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Lecture - 07
Estimation of pressure drop in two phase flow

We meet once again for Two Phase Flow with Phase Change in Conventional and
Miniature Channels. We have discussed two phase flow models and how to calculate
pressure gradients for two phase flow using different models. Now, today we will discuss
how to find the pressure drop in two phase flow, pressure drop in two phase flow. So, first
let us consider the homogeneous model and find the pressure drop using the homogeneous
model.
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The pressure gradient by homogeneous model is given by this expression 1 upon 1 minus

M square 2 f upon D G square v bar plus G square v f g d x by d z plus g sin theta upon v
bar. And here M square represents the compressibility of the vapor phase and it is equal to
G square x absolute value of d v g by d P. And if M square is very small then we can

neglect it and then in that case the denominator becomes equal to 1.

And then the pressure gradient becomes simply the quantity the expression in the bracket.
And the first term is identified as the pressure gradient due to friction, the second term is
the pressure gradient due to acceleration and the third term is pressure gradient due to
gravity this we have done before. Now, from pressure gradient how do we find the pressure

drop?.

The pressure drop is the decrease in pressure from one point to another point, usually in a
pipe we calculate the pressure drop in the pipe that is from the inlet to the outlet of the
pipe. Pressure gradient is calculated at a point, in a pipe pressure gradient we can calculate
at the inlet or at the outlet or at any point in between. In the numerical examples we have

calculated pressure gradient at the midpoint of the pipe.

But, we could have calculated at any other point and we in general we would have got
different values of pressure gradient at different points. So, to calculate the pressure drop
we will have to integrate the pressure gradient from the inlet to the outlet of the pipe. And
since in general it varies from point to point the integral will not be simply the pressure

gradient multiplied by the length.
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Pressure drop in an evaporator tube with saturated liquid at inlet
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Pressure drop in an evaporator tube with saturated liquid at inlet

X
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So, let us see how to do this integral. Consider pressure drop in an evaporator tube and
assume that at the inlet it is saturated liquid, at the outlet in general it will be a two phase
mixture. So, the pressure drop will be equal to the pressure drop due to friction, plus

pressure drop due to acceleration, plus pressure drop due to gravity. And here the pressure



drop due to friction delta P F is the integral of the pressure gradient due to friction with d

P by d z we put a minus sign.

And then we have we integrate and what we get is the decrease in the pressure we; usually
calculate the decrease in pressure rather than increase in pressure. Because, usually there
is decrease in pressure due to friction and due to gravity also and many times due to
acceleration also there is decrease in pressure. So, delta P F is integral 0 to L minus d P by

d z F d z and then we substitute the expression for the pressure gradient.

And then v bar is equal tov fplusx vz x v fgvfandxvfgwe will be assuming to be
constant, but x is not constant in an evaporator tube it changes from point to point at the
inlet x is equal to 0. At the outlet we have the maximum value and in between there are
intermediate values, so we will have to do an integral. So, delta P F is equal to integral O
toL2fTPuponD Gsquarevflplusxvfguponvfdz, herewe have taken v f common
from the quantity in the brackets, so that within brackets the quantities are non

dimensional.

Then we can convert from d z to d x in the integral and therefore, instead of d z we write
d z by d x into d x. And we will see shortly why we have done this because it will be easier
to do the integral with respect to x. Now, d P by d z a the pressure gradient due to
acceleration is substituted in the expression for delta P a and we get integral 0 to L G

squarevfgdxbydzdz.

Here also we want to convert from the integral with respect to x, so we cancel d z d z and
then we get G square v f v f g by v f d x integral 0 to x naught. We will see later why we
have written instead of v f g we have written v f into v f g by v f. Then the pressure drop
due to gravity is integral of the pressure gradient due to gravity and it is equal to integral
0 to L G sin theta upon v bar dz.

And then we substitute for v bar v f plus x v f g and we take v f common, so we get this
integral and then we convert from d z to d x, So, finally, we get integral 0 to x naught g
sin theta upon v f, in the bracket 1 plus x v f g by v f d z by d x d x. Here x naught is the
quality at the outlet at z equal to L x is equal to x naught.
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Now, in order to do this integral we will have to make some assumptions, if we do not
make any assumptions then we will have to do numerical integration. Also we have
assumed that m square is much less than 1. If m square is not negligible then we will have
to keep m square and then all these pressure gradients will have to be multiplied by 1 upon

1 minus m square and then we will have to do numerical integration.



Because m square contains x and then we cannot take it out of the integral sign and
therefore, we will have to do numerical integration. Here we want to solve it analytically
and get a closed from expression, so therefore, we are considering only those cases where

m square is much less than 1 and further we are making some assumptions.

So, we assume that f T P is constant over the length and also v f g by v f is constant over
the length. So, unless the pressure is low the change in pressure or the pressure drop will
not affect the properties very much and therefore, v f g by v f will be nearly constant. And
we also assume that d x by d z is equal to constant and it is equal to x naught upon L this
comes from energy balance by assuming that the heat flux is uniform. And then by doing
a simple energy balance we get d x by d z equal to constant, so therefore, the quality varies

linearly over length and we get d x by d z is equal to x o upon L.

So, we substitute in the expressions d z by d x will be equal to the reciprocal of d z d x by
d z and it will be L upon x o. So, after substituting we get delta PF is equal to d z by d x
will come out of the integral sign because it is constant and then we have integral of 0 to
x naught 1 plus x v f g by v f d x. And after integration we get 2 f T P L upon D G square
v f bracket 1 plus x 0 by 2 v f g by v f, the pressure drop due to acceleration is G square v

fvfgbyvf0Otoxodxintegral.

So, the integral will be just x 0 and we get this expression G square v fv fgby v fxoand
vfigbyvfxoisdenotedasr1ok. So, we can write delta P a as G square v f r 1, later we
will see that when we use the separated flow model we get another expression which is
called r 2 and therefore, here this v f g by v f x o is called r 1. The pressure drop due to
gravity involves the integral of 0 to x o d x upon 1 plus x v f g by v f and when we integrate

we get a logarithmic expression ok.
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So, finally, we get the pressure drop delta P equal to delta P F plus delta P a plus delta P
z. And deltaP Fisequalto 2 f T P L upon D G square v f bracket 1 plus x 0 by 2 v f g by
v f, delta P a is equal to G square v fv fg by v f x 0. And delta P z is equal to g sin theta



Luponvfgxolnoflplusxovfgbyvfand by adding these 3 terms we get the total

pressure drop, so this was for an evaporator tube.
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Pressure drop in a condenser tube with saturated liquid at outlet, assuming
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Pressure drop in a condenser tube with saturated liquid at outlet, assuming
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Now, later consider a condenser tube, in the condenser tube let us consider saturated liquid
at the outlet, in the evaporator we considered saturated liquid at the inlet. Here let us



consider that after condensing we get saturated liquid at the outlet and at the inlet it is a
two phase mixture with a certain quality let us inlet quality x i. So, again we assume f T P
equal to constant and v f g by v f equal to constant, d x by d z will be constant by simple
energy balance. And it will be equal to minus x i by L, m square we have already assumed

to be negligible.

So, now we can do the integration and in the frictional pressure drop we get the integral of
xit00, 1plusxvfgbyvfdx. And after integration we get the final expressionas 2 f T
PLbyD Gsquarevf,1plusxiby?2vfgbyvf. The pressure gradient due to acceleration
is also similar to the case of evaporator except that in this case the quality gradient is

negative.

So, therefore, we get a minus sign and we get G square v fv f g by v f x i, the pressure
gradient pressure drop due to gravity is also similar to that for the case of evaporator. And
we get the integral of x i to 0 d x upon 1 plus x v f g by v f and after integration we get a

logarithmic expression.
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So, finally, we get the pressure drop as delta P F plus delta P a plus delta P z, where delta
PFisequalto2f TP LbyD Gsquarevflplusxiby2vfgbyvf. DeltaP aisequal to
G square v fv fgbyvfxithis should be x I, here also x i and here also x i ok. So, the
pressure drop due to acceleration is negative in this case; that means, there is pressure rise

due to acceleration ok.

Due to friction there is always pressure drop, because friction always opposes motion
relative motion and due to acceleration in this case; in this case it is actually deceleration
rather than acceleration. And therefore, there is pressure rise due to that, due to gravity
whether there is pressure rise or pressure drop or whether delta P z is 0 it will depend on
whether the tube is horizontal or vertical, vertically upward flow, downward flow or
inclined upward, or inclined downward ok, it will depend on theta. So, the total pressure

drop we can get by adding all these terms this is also x i ok.
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Pressure drop for two-phase flow in an adiabatic pipe, assuming
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Pressure drop for two-phase flow in an adiabatic pipe, assuming
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So, we have considered pressure drop in a evaporator tube and a condenser tube, now let
us consider two phase flow in an adiabatic pipe. In an adiabatic pipe there will be no
change in quality because we are neither heating it or cooling it; there can we change in
quality due to higher order effects which we are not considering right now. So, here we
will assume that the quality is constant and then we also assume f T P equal to constant

and v f g by v f equal to constant.

So, the frictional pressure drop is equal to the integral of the pressure frictional pressure
gradient. And here we see that everything comes out of the integral sign and we are left
with only the integral of 0 to L d z which is nothing but the length of the tube L. So, we
getdeltaP Fas2fTP L byD G square v fin the bracket 1 plus x v f g by v f.

The acceleration pressure drop will be equal to 0, because the acceleration pressure
gradient is O there is no acceleration, no deceleration, so delta P a is equal to 0. The
gravitational pressure drop is equal to the integral of the gravitational pressure gradient
and everything comes out of the integral sign and we have only 0 to L integral d z which

is equal to L. So, we get delta P z equal to G sin theta L uponv f1plusxvfgbyvf.
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So, we have delta P equal to delta P F plus delta P a plus delta P z and delta P F is equal
to2f TP LbyD GsquarevflplusxvfghbyvfdeltaP aisequal to0. AnddeltaP zis
equal to g sin theta L upon v f 1 plus x v f g by v f and by adding all these 3 we get the

total pressure drop.
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Example-1: Water+steam @100 kPa, horizontal flow, D =2 mm, L=5cm
G =100 kg/m?s, x(0)=0, ¢" = 50 kW/m?
To find the pressure drop at the end of the pipe

Solution:
Properties of water+ steam @100 kPa

s = 282.9 X 107° Pa.s, iy = 12.26 X 107 Pa.s, hy, = 2257.45 k] /kg
ve = 1,043 x 1073 m* /kg v, = 1.6939 m® /kg, vy, = 1.693 m* /kg

dx  4q"
dz GDhy,

=0.443m™}, x, = 0.0221

dug Avp 16782-16939 s s i
FTRY T e e

“di‘ =347x 103« 1, 1-M2 = 1,(1- M) ~ 1

2_ 2, |*%
M*=(x, »

Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 5 cm, G =
100 kg/m?s, x(0)=0, q"" = 50 kW/m?. To find the pressure drop at the end of the pipe.

Solution: Properties of water+ steam @100 kPa

pr = 2829 % 1076 Pa.s, pg =12.26 X 1076 Pa.s, hsy = 2257.45K]/kg

vy = 1.043 X 107° m3/kg, v; = 1.6939 m*/kg, vy, = 1.693 m3/kg

dx _ 27§ 443wt 0.0221
—_— = = U m -, X,=0U.
dz  GDhy, ?
dv, Av, 1.6782-1.6939
d}f ~ AIf = 500 = —1.57 x 10~>m®kg~'Pa~?!
M? = G, [22| =347 %1070 « 1, 1-M?* ~ 1, 1 - M2 ~ 1

Now, let us consider some numerical examples, so example 1 is the same as the example
1 considered previously for calculating pressure gradients using different models. So, now,
we will consider the same example for calculating pressure drop, here we have taken the

length of the tube as 5 centimeter earlier it was 10 centimeter.

So, the earlier we were calculating the pressure gradient at z equal to 5 centimeter. Now,
we have taken the length as 5 centimeter and we want to calculate the pressure drop from

the inlet to the outlet of the pipe the other data is the same ok. So, the properties are same



as before and d x by d z is also the same as before the outlet quality is 0.0221 and d v g by
d P is the same as before. So, M square is negligible and 1 minus M square is nearly equal

to 1, so we can use the expressions which we have discussed which we have derived.
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AP =0.00793 +0.374 + 0 = 0.382 kPa
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AP =0.00793 + 0.374 + 0 = 0.382 kPa

Now, the mean viscosity is calculated using McAdams relation and we get R e T P equal
to 1052 and it is laminar flow. So, we use the laminar flow friction factor which is 0.01521

and when substitute in the expression and we get delta P F equal to 0.00793 kilo Pascal.



Delta P a, we substitute values in the expression and we get 0.374 kilo Pascal, and delta P
z will be 0 because it is a horizontal pipe in this case. So, by adding these pressure drops

we get the total pressure drop as 0.382 kilo Pascal.

Now, example 2, you remember that in example 2 M square was not negligible the effect
of the compressibility of the vapor phase was not negligible, so therefore, we will not
considered that example. If we take that example then we cannot neglect M square and
then there will be 1 minus M square in the denominator for every pressure drop term and
then we will have to integrate numerically. So, we will have to write a code and then do
numerical integration, so it cannot be solved by hand. So, therefore, we will not consider

example 2, but we will consider an example 3.
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m
G = 1000 kg/m?s, x(0)=0, x{L}=1%
To find the pressure drop at the end of the pipe

Solution:
Properties of water+ steam @10 MPa

s = 81.80 x 107 Pa.s, i, = 2027 x 107" Pa.s,
3
vy = 1453 X 10'3%,173 = 1803 % 107 m? /kg, vy, = 0.01658 m? kg

dx 0.01 4
x, =001, dZ=T=0.01 m

dv, v, 0.01781-0.01803 L
E~E-W—72.20X10 m k\q Pa

Vg

_ d . .
ME = 62, [ = 220X 107 11 =M= 1, (1= M) = 1

Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m, G =
1000 kg/m?s, x(0)=0, x(L)=1%. To find the pressure drop at the end of the pipe

Solution: Properties of water+ steam @10 MPa

iy =81.80 x 1076 Pa.s, u; = 20.27 x 107 Pa.s,
3
v = 1453 x 107 =, vy = 1.803 x 1072 m*/kg, vyg = 0.01658 m® /kg

dx 0.01 1
Xo = 001, E = T = 0.01m

dv, Av, 0.01781-0.01803

70 % 3p X105 =—2.20x 10""m3kg~tPa?!




dv
M? = G?x, d—}f| =220x107°«1,1-M?=1, (1-MH)1=1

So, in example 3, all the data is as before except that the length of the pipe here is 1 meter
and the outlet quality is 1 percent. The properties are same as before outlet quality x o is
equal to 0.01 and d x by d z is equal to 0.01 per meter. So, d v g by d P is calculated and
then M square is calculated which is much less than 1. So, therefore, 1 minus M square is

approximately equal to 1 and we can use the expressions derived for the pressure drops.
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AP = 0.512 + 0.165 + 6.39 = 7.067 kPa

The mean viscosity is calculated and then the Reynolds number for the two phase flow is
calculated which is 2.52 into 10 raise to 5. So, therefore, it is turbulent flow and then we
use the Blasius relation to calculate the friction factor for turbulent flow in smooth pipe
and we get 3.53 into 10 raise to minus 3. And then we substitute the values in the

expression for delta P F and we get 0.512 kilo Pascal.

In delta P a also we substitute the values and get 0.165 kilo Pascal and delta P z after
substituting the values and calculating we get 6.39 kilo Pascal. Then after adding these
pressure drops we get the total pressure drop as 7.067 kilo Pascal ok. Now let us see how

to calculate two phase pressure drop using the separated flow model.
(Refer Slide Time: 24:13)

Pressure Gradient by SFM

dpP 1 2f; dx
-—= - {%szf qbfza + Gzav* +[pya +p(1 —a)]gsiné)]
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Pressure Gradient by SFM
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iy ey (-0t
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= {vag B 2(1 - x)vf} N (6_a) {(1 — x)%v; B x2vg}
P

a 1-—a 0x (1—a)? a?
If M> < 1then1 — M? =~ 1 and

AP 2fz,

dx
dz D

dz

-~ (@), (@), (@),

szf ¢]§o +G* v+ [pga +pr(1— a)]g sin

So, pressure gradient by separated flow model is given by this expression minus d P by d
z is equal to 1 upon 1 minus M square in the bracket 2 f f o by D G square v f phi f o square
plus G square d x by d z v star plus rho g alpha plus rho f 1 minus alpha g sin theta. Here,
M square is an expression which represents the compressibility of the vapor phase and v
star is a short hand for an expression which is given here.

So, if M square is much less than 1 then again we can consider 1 minus M square to be
approximately equal to 1. And in case m square is not negligible then we have to retain 1
minus M square in the denominator and in that case we will have to do numerical
integration. And we cannot derive any simple expressions, so we will consider only the

case where M square is negligible.

Now, by neglecting M square we get minus d P by d z is equal to this expression which
was in the bracket. And we identify the first term as the pressure gradient due to friction;
the second term is pressure gradient due to acceleration. And the third term is the pressure
gradient due to gravity and by integrating these pressure gradients we will get the pressure

drops.
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Pressure drop in an evaporator tube with saturated liquid at inlet

AP = APy + AP, + AP,
where

Lidp sz 2f,
APF=f (_E) dz=[ i f%dz_[ 5‘”02 qufa—dx
F 0

,dx %o
f j —u*dz=[ G v* dx
0 dz 0
L L
j(——) dz=f [pga + ps(1 - a)]gsin dz
0

AP, = j[pga+pf1 a)]gsmf) dx

A

N"U
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Pressure drop in an evaporator tube with saturated liquid at inlet
AP = AP; + AP, + AP,

where

L dP 2f; 2f;
APy =f (—— dz —f fo f ¢fodZ —J fo f ¢f0
0
L. ap L dx %o
APazf (——) dz=f G*—v*dz = f G? v* dx
0 dz/, 0 dz 0
L dP L
AP, :f (——) dz:f [pga+pf(1—a)]g sinf dz
0 dz/, 0

Yo dz
AP, = f [pga+pf(1—a)]gsin0—dx
0 dx

So, now consider pressure drop in an evaporator tube with saturated liquid at the inlet. The

total pressure drop will be equal to delta P F plus delta P a plus delta P z and delta P F is

the integral of the frictional pressure gradient and we substitute the expression and convert

from d z to d x. So, we get integral 0 tox 0 2 f f 0 by D G square v f phi f o square d z by

d x d x, delta P a is the integral of d P by d z a and we substitute the expression, so, we get

0 to x o integral of g square v star d x.



Then delta P z is the integral of d P by d z and after substituting the expression and
converting to d x we get 0 to x o rho g alpha plus rho f 1 minus alpha g sin thetad z by d

x d x. Now, we will make some assumptions, so that we can do the integration analytically.

(Refer Slide Time: 27:19)
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0 0
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So, we will assume f f o equal to constant over the length and v f g by v f is equal to
constant and d x by d z is equal to constant which is equal to x o upon L. So, most of the
quantities will come out of the integration and we are left with the integral of O to x o phi
f o square d x. And d z by d x is equal to L upon x o and then we define phi f o square bar

that is the average phi f o square as 1 upon x 0 0 to x o phi f o square d x.

So, then we get delta P fis equal to 2 f f o L by D G square v f phi f o square bar. Delta P
a is equal to g square integral 0 to x o v star d x and the integral of v star d x upon v f is
called r 2, so we get delta P a is equal to G square v f r 2. The expression for r 2 after
integrating v star we get this, x square upon alpha o v g by v f plus 1 minus x o whole
square upon 1 minus alpha o minus 1. You can do this integration as ¢ check whether you
get the same expression. Now, delta P z here we get g sin theta L upon x o integral O to x
o rho g alpha plus rho f 1 minus alpha d x.

(Refer Slide Time: 29:29)
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where



2ffo L

APy = G2v; ¢,
AP, = G* vy 1y
AP, = gsinf Lp

2fL

AP
D

szfd)—%o+62vfr2+gsin9 Lp

So, this expression within the integral is actually an average density the weighted average
density and we call at rho bar. This expression we are calling rho bar and then the integral
of rho bar over 0 to x o we are calling it as rho double bar. So, rho double bar is equal to
rho f minus rho f minus rho g upon x o integral of 0 to x o alpha d x. And then we call the
average void fraction as alpha bar equal to 1 upon x 0 0 to x o0 alpha d x. So, rho double
bar is equal to rho f minus in the bracket rho f minus rho g into alpha bar, so if we can

calculate this alpha bar then we can calculate delta P z.

So, finally, we have delta P is equal to delta P F plus delta P a plus delta P z where delta P
Fisequalto 2 ffo L by D G square v f phi f o square bar. Delta P a is equal to G square
v fr 2 and delta P z is equal to g sin theta L rho double bar and then by adding these 3
pressure drops we get the total pressure drop delta P. Now, if we can find phi f o square
bar r 2 and rho double bar then we should be able to find the pressure drop. So, with
separated flow model we will use the Martinelli and Nelson correlation and then evaluate

these pressure drops.
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We have seen some graph given by Martinelli and Nelson they had given some more
graphs they had plotted this phi f o square bar. So, here we have pressure on the x axis, on
the y axis we have phi f o square bar and for knowing the pressure and the exit quality we
can find phi f o square bar from this figure. The scales are logarithmic both scales are
logarithmic it is a log log plot ok. So, we can find phi f o square bar from this graph and

then substitute and get the frictional pressure drop delta P F.
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For delta P a we need r 2 Martinelli and Nelson had plated r 2 also, here pressure is on the
horizontal axis and r 2 is on the vertical axis and for different pressures. And different exit
qualities we can find r 2 and here also the scales are logarithmic it is a log log plot. Using
this we can find r 2 and substitute and get the acceleration pressure drop delta P a.

(Refer Slide Time: 33:33)

Quality % bywt
o Fressure ) 10 w
N e T T LF
B‘;(T‘; 1 l | ///ﬁ
100 (147) ] | il
?oc - HH— < - 08
: o0 000 1|1 I / /
M I/ l
§os l J. l ; ﬂ/ A /,/ ]
g et [ A/ A/
< [ asoo] > (
~
‘;?N P AT {11 04
03 (1500 || []} iy’ V|
L oy A4/ /|
% a0 [T 7 AT 171 2
0 (000) | IS M !
g r_m - » 1
RESCS 4 ! ;
000 00l o !
Mass quality x
Vi3

Now, to calculate delta P z we need rho double bar and then to calculate rho double bar
we need alpha bar the average void fraction over the length, but there is no graph which
directly gives alpha bar. So, we have to find alpha at different points at different locations
on the pipe from the inlet to the outlet and then integrate from inlet to the outlet from x

equal to 0 to x equal to x 0 we have to integrate.

So, as a simple approximation we can take the average quality which is the quality at the
midpoint and then find the void fraction for that quality. And then assume that alpha bar
is approximately equal to that quality that void fraction. Here the scale one scale is

logarithmic this the horizontal scale is logarithmic and the vertical scale for alpha is linear.
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Pressure drop for two-phase flow in an adiabatic pipe, assuming
v
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Pressure drop for two-phase flow in an adiabatic pipe, assuming

_ Yrg _ _
ffo = const., —= = const., x = const.
Vr
L dP 2ff 2ff
APF=J (—— f G2y @, dz = =262 f¢foj dz
0
2fsoL
AP, = D° G2y ¢,
L, dp
APaz.f (——) dz-f G2 (0)v'dz=0
0 dz/, 0

L dP L
APZ = ] (— E) dz = [pga + Pf(l - a)] gsmef dz
0 z

0
AP, = [pga +pr(1— a)] gsinf L

Now, let us consider pressure drop for two phase flow in an adiabatic pipe. So, we assume
f f 0 equal to constant, v f g by v f equal to constant and since it is an adiabatic pipe and
we are not considering higher order effects therefore, x will also be equal to constant. So,
everything comes out of the integral sign in the expression for delta P F and we are left

with only integral 0 to L d z and this is nothing but L.

So, therefore, we get delta P F equal to 2 f f o L by D G square v f phi f o square and phi f

0 square we can get from the graph given by Martinelli and Nelson. Delta P a because that



dPbydzaisO0, sodelta P awill also be equal to 0. Delta P z here also everything comes
out of the integral and we have only 0 to L integral d z which is equal to L therefore, delta
P z is equal to rho g alpha plus rho f 1 minus alpha g sin theta L. So, by finding alpha we
can find delta P z and alpha we can find from Martinelli and Nelson graphs.

(Refer Slide Time: 36:37)

AP = APy + AP, + AP,
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AP = APr + AP, + AP,
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AP, =0
AP, = [pga + pr(1 — a)]gsin6 L

_ 2ffol

AP G*vy ¢%, + [pga + pr(1 —a)] gsinf L

So, delta P is equal to delta P F plus delta P a plus delta P z, where delta P F is equal to 2
ffoL by D G square v f phi f o square. Delta P a is equal to 0 and delta P z is equal to rho
g alpha plus rho f 1 minus alpha g sin theta L.
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Phi f o square we can find from this Martinelli-Nelson graph here we have quality and phi
f o square for different pressures and there is a table also which gives the two phase
multiplier phi f o square for different pressures and different qualities, so using this we can
find delta P F. Now, for delta P z we need alpha the void fraction and that we can find
from this graph for any given pressure and given quality we can find alpha from this graph

and then we can find delta P z.
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Example-1: Water+steam @100 kPa, horizontal flow, D=2 mm,L=5cm
G = 100 kg/m®s, x(0)=0, g" = 50 kW/m? -
To find the pressure drop at the end of the pipe

Solution:
Properties of water+ steam @100 kPa

g = 2829  107° Pa.s, piy = 12,26 X 107 Pa.s, hyy = 2257.45 k] /kg
v = 1.043 x 1073 m® kg, v, = 1.6939 m* /kg, v, = 1.693 m* kg

dx  4q"

—= =0.443m7}, =0.0221
dz  GDhy, e

dv, v, 16782-16939 157 % 10 kepat
dP AP 1000 ke e

M = G2y |‘;iﬂ =347x103«1,1-M = 1,(1- M) 1



Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L =5 cm, G =
100 kg/m?s, x(0)=0, q"" = 50 kW/m?. To find the pressure drop at the end of the pipe

Solution: Properties of water+ steam @100 kPa
up = 2829 X 107¢ Pa.s, p, = 12.26 x 107¢ Pa.s, hs, = 2257.45k]/kg

vy = 1.043 X 107> m3/kg, v; = 1.6939 m*/kg, vy, = 1.693 m>/kg

dx _ 44 =0. 443 m™1 =0.0221
dz~ GDhsy m= X =1
dv, Av, 1.6782-1.6939
g g _ _ —5...3 -1 -1
~ = =-—157x1 m°k P
dP ~ AP 1000 5710 & Hd
dvg

M? = G2%x =347%x1073«1,1-M?~1, (1-M>)1x1

apr

Now, let us consider examples, in example 1 we have the same data as before except that
the length is 5 centimeter here. And the property is at the same as before we get d x by d z

and x o and then d v g by d P and then we find m square which is negligible.
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Res, = — =707 = Laminar flow
Hf
fr.o = 16/Re = 0.0226

9%, =52 =2

20l
D

AP, = 62y 1, = 00209 kPa

AP, =0

AP = 0.0613 + 0.0209 + 0 = 0.0822 kPa

APF:

G2vy 9%, = 00613 kPa

Res, = ll_ = 707 = Laminar flow
f

fr.o = 16/Re = 0.0226



2f0 L __
APy = G?vy ¢Z, = 0.0613 kPa

AP, = G* vg 1, = 0.0209 kPa
AP, = 0

AP = 0.0613 + 0.0209 + 0 = 0.0822 kPa

Refoisequal to 707, so it is laminar flow and f f o is equal to 0.0226. So, phi f 0 square
bar we get from the Martinelli and Nelson graph for the given pressure and outlet quality
we know the pressure and outlet quality. And then we get phi f o square approximately 5.2
from the graph and for the same given pressure and given outlet quality we get r 2 is

approximately equal to 2.

So, we substitute these values and get delta P f equal to 0.0613 kilo Pascal, and delta P a
is equal to 0.0209 kilo Pascal. Delta P z is equal to 0 because it is a horizontal pipe and the

total pressure drop delta P is calculated as 0.0822 kilo Pascal.
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m
G = 1000 kg/m?s, x(0)=0, x(L)=1% e
To find the pressure drop am the pipe

Solution:
Properties of water+ steam @10 MPa

fiy = 81.80 X 107 Pa.s, iy = 20.27 X 107° Pa.s,
v = 1453 x 10~*m*/kg, v, = 1803 x 107? m*/kg, vy, = 0.01658 m* /kg

dx 001 <
x, = 0.01, = = T =001m

dv, Ay, 0.01781-001803

—_ 9,31, 2=1p =1
T TX 108 =-220x10""m’kg~"'Pa

)

dv,
M? =G =1= 2201075« 1,1-M>*~1,(1-M¥)" » 1

Reg, = P =2.44 X 10° = Turbulent flow
fro = 0079 ReF = 3,55 x 107



Example-3: Water+steam @10 MPa, vertical upward flow, D=2 c¢cm, L=1 m, G =
1000 kg/m?s, x(0)=0, x(L)=1%. To find the pressure drop at the end of the pipe

Solution: Properties of water+ steam @10 MPa
py = 81.80 X 107 Pa.s, gy = 20.27 X 107° Pa.s,

vy = 1.453 X 107°m3/kg, v, = 1.803 x 107? m®/kg, v;, = 0.01658 m*/kg
— 0.01 dx_0.01_001 1
%o =001, —=——=001m

dv, Av, 0.01781-0.01803
dP ~ AP 1% 105

=—-220x%x10""m3kg~1Pa?
dvy
M? = G?x |d_P| =220%x107°«1,1-M?2~1, (1-M?)1t=~1

GD s
Res, = 'u— = 2.44 x 10° = Turbulent flow
f

fro = 0.079 Re;° = 3.55 x 1073

Now, we will not consider example 2 because there M square is not negligible and we will
have to do numerical integration by writing a code. So, we will consider example 3, here
the data is same as before except that the length is 1 meter and the outlet quality is 1
percent. So, x 0 is equal to 0.01 and d x by d z is equal to 0.01 per meter, then d v g by d
P is calculated M square is calculated and it is very small. So, therefore, 1 minus M square
can be taken has 1 R e f o is of the order of 10 raise to 5, so it is turbulent flow, and then

we use the Blasius correlation to calculate the friction factor f f o.
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¢, =13 =01 @~005

p=pr- (pf - pg)c'r =656 kg/m®

szo L YE
lef q’;}o =0.671kPa

APF:

AP, = G2y 1y = 0.145 kPa
AP, =gsin@ Lp =643 kPa
AP =0.0613 4+ 0.0209 + 6.43 = 6.51 kPa

_ xo
¢f, =13 1,=01 Jyladx=0
5=pf—@f0x°adx= 688 kg/m?3

2ffo L

AP, =
F D

G2v; 2, = 0.671 kPa

AP, = G* v 1, = 0.145 kPa
AP, = gsinf Lp = 6.74 kPa

AP = 0.0613 + 0.0209 + 6.74 = 6.82 kPa

And then we use the Martinelli and Nelson graphs and for the given pressure and outlet
quality we get phi f o square bar equal to 1.3 and r 2 equal to 0.1 and alpha bar is roughly
estimated as 0.05. So, this has been done by assuming that alpha bar is approximately

equal to the alpha corresponding to the quality at the midpoint of the pipe.

Rho double bar using this alpha bar it is calculated as 656 kg per meter cube which is only
slightly less than the density of the liquid rho f. So, after substituting these values we get
delta P F equal to 0.67 1 kilo Pascal delta P a is equal to 0.145 kilo Pascal and delta P z is

equal to 6.43 kilo Pascal. And then by adding these pressure drops we get the total pressure



drop delta P equal to 6.51 kilo Pascal. Now, consider the drift flux model and let us see

how two phase pressure drop can be calculated using the drift flux model.

(Refer Slide Time: 42:27)

Pressure Gradient by DFM
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If using drift flux model we calculate the frictional pressure gradient using the

homogeneous model and the expression for the acceleration pressure gradient. And



gravitational pressure gradient at the same as those for the separate at flow model, but

alpha here will be calculated by using the drift flux model.

So, alpha is equal to j g upon C 0 j plus V g j and then if we substitute for j and j g and
then we get this expression Gxvgupon C0 G x v gplus G 1 minusx v fplusVgj. And
then we differentiate this with respect to x keeping pressure constant; that means, v g and
v f are constant. So, we get deba alpha by deba x at constant pressure equal to alpha by x

minus alpha square COv gv fguponxvg.

V star expression is given here and the expression of M square is also given here these are
the same as goes for the separated flow model. And in case M square is much less than 1,
we can neglect it and we can take 1 minus M square is approximately equal to 1. So, here
we will assume that M square is negligible, so we get the total pressure gradientas 2 f T P
by D G square v bar plus G square d x by d z v star plus rho g alpha plus rho f 1 minus
alpha g sin theta ok.
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Pressure drop in an evaporator tube with saturated liquid at inlet, assuming

v d X
frp = const, g const, ——=const.= Io

vr dz
AP = AP + AP, + AP,
where
L(dp 2frpl X,V
Appzf (-—) dz:ﬁ—”azvf(u—”ﬁ)
o \ dz), D 2 vf
L(odp 1 (%
APasz (_E) dzszvfrz, where rzzu—fL v dx
a

Ly gp - pa=—r|"
APz=j (_E) dz=gsinf Lﬁ.ﬁ=ﬂf'(Pf‘Ps)“'“=x_j “
0 z U

0
_ el

AP D

X, U _
szf(1+70va)+szfrz+gsin9 Lp
Pressure drop in an evaporator tube with saturated liquid at inlet, assuming

dx X

frp = const vf—g—const —— = const.= -2
P TR Y odz L

AP = AP; + AP, + AP,

where
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) 2frpl XV
APsz (——) dzzjo)—Pszf<1+7°ﬂ>
0 F Uy

Lo dp 1 (%o
APaz.f (——) dz = G* vy r,, where rzz—f v* dx
0 Z/a VrJo

L, dp - - 1 (%
APzz.f (—d—> dz=gsin6Lﬁ,p‘zpf—(pf—pg)c?,c?zx—f adx
0 0v0

Z/ g

Xo U _
AP=—szf(1+—o%>+62vfr2+gsin9 Lp

So, now let us consider an evaporator tube in which the inlet is saturated liquid and we
will assume f T P equal to constant over the length of the pipe, v f g by v f is equal to
constant and d x by d x equal to constant equal to X 0 upon L. So, the total pressure gradient
delta P is equal to delta P F, plus delta P a, plus delta P z and here delta P F is the integral
of the pressure gradient due to friction.

And we get this expression which is the same as that for the homogeneous model 2 f T P
L by D Gsquarev f1plusxoby?2vfgbyvf. And for the acceleration pressure drop we
integrate the acceleration pressure gradient and get G square v f r 2 and where r 2 is equal
to 1 by v fO0toxovstardx integral. Delta P z is the integral of d P by d z and this is equal
to g sin theta L rho double bar and this is the same as what we got for the separated flow

model.

So, the total pressure drop deltaP isequalto 2 f TP L by D Gsquarevflplusxoby?2v
fgbyvfplus G square v fr 2 plus g sin theta rho double bar. So, now to calculate this
pressure drop we have to find r 2 for that we will have to find alpha and we have to find

rho double bar for that also we have to find alpha.
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Pressure drop for two-phase flow in an adiabatic pipe, assuming

_ Vrg _ _
frp =const, —=const, x=const

Ly dp 2 frpl
APF=f (—) dz =‘.‘7pr G*vf
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Lioap .
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AP = APy + AP, + AP,

Pressure drop for two-phase flow in an adiabatic pipe, assuming

_ Yrg _ _
frp = const., > = const., x = const.

L, ap 2frplL v
APF=j (——) dz=fT—PGva<1+xﬂ>
0 F Vr

L L
APa=j (——Z) dz=j G2 (0)v'dz=0
0 a 0

L, dp
AP, = f <_E> dz = [pga +pr(1 — a)] gsiné L
0 z

AP = APy + AP, + AP,

— 2](:TPL

AP
D

v
G?vp <1 + xf) + [pga+p;(1—a)] gsind L

So, now consider an adiabatic pipe and assume f T P equal to constant, v f g by v f equal
to constant and x will be constant in this case. So, delta P F will be equal to 2 f T P L by
D Gsquare v f1plusxvfgbyvf, delta P awill be 0 in this case and delta P z will be
equal to rho g alpha plus rho f 1 minus alpha g sin theta L. And by adding these 3 we get

delta P equal to 2 f fo L by D G square v f phi f o square, actually here we do not have to



use phi f o square. So, instead of this expression we will use this expression ok and plus

rho g alpha plus rho f 1 minus alpha g sin theta L.
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Example-1: Water+steam @100 kPa, horizontal flow, D=2 mm,L=5cm
G =100 kg/m®s, x(0)=0, g" = 50 kW/m?
To find the pressure drop at the end of the pipe

Solution:
Properties of water+ steam @100 kPa

g = 2829 X 107° Pa.s, piy = 12.26 X 107 Pa.s, hyy = 225745 kJ/kg
v = 1.043 x 107 m® kg v, = 1.6939 m /kg, v, = 1.693 m* kg

"

dx  4q
dz~ GDhy,

=0.443m7}, x, = 00221

dv, v, 16782-16939 157 % 105 ke pa-!
dP AP 1000 ke e

M? =Gy,

‘;l;" =347x 103 1,1-M2~1,(1- M) = 1

Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L =5 cm, G =
100 kg/m?s, x(0)=0, q"" = 50 kW/m?2. To find the pressure drop at the end of the pipe
Solution: Properties of water+ steam @100 kPa

up = 2829 x107° Pa.s, u, = 12.26 X 107° Pa.s, hy, = 2257.45 k] /kg

vr = 1.043 x 1073 m3/kg, v; = 1.6939 m*/kg, vf, = 1.693 m*/kg

A 0. 443 m™?! = 0.0221
dz  GDhsy, e o=
dv, Av, 1.6782—1.6939
~ = = —1.57 X 10~ 5m3ke~1pPa~1
P = Ap 1000 1.57 x 107°m°kg~"Pa

M? = G?%x,

‘%| =347x103«1,1-M?~1, (1-M?)1~1

Now, let us consider some numerical examples, example 1 is the same as before except
that the length of the pipe is 5 centimeter. And the property data is the same as before d x
by d z is equal to 0.443 per meter, X 0 is equal to 0.0221 and d v g by d P is of the order of
10 raise to minus 5 s i units and M square is of the order of 10 raise to minus 3, so we can

neglect it.
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X -X
—+—=[1=190.1x 107 Pa.s
g Hr

1
1

G
Rerp = f = 1052 = Laminar flow

f'pp = 16/R€ =0.01521
a, = 0.82

x_rz;U_g (1 o xn)z _
v (1-a,)

=

l} =527

AP = ZfT—PLGZUf (1 + x—”@) = 000793 kPa
D 2 v

AP, = G* ve 1y = 0055 kPa

AR, =0

AP = 000793 +0.055 + 0 = 0.0629 kPa

1 x 1-x
—=—+——=1=190.1x10"°Pa.s
I My

GD
Rerp = — = 1052 = Laminar flow

frp = 16/Re = 0.01521

ty = 0.82
T2=x_§v_9 (1_—%)2_1]=527
Ao Vf 1-a,)
2frplL XoV
apy = 27 G2y, (1 + —°ﬂ> = 0.00793 kPa
D 2 Uf

AP, = G* vy 1, = 0.055 kPa
AP, = 0

AP = 0.00793 + 0.055 + 0 = 0.0629 kPa

The average viscosity is calculated using McAdams relation and R e T P is 1052, so it is
laminar flow and f T P is equal to 0.01521. And alpha o is calculated using the outlet
quality and using the outlet quality we calculate C 0 and V g j and then after substituting

these values of C 0 and V g j we get alpha.



So, we get the value of alpha o as 0.82 and then we calculate r 2 by using this value of
alpha o and it turns out to be equal to 5.27. And then we substitute the values and get delta
P F equal to 0.00793 kilo Pascal delta, P a is equal to 0.055 kilo Pascal, delta P z is equal
to 0. So, adding these pressure drops we get the total pressure drop as 0.0629 kilo Pascal.
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m
G = 1000 kg/m?s, x(0)=0, x{L}=1%

—_— 1
To find the pressure drop at the end of the pipe

Solution:
Properties of water+ steam @10 MPa

iy =81.80 % 107 Pa.s,p, = 20.27 x 107 Pa.s,

am?

vp = 1453 x 107 il 1.803 x 1072 m? /kg, vgy = 0.01658 m® kg
dx 0,01 "
10:0.01, E:T:O(Jl m

dv, Av, 001781-0.01803 .

9. % _ - =9 3) g=1py-1
—x == =-220x%1 kg='P
dP AP 1x10° *107mkg™ e

dv, )
9 =220 105« L,1-M2~ 1, (1-M3)"~ 1

2.2
M*=Gx, T

Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m, G =
1000 kg/m?s, x(0)=0, x(L)=1%. To find the pressure drop at the end of the pipe

Solution: Properties of water+ steam @10 MPa

pr =81.80 x 107 Pa.s, pu, = 20.27 X 107° Pa.s,

3
vy = 1453 X 10‘31:—g, v, = 1.803 X 107? m3/kg, v;, = 0.01658 m?/kg
— 0.01 dx_0.01_001 1
X, =001, —=——=001m

dv, Av, 0.01781-0.01803
dP =~ AP 1x 105

= —-2.20x10""m3kg~1Pa?

dv,
M? = G?x, d—}f| =220x107°«K1,1-M?=1, (1-MH)1~1

Now, as before we will keep example 2, because M square is not negligible and then we

have to do numerical integration by writing a code. So, we will consider example 3, in this



the length is 1 meter and the outlet quality is 1 percent, the other data at the same as an
example 3 we have considered before. The property data as the same outlet quality is 1
percentand d x by d z is 0.01 per meter d v g by d P is calculated and M square is calculated
which is of the order of 10 raise to minus 5, so it is negligible, so 1 minus M square can

be taken as 1.
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1 = =
—=—4+—=2[=794x107% Pa.s
[ Dﬂf

Repp = 7 = 2.52 x 10° = Turbulent flow
frp = 0.079 Rep®> =353 x 1073

2
a,=00908, 1= [*_OVg_I_(l %o)? 1] 0.0916
tovp (1=t
fTP

Pp=——G 1 0512k
AF (+2‘Uf> 12 kPa

D
AP, = G* n = 0.133 kPa

1
d:—f adx =10.0476
% Jo

p=ps- (pf = pg) @ = 658 kg/m?

AP, = gsinf Lp =649 kPa

AP =0.512+0.133 + 6.49 = 7.135 kPa

X 1—x

1
— = [1=79.4x%x10"%Pa.s
A ug K

GD
Rerp = — = 2.52 x 10° = Turbulent flow

frp = 0.079 Re; 3?5 = 3.53 x 1073

2 _ 2
@, = 0.0908, 1= |l Ux) 1] = 0.0916

Qo Vf (1-ap)

ZfTPL Xo fg
APF = D G f (1 + E‘U_f = 0.512 kPa

AP, = G* vp 1, = 0.133 kPa
Xo

1
=— adx = 0.0476
X0 Jy

QI

p=ps—(pr — pg) @ = 658kg/m?

AP, = gsinf Lp = 6.49 kPa



AP = 0.512 + 0.133 + 6.49 = 7.135 kPa

Then mu bar is calculated and R e T P is calculated and it is turbulent flow, so using Blasius
correlation we get the friction factor and alpha o we get from the expression for the drift
flux model. We get the C 0 and V g j and substitute and then get alpha o corresponding to
x 0 which is 0.0908. And then we substitute it in order to and we get r 2 equal to 0.0916.

Then after substituting the values we get delta P F equal to 0.512 kilo Pascal, delta P a is
equal to 0.133 kilo Pascal, and alpha bar is the average alpha and that is equal to 0.0476.
And this we have taken as the void fraction corresponding to the average quality, average
quality is taken as the quality at the midpoint which is half of the outlet quality. And
corresponding to that the void fraction alpha has been calculated using the drift flux model

and we get alpha bar equal to 0.0476.

Then we substitute this alpha bar and get rho double bar equal to 658 kg per meter cube
and then by substituting it we get delta P z equal to 6.49 kilo Pascal, so the total pressure
drop by adding these pressure drops we get 7.135 kilo Pascal. So, as | have mentioned
before in the earlier numerical examples that these examples are for the purpose of
illustration only, please check the calculations there maybe errors in the calculations, so
please do your own calculations and check.

But, the methodology | hope is clear and using this methodology you should be able to
calculate pressure drop with homogeneous model, or separated flow model or drift flux
model whichever model you choose. And for a evaporator tube, or condenser tube or
adiabatic two phase flow are all these 3 types of cases you should be able to calculate
pressure drop.

If M square is negligible and if you make simplifying assumptions, then the expressions
which we have derived by analytical integration can be used and then you can calculate
pressure drops by hand. Otherwise if the simplifying assumptions cannot be made then

you will have to do numerical integration by writing a code.

Thank you.



