝑦𝑠 + 𝛿𝑆𝑔𝑒𝑛 ,𝑠𝑢𝑟𝑟 ) 

 

Now, as heat is being transferred from surrounding to system, T2 has to be greater than T1 

thereby getting this quantity to be positive. 

 



In the limiting case, when T1 and T2 are equal that is we are talking about an isothermal heat 

transfer, the first quantity goes to 0. However, this entire quantity is always positive and 

thereby this net change in entropy is greater than 0. This is what we call the increase in 

entropy principle i.e., the entropy of the system surrounding combination or entropy of the 

universe is what we say in formal thermodynamics term, this always increasing. 

 

However, for the system, entropy can always decrease but we are here talking not only about 

the system, not only about the surrounding, we are talking about the system surrounding 

combination which we refer as a universe. So, entropy of the universe is always increasing 

because of this entropy generation.  

 

So, with this we can have a few important conclusions.  

1. First, real processes can occur only in a certain direction, which gives to a positive 

entropy generation or in the limiting case zero entropy generation for a reversible 

process. Negative entropy generation is never possible and therefore any hypothetical 

thermodynamic process if that indicates negative entropy generation that is 

impossible.  

2. Secondly, entropy is a non-conserved property because of the presence of these 

inequalities and also the presence of this inequality here. So, entropy is a non-

conserved property, so there is nothing like conservation of entropy. We talk about 

conservation of mass, momentum, energy but not conservation of entropy. We can 

only write an entropy balance equation where we incorporate this entropy generation 

term. But conservation of entropy is never possible.  

3. And third, presence of irreversibilities degrade the performance of engineering 

systems and this entropy generation gives us an idea to measure such irreversibilities. 

More about this third point means how to calculate the irreversibilities using the 

concept of entropy generation we shall be discussing in the next lecture where we talk 

about exergy. 
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Let us quickly do one calculation. Here, I am presenting you with two situations; in situation 

‘a’ you have a source at temperature 800 K and sink at temperature 500 K and exchanging 

2000 kJ of heat. Then, how much is the entropy transfer in case number ‘a’? So, in case 

number ‘a’ entropy transfer associated with the heat transfer will be: 

∆𝑆𝑎 =
−𝛿𝑄

𝑇𝑠𝑜𝑢𝑟𝑐𝑒
+

𝛿𝑄

𝑇𝑠𝑖𝑛𝑘
 

 

So, if you take δQ common which is the same as:  

= 2000 ൬−
1

800
+

1

500
൰ 𝑘𝐽/𝐾 

 

So, I have not calculated the numbers but you can try to simplify this if I neglect the 0s. So, I 

have 20. I should put the unit at the end, which is kilo joule per Kelvin. So, it is: 

= 20 ൬−
1

8
+

1

5
൰ = 20 ×

3

40
=

3

2
= 1.5𝑘𝐽/𝐾 

 

Now, in case ‘b’,  

∆𝑆𝑏 = 2000 ൬−
1

800
+

1

750
൰ 𝑘𝐽/𝐾 

So, taking it common if I write this way, so it is 

= 20 ൬−
1

7.5
+

1

8
൰ =? 

 

 

So, you please calculate this, as I do not have a calculator with me now. But you please 

calculate this one and surely, we say that in this situation the value will be coming lesser than 

the previous case that is you are going to get: 



∆𝑆𝑏 < ∆𝑆𝑎  
 

So, definitely the second situation is more irreversible because here the, this is more 

irreversible because the temperature difference involved here is of 300 K whereas here it is 

only 50 K, so much lesser temperature difference and hence much lesser level of external 

irreversibility.  

In the first case, we are having heat transfer over 300 K temperature difference; there is only 

50 K in the second case. Therefore, despite this amount of heat transfer remaining the same, 

we are having lesser amount of irreversibility in the second case. So, quickly we shall be 

checking out if your property relations involving entropy which we have to make use of in 

the following lectures in the next week itself.  
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So, here we are talking about a closed system, then we consider it to be stationary, then we 

consider a simple compressible system so that there is no additional effect like gravity, 

magnetism, electricity, etc and also, we consider an internally reversible process. So, now if 

you write the first law of thermodynamics for this, we can write dU because it is a stationary 

system. So, dU can be written as: 

du = δQ − δW 

Now, from the definition of entropy as we are dealing with an internally reversible process, 

so δQ can be written as TdS and as we are talking about the simple compressible substance so 

δW can be written as PdV that is we can write: 

TdS = dU + PdV 

or dividing everything by mass, we can write: 



Tds = du + Pdv 

This is called the first TdS equation or the Gibbs equation. Again, we know that  

h = u + Pv 

or  

dh = du + Pdv + vdP 

So, if we make use of that in the previous TdS equation, we can write  

TdS = du + Pdv 

Here du + Pdv is replaced with dh – vdP, so the equation becomes: 

TdS = dh – vdP 

So, this is the second TdS equation or second Gibbs equation. 

 

These two are very important equations, remember the conditions for which you have done. 

We have considered closed stationary system, a simple compressible one and internally 

reversible. In that case, we can relate the properties, internal energy or enthalpy with entropy 

following this way thereby providing as a way of measuring the entropy because like if we 

take the first equation, we can write it as: 

𝑑𝑠 =
𝑑𝑢

𝑇
+

𝑃

𝑇
𝑑𝑣 

And from the second one, we can write it as: 

𝑑𝑠 =
𝑑ℎ

𝑇
+

𝑣

𝑇
𝑑𝑃 

So, if we know the PVT relationship between the substances that we are talking about and 

also somehow if we can relate the u or h which temperature, we can calculate the change in 

entropy. Let us take the example of an ideal gas. 
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So, this is the equation that we have just written. So, for ideal gas what you know? We know 

Pv = RT 

and also for ideal gas, we can write:  

du = Cv dT 

and  

dh = C dT 

You may have already used this relation, but in next week when we talk about the 

thermodynamic property relations, this one I shall be developing again. For the moment, you 

just take this one for granted. So, if you put this in the first equation, then we have:  

𝑑𝑠 = 𝐶𝑣

𝑑𝑇

𝑇
+

𝑃

𝑇
 

Here ‘P/T’ can be replaced with ‘R/v’, so ‘R dv/v’. 

𝑑𝑠 = 𝐶𝑣

𝑑𝑇

𝑇
+ 𝑅

𝑑𝑣

𝑣
 

 

That means  

𝑠2 − 𝑠1 = න 𝐶𝑣

𝑑𝑇

𝑇
+ 𝑅

2

1

න
𝑑𝑣

𝑣

2

1

                     (1) 

Similarly, from the second equation, we can write  

𝑑𝑠 = 𝐶𝑝

𝑑𝑇

𝑇
− 𝑅

𝑑𝑃

𝑃
 

 

Here ‘v/T’ was replaced by ‘dp/P’ which gives us the second equation which is as follows:  

𝑠2 − 𝑠1 = න 𝐶𝑝

𝑑𝑇

𝑇
− 𝑅

2

1

න
𝑑𝑃

𝑃

2

1

                     (2) 

So, this is our equation number 1, this is equation number 2 and depending upon what kind of 



information available to you, if you know the change in pressure and information about Cp 

then we use second one. If we know the change in volume and information about the Cv then 

we use the first one.  

 

There are generally two kinds of approaches because Cp and Cv generally functions of 

temperature. So, there are two approaches, the first one is called approximate approach. In 

approximate approach, we consider an average value of Cp and Cv and proceed accordingly. 

So, if we take the second one, there we shall be having according to the approximate 

approach:  

𝑠2 − 𝑠1 = 𝐶𝑝,𝑎𝑣𝑔 𝑙𝑛 ൬
𝑇1

𝑇2
൰ −  𝑅𝑙𝑛 ൬

𝑃2

𝑃1
൰                

following this particular equation. 

The second approach is exact approach where we consider the temperature dependence of Cp 

while performing the integration and in that case, we represent this: 

𝑠2 − 𝑠1 = (𝑠2
0 − 𝑠1

0) −  𝑅𝑙𝑛 ൬
𝑃2

𝑃1
൰  

  

where this s0 at any particular temperature is defined as:  

𝑠0(𝑇) = න 𝐶𝑝

𝑇

0

𝑑𝑇

𝑇
 

 

So, once you know Cp as a function of T, maybe a polynomial equation, maybe some other 

form you can perform this integration and integrated from 0 to T to get the value of s1
0 and 

s2
0. Thankfully, standard values of this s0 are available for different temperature levels in any 

standard textbooks, you can refer to the appendix of your textbooks, the book of Cengel and 

Boles or the book of Sonntag you will have the table of this s0. 
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So, to round up the day, we shall be checking one case where we make use of this entropy 

calculation following both exact and approximate approach. So, our situation is air is 

compressed from an initial state to a final state. So, we are given with P1 = 100 kPa, T1 = 290 

K. It is compressed to a final pressure P2 of 600 kPa and T2 of 330 K. Actually, it is a quite 

small temperature range that we are talking about. 

 

So, we have to calculate the entropy change of air assuming to ideal gas. So, if you follow the 

approximate approach, say case (A) then we have to choose an average value of Cp. Let us 

take Cp average for air to be=1.006 kJ/kgK. In that case, 

𝑠2 − 𝑠1 = 𝐶𝑝,𝑎𝑣𝑔 𝑙𝑛 ൬
𝑇1

𝑇2
൰ −  𝑅𝑙𝑛 ൬

𝑃2

𝑃1
൰     

 

you can put the numbers here and according the value that you are going to get is equal to  

= -0.3842 kJ/kgK 

You can see, here it is negative means entropy of the system is decreasing.  

Now, if we follow the exact approach, say case (B) then we need the value of s0. So, s0 here 

s1
0 means s0 corresponding to that 290 K.  Let me write it in a better way, so:  

𝑠1
0 = 𝑠0(290 𝐾) = 1.66802 𝑘𝐽/𝑘𝑔𝐾 

 
𝑠2

0 = 𝑠0(330 𝐾) = 1.79783 𝑘𝐽/𝑘𝑔𝐾 
 

I have taken the value from that table; I will provide you the table later on. So, s0 

corresponding to that 290 K is 1.66802 kJ/kgK and s0 corresponding to 330 K which is 

1.79783 kJ/kgK. 

So, if you take both these two into account, then: 



𝑠2 − 𝑠1 = (𝑠2
0 − 𝑠1

0) −  𝑅𝑙𝑛 ൬
𝑃2

𝑃1
൰ =  −0.3884 

So, in this particular case, you can see that the derivation is extremely small because actually 

we are talking about only a 40 K temperature difference. However, you can try to solve the 

same problem assuming the final temperature T2 to be something like say 600 K. 

 

Try to solve the same problem using this and you will find that approximate approach and 

exact approach are giving widely different results. And that shows when to apply which 

approach that is when you are talking about a quite small change in temperature, we generally 

go for the approximate approach assuming an average value of the specific heat. However, 

like in several kinds of gas turbine or IC engine applications, the temperature variation can be 

very significant. Then, we have to consider the exact variation is specific heat and so we have 

to go for the exact approach. But as long as the temperature difference involved is limited to 

something less than 100 K, approximate approach you can easily go for. 
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So, that takes us to the end of today's lecture where we have talked about the reversible 

process and irreversibilities, then the reversible cycle with Carnot cycle as the example of a 

reversible cycle. Then we derived the Clausius inequality which is formally given as  

ර ൬
𝛿𝑄

𝑇
൰ ≤ 0 

for any kind of system. The equality holds for the limiting case of a reversible process. 

 



Then, we introduced the concept of entropy and entropy generation. So, we have seen that 

during any process, the change in entropy can be written as: 

𝑑𝑆 =
𝛿𝑄

𝑇
+ 𝛿𝑆𝑔𝑒𝑛  

For a reversible situation, the entropy generation is not there, then the change in entropy can 

directly be related to δQ/T and finally we talked about the TdS relations, how to calculate 

entropy using the TdS relations and discussed the specific case of ideal gases. 

 

So, that is it for the day. In the final lecture of this week, I shall be talking about the concept 

of exergy and available work, where we shall be using this concept of entropy calculation, 

TdS relations probably and also the irreversibility calculations to get a complete second law 

analysis of both closed and open systems. Till then, you revise this lecture and if you have 

any query please write back to me. Thank you. 


