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Lecture - 07 

Estimation of pressure drop in two phase flow 

 

We meet once again for Two Phase Flow with Phase Change in Conventional and 

Miniature Channels. We have discussed two phase flow models and how to calculate 

pressure gradients for two phase flow using different models. Now, today we will discuss 

how to find the pressure drop in two phase flow, pressure drop in two phase flow. So, first 

let us consider the homogeneous model and find the pressure drop using the homogeneous 

model. 
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Pressure Gradient by HEM 
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The pressure gradient by homogeneous model is given by this expression 1 upon 1 minus 

M square 2 f upon D G square v bar plus G square v f g d x by d z plus g sin theta upon v 

bar. And here M square represents the compressibility of the vapor phase and it is equal to 

G square x absolute value of d v g by d P. And if M square is very small then we can 

neglect it and then in that case the denominator becomes equal to 1.  

And then the pressure gradient becomes simply the quantity the expression in the bracket. 

And the first term is identified as the pressure gradient due to friction, the second term is 

the pressure gradient due to acceleration and the third term is pressure gradient due to 

gravity this we have done before. Now, from pressure gradient how do we find the pressure 

drop?. 

The pressure drop is the decrease in pressure from one point to another point, usually in a 

pipe we calculate the pressure drop in the pipe that is from the inlet to the outlet of the 

pipe. Pressure gradient is calculated at a point, in a pipe pressure gradient we can calculate 

at the inlet or at the outlet or at any point in between. In the numerical examples we have 

calculated pressure gradient at the midpoint of the pipe. 

But, we could have calculated at any other point and we in general we would have got 

different values of pressure gradient at different points. So, to calculate the pressure drop 

we will have to integrate the pressure gradient from the inlet to the outlet of the pipe. And 

since in general it varies from point to point the integral will not be simply the pressure 

gradient multiplied by the length. 
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Pressure drop in an evaporator tube with saturated liquid at inlet 

Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  
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So, let us see how to do this integral. Consider pressure drop in an evaporator tube and 

assume that at the inlet it is saturated liquid, at the outlet in general it will be a two phase 

mixture. So, the pressure drop will be equal to the pressure drop due to friction, plus 

pressure drop due to acceleration, plus pressure drop due to gravity. And here the pressure 



drop due to friction delta P F is the integral of the pressure gradient due to friction with d 

P by d z we put a minus sign.  

And then we have we integrate and what we get is the decrease in the pressure we; usually 

calculate the decrease in pressure rather than increase in pressure. Because, usually there 

is decrease in pressure due to friction and due to gravity also and many times due to 

acceleration also there is decrease in pressure. So, delta P F is integral 0 to L minus d P by 

d z F d z and then we substitute the expression for the pressure gradient.  

And then v bar is equal to v f plus x v z x v f g v f and x v f g we will be assuming to be 

constant, but x is not constant in an evaporator tube it changes from point to point at the 

inlet x is equal to 0. At the outlet we have the maximum value and in between there are 

intermediate values, so we will have to do an integral. So, delta P F is equal to integral 0 

to L 2 f T P upon D G square v f 1 plus x v f g upon v f d z, here we have taken v f common 

from the quantity in the brackets, so that within brackets the quantities are non 

dimensional.  

Then we can convert from d z to d x in the integral and therefore, instead of d z we write 

d z by d x into d x. And we will see shortly why we have done this because it will be easier 

to do the integral with respect to x. Now, d P by d z a the pressure gradient due to 

acceleration is substituted in the expression for delta P a and we get integral 0 to L G 

square v f g d x by d z d z.  

Here also we want to convert from the integral with respect to x, so we cancel d z d z and 

then we get G square v f v f g by v f d x integral 0 to x naught. We will see later why we 

have written instead of v f g we have written v f into v f g by v f. Then the pressure drop 

due to gravity is integral of the pressure gradient due to gravity and it is equal to integral 

0 to L G sin theta upon v bar dz.  

And then we substitute for v bar v f plus x v f g and we take v f common, so we get this 

integral and then we convert from d z to d x, So, finally, we get integral 0 to x naught g 

sin theta upon v f, in the bracket 1 plus x v f g by v f d z by d x d x. Here x naught is the 

quality at the outlet at z equal to L x is equal to x naught. 
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Assumptions  

𝑓𝑇𝑃 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   

𝑑𝑥

𝑑𝑧
= const. =

𝑥𝑜
𝐿

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝑑𝑧

𝑑𝑥
∫ (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
)𝑑𝑥 

𝑥𝑜

0

=
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝐿

𝑥𝑜
∫ (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
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𝑥𝑜

0

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃
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𝐿
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2
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𝑣𝑓
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2𝑓𝑇𝑃𝐿

𝐷
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𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = 𝐺2𝑣𝑓
𝑣𝑓𝑔

𝑣𝑓
∫ 𝑑𝑥 = 𝐺2𝑣𝑓

𝑣𝑓𝑔
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𝑥𝑜 = 𝐺2𝑣𝑓 𝑟1

𝑥𝑜

0

 

Δ𝑃𝑧 =
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝑑𝑧

𝑑𝑥
∫

𝑑𝑥
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𝑣𝑓𝑔
𝑣𝑓

)

𝑥𝑜

0

=
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𝑣𝑓𝑔
𝑣𝑓
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𝐿

𝑥𝑜
∫

𝑑𝑥
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𝑣𝑓𝑔
𝑣𝑓

)

𝑥𝑜

0

 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
)
𝑣𝑓

𝑣𝑓𝑔
=
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Now, in order to do this integral we will have to make some assumptions, if we do not 

make any assumptions then we will have to do numerical integration. Also we have 

assumed that m square is much less than 1. If m square is not negligible then we will have 

to keep m square and then all these pressure gradients will have to be multiplied by 1 upon 

1 minus m square and then we will have to do numerical integration.  



Because m square contains x and then we cannot take it out of the integral sign and 

therefore, we will have to do numerical integration. Here we want to solve it analytically 

and get a closed from expression, so therefore, we are considering only those cases where 

m square is much less than 1 and further we are making some assumptions. 

So, we assume that f T P is constant over the length and also v f g by v f is constant over 

the length. So, unless the pressure is low the change in pressure or the pressure drop will 

not affect the properties very much and therefore, v f g by v f will be nearly constant. And 

we also assume that d x by d z is equal to constant and it is equal to x naught upon L this 

comes from energy balance by assuming that the heat flux is uniform. And then by doing 

a simple energy balance we get d x by d z equal to constant, so therefore, the quality varies 

linearly over length and we get d x by d z is equal to x o upon L. 

So, we substitute in the expressions d z by d x will be equal to the reciprocal of d z d x by 

d z and it will be L upon x o. So, after substituting we get delta PF is equal to d z by d x 

will come out of the integral sign because it is constant and then we have integral of 0 to 

x naught 1 plus x v f g by v f d x. And after integration we get 2 f T P L upon D G square 

v f bracket 1 plus x o by 2 v f g by v f, the pressure drop due to acceleration is G square v 

f v f g by v f 0 to x o d x integral. 

So, the integral will be just x o and we get this expression G square v f v f g by v f x o and 

v f g by v f x o is denoted as r 1 ok. So, we can write delta P a as G square v f r 1, later we 

will see that when we use the separated flow model we get another expression which is 

called r 2 and therefore, here this v f g by v f x o is called r 1. The pressure drop due to 

gravity involves the integral of 0 to x o d x upon 1 plus x v f g by v f and when we integrate 

we get a logarithmic expression ok. 
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Assumptions  

𝑓𝑇𝑃 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   

𝑑𝑥

𝑑𝑧
= const. =

𝑥𝑜
𝐿

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝑑𝑧

𝑑𝑥
∫ (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
)𝑑𝑥 

𝑥𝑜

0

=
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝐿

𝑥𝑜
∫ (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
)𝑑𝑥 

𝑥𝑜

0

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝐿

𝑥𝑜
(1 +

𝑥𝑜
2

2

𝑣𝑓𝑔

𝑣𝑓
) =

2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = 𝐺2𝑣𝑓
𝑣𝑓𝑔

𝑣𝑓
∫ 𝑑𝑥 = 𝐺2𝑣𝑓

𝑣𝑓𝑔

𝑣𝑓
𝑥𝑜 = 𝐺2𝑣𝑓 𝑟1

𝑥𝑜

0

 

Δ𝑃𝑧 =
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝑑𝑧

𝑑𝑥
∫

𝑑𝑥

(1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝑥𝑜

0

=
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝐿

𝑥𝑜
∫

𝑑𝑥

(1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝑥𝑜

0

 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
)
𝑣𝑓

𝑣𝑓𝑔
=
𝑔 sin 𝜃  𝐿

𝑣𝑓𝑔 𝑥𝑜
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
) 

 

So, finally, we get the pressure drop delta P equal to delta P F plus delta P a plus delta P 

z. And delta P F is equal to 2 f T P L upon D G square v f bracket 1 plus x o by 2 v f g by 

v f, delta P a is equal to G square v f v f g by v f x o. And delta P z is equal to g sin theta 



L upon v f g x o ln of 1 plus x o v f g by v f and by adding these 3 terms we get the total 

pressure drop, so this was for an evaporator tube. 
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Pressure drop in a condenser tube with saturated liquid at outlet, assuming  

𝑓𝑇𝑃 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   

𝑑𝑥

𝑑𝑧
= const. = −

𝑥𝑖
𝐿

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝑑𝑧

𝑑𝑥
∫ (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
)𝑑𝑥 

0

𝑥𝑖

= −
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝐿

𝑥𝑖
∫ (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
)𝑑𝑥 

0

𝑥𝑖

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓
𝐿

𝑥𝑖
(1 +

𝑥𝑖
2

2

𝑣𝑓𝑔

𝑣𝑓
) =

2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑖
2

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = 𝐺2𝑣𝑓
𝑣𝑓𝑔

𝑣𝑓
∫ 𝑑𝑥 = −𝐺2𝑣𝑓

𝑣𝑓𝑔

𝑣𝑓
𝑥𝑖 = −𝐺2𝑣𝑓  𝑟1

0

𝑥𝑖

 

Δ𝑃𝑧 =
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝑑𝑧

𝑑𝑥
∫

𝑑𝑥

(1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

0

𝑥𝑖

= −
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

𝐿

𝑥𝑖
∫

𝑑𝑥

(1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)

0

𝑥𝑖

 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓
ln (1 + 𝑥𝑖

𝑣𝑓𝑔

𝑣𝑓
)
𝑣𝑓

𝑣𝑓𝑔
=
𝑔 sin 𝜃  𝐿

𝑣𝑓𝑔 𝑥𝑖
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
) 

 

Now, later consider a condenser tube, in the condenser tube let us consider saturated liquid 

at the outlet, in the evaporator we considered saturated liquid at the inlet. Here let us 



consider that after condensing we get saturated liquid at the outlet and at the inlet it is a 

two phase mixture with a certain quality let us inlet quality x i. So, again we assume f T P 

equal to constant and v f g by v f equal to constant, d x by d z will be constant by simple 

energy balance. And it will be equal to minus x i by L, m square we have already assumed 

to be negligible.  

So, now we can do the integration and in the frictional pressure drop we get the integral of 

x i to 0, 1 plus x v f g by v f d x. And after integration we get the final expression as 2 f T 

P L by D G square v f, 1 plus x i by 2 v f g by v f. The pressure gradient due to acceleration 

is also similar to the case of evaporator except that in this case the quality gradient is 

negative.  

So, therefore, we get a minus sign and we get G square v f v f g by v f x i, the pressure 

gradient pressure drop due to gravity is also similar to that for the case of evaporator. And 

we get the integral of x i to 0 d x upon 1 plus x v f g by v f and after integration we get a 

logarithmic expression.  
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Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑖
2

𝑣𝑓𝑔

𝑣𝑓
) 



Δ𝑃𝑎 = −𝐺2𝑣𝑓
𝑣𝑓𝑔

𝑣𝑓
𝑥𝑜 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓𝑔 𝑥𝑖
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑖
2

𝑣𝑓𝑔

𝑣𝑓
) − 𝐺2𝑣𝑓

𝑣𝑓𝑔

𝑣𝑓
𝑥𝑜 +

𝑔 sin 𝜃  𝐿

𝑣𝑓𝑔 𝑥𝑖
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
) 

 

So, finally, we get the pressure drop as delta P F plus delta P a plus delta P z, where delta 

P F is equal to 2 f T P L by D G square v f 1 plus x i by 2 v f g by v f. Delta P a is equal to 

G square v f v f g by v f x i this should be x I, here also x i and here also x i ok. So, the 

pressure drop due to acceleration is negative in this case; that means, there is pressure rise 

due to acceleration ok.  

Due to friction there is always pressure drop, because friction always opposes motion 

relative motion and due to acceleration in this case; in this case it is actually deceleration 

rather than acceleration. And therefore, there is pressure rise due to that, due to gravity 

whether there is pressure rise or pressure drop or whether delta P z is 0 it will depend on 

whether the tube is horizontal or vertical, vertically upward flow, downward flow or 

inclined upward, or inclined downward ok, it will depend on theta. So, the total pressure 

drop we can get by adding all these terms this is also x i ok. 
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Pressure drop for two-phase flow in an adiabatic pipe, assuming   

𝑓𝑇𝑃 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   𝑥 = const. 

Δ𝑃𝐹 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝐹
𝑑𝑧 =

𝐿

0

∫
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔

𝑣𝑓
)𝑑𝑧

𝐿

0

=
2𝑓𝑇𝑃
𝐷

𝐺2𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔

𝑣𝑓
)∫ 𝑑𝑧

𝐿

0

 

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑎
𝑑𝑧

𝐿

0

= ∫ 𝐺2𝑣𝑓𝑔(0)𝑑𝑧
𝐿

0

= 0 

Δ𝑃𝑧 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑧
𝑑𝑧 =

𝐿

0

∫
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)
𝑑𝑧

𝐿

0

=
𝑔 sin 𝜃

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)
∫ 𝑑𝑧

𝐿

0

 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)
 

So, we have considered pressure drop in a evaporator tube and a condenser tube, now let 

us consider two phase flow in an adiabatic pipe. In an adiabatic pipe there will be no 

change in quality because we are neither heating it or cooling it; there can we change in 

quality due to higher order effects which we are not considering right now. So, here we 

will assume that the quality is constant and then we also assume f T P equal to constant 

and v f g by v f equal to constant.  

So, the frictional pressure drop is equal to the integral of the pressure frictional pressure 

gradient. And here we see that everything comes out of the integral sign and we are left 

with only the integral of 0 to L d z which is nothing but the length of the tube L. So, we 

get delta P F as 2 f T P L by D G square v f in the bracket 1 plus x v f g by v f.  

The acceleration pressure drop will be equal to 0, because the acceleration pressure 

gradient is 0 there is no acceleration, no deceleration, so delta P a is equal to 0. The 

gravitational pressure drop is equal to the integral of the gravitational pressure gradient 

and everything comes out of the integral sign and we have only 0 to L integral d z which 

is equal to L. So, we get delta P z equal to G sin theta L upon v f 1 plus x v f g by v f. 
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Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = 0 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)
 

Δ𝑃 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) +

𝑔 sin 𝜃  𝐿

𝑣𝑓 (1 + 𝑥
𝑣𝑓𝑔
𝑣𝑓

)
 

 

So, we have delta P equal to delta P F plus delta P a plus delta P z and delta P F is equal 

to 2 f T P L by D G square v f 1 plus x v f g by v f delta P a is equal to 0. And delta P z is 

equal to g sin theta L upon v f 1 plus x v f g by v f and by adding all these 3 we get the 

total pressure drop. 
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Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 5 cm, 𝐺 =
100 kg/m2s, x(0)=0, 𝑞′′ = 50 kW/m2. To find the pressure drop at the end of the pipe. 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 Pa. s,  𝜇𝑔 = 12.26 × 10−6 Pa. s,  ℎ𝑓𝑔 = 2257.45 kJ/kg  

𝑣𝑓 = 1.043 × 10−3 m3/kg,  𝑣𝑔 = 1.6939 m3/kg, 𝑣𝑓𝑔 = 1.693 m3/kg 

𝑑𝑥

𝑑𝑧
=

4𝑞′′

𝐺𝐷ℎ𝑓𝑔
= 0.  443 m−1,     𝑥𝑜 = 0.0221 

𝑑𝑣𝑔

𝑑𝑃
≈
Δ𝑣𝑔

Δ𝑃
=
1.6782−1.6939

1000
= −1.57 × 10−5m3kg−1Pa−1 

𝑀2 = 𝐺2𝑥𝑜 |
𝑑𝑣𝑔

𝑑𝑃
| = 3.47 × 10−3 ≪ 1,  1 −M2 ≈ 1,  (1 − M2)−1 ≈ 1 

 

Now, let us consider some numerical examples, so example 1 is the same as the example 

1 considered previously for calculating pressure gradients using different models. So, now, 

we will consider the same example for calculating pressure drop, here we have taken the 

length of the tube as 5 centimeter earlier it was 10 centimeter.  

So, the earlier we were calculating the pressure gradient at z equal to 5 centimeter. Now, 

we have taken the length as 5 centimeter and we want to calculate the pressure drop from 

the inlet to the outlet of the pipe the other data is the same ok. So, the properties are same 



as before and d x by d z is also the same as before the outlet quality is 0.0221 and d v g by 

d P is the same as before. So, M square is negligible and 1 minus M square is nearly equal 

to 1, so we can use the expressions which we have discussed which we have derived. 
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1

𝜇̅
=

𝑥

𝜇𝑔
+
1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 190.1 × 10−6 𝑃𝑎. 𝑠 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 1052 ⇒ Laminar flow 

𝑓𝑇𝑃 = 16 𝑅𝑒⁄ = 0.01521 

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) = 0.00793 𝑘𝑃𝑎 

Δ𝑃𝑎 = 𝐺2𝑣𝑓
𝑣𝑓𝑔

𝑣𝑓
𝑥𝑜 = 0.374 𝑘𝑃𝑎 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓𝑔𝑥𝑜
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
) = 0 𝑘𝑃𝑎 

Δ𝑃 = 0.00793 + 0.374 + 0 = 0.382 kPa 

 

Now, the mean viscosity is calculated using McAdams relation and we get R e T P equal 

to 1052 and it is laminar flow. So, we use the laminar flow friction factor which is 0.01521 

and when substitute in the expression and we get delta P F equal to 0.00793 kilo Pascal. 



Delta P a, we substitute values in the expression and we get 0.374 kilo Pascal, and delta P 

z will be 0 because it is a horizontal pipe in this case. So, by adding these pressure drops 

we get the total pressure drop as 0.382 kilo Pascal. 

Now, example 2, you remember that in example 2 M square was not negligible the effect 

of the compressibility of the vapor phase was not negligible, so therefore, we will not 

considered that example. If we take that example then we cannot neglect M square and 

then there will be 1 minus M square in the denominator for every pressure drop term and 

then we will have to integrate numerically. So, we will have to write a code and then do 

numerical integration, so it cannot be solved by hand. So, therefore, we will not consider 

example 2, but we will consider an example 3. 
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m, 𝐺 =
1000 kg/m2s, x(0)=0, x(L)=1%. To find the pressure drop at the end of the pipe 

Solution: Properties of water+ steam @10 MPa 

𝜇𝑓 = 81.80 × 10−6 Pa. s,  𝜇𝑔 = 20.27 × 10−6 Pa. s,   

𝑣𝑓 = 1.453 × 10−3
m3

kg
,  𝑣𝑔 = 1.803 × 10−2 m3/kg, 𝑣𝑓𝑔 = 0.01658 m3/kg 

𝑥𝑜 = 0.01,   
𝑑𝑥

𝑑𝑧
=
0.01

1
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈
Δ𝑣𝑔

Δ𝑃
=
0.01781−0.01803

1 × 105
= −2.20 × 10−9𝑚3𝑘𝑔−1𝑃𝑎−1 



𝑀2 = 𝐺2𝑥𝑜 |
𝑑𝑣𝑔

𝑑𝑃
| = 2.20 × 10−5 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

 

So, in example 3, all the data is as before except that the length of the pipe here is 1 meter 

and the outlet quality is 1 percent. The properties are same as before outlet quality x o is 

equal to 0.01 and d x by d z is equal to 0.01 per meter. So, d v g by d P is calculated and 

then M square is calculated which is much less than 1. So, therefore, 1 minus M square is 

approximately equal to 1 and we can use the expressions derived for the pressure drops.  
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1

𝜇̅
=

𝑥

𝜇𝑔
+
1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 79.4 × 10−6 𝑃𝑎. 𝑠 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 2.52 × 105 ⇒ Turbulent flow 

𝑓𝑇𝑃 = 0.079 𝑅𝑒𝑇𝑃
−0.25 = 3.53 × 10−3 

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) = 0.512 𝑘𝑃𝑎 

Δ𝑃𝑎 = 𝐺2𝑣𝑓
𝑣𝑓𝑔

𝑣𝑓
𝑥𝑜 = 0.165 𝑘𝑃𝑎 

Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑣𝑓𝑔𝑥𝑜
ln (1 + 𝑥𝑜

𝑣𝑓𝑔

𝑣𝑓
) = 6.39 𝑘𝑃𝑎 



Δ𝑃 = 0.512 + 0.165 + 6.39 = 7.067 kPa 

 

The mean viscosity is calculated and then the Reynolds number for the two phase flow is 

calculated which is 2.52 into 10 raise to 5. So, therefore, it is turbulent flow and then we 

use the Blasius relation to calculate the friction factor for turbulent flow in smooth pipe 

and we get 3.53 into 10 raise to minus 3. And then we substitute the values in the 

expression for delta P F and we get 0.512 kilo Pascal.  

In delta P a also we substitute the values and get 0.165 kilo Pascal and delta P z after 

substituting the values and calculating we get 6.39 kilo Pascal. Then after adding these 

pressure drops we get the total pressure drop as 7.067 kilo Pascal ok. Now let us see how 

to calculate two phase pressure drop using the separated flow model. 
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Pressure Gradient by SFM 

−
𝑑𝑃

𝑑𝑧
=

1

(1 − 𝑀2)
{
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2 + 𝐺2
𝑑𝑥

𝑑𝑧
𝑣∗ + [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)] 𝑔 sin 𝜃} 

where  

𝑀2 = 𝐺2 |
𝑥2

𝛼

𝑑𝑣𝑔

𝑑𝑃
+ (

𝜕𝛼

𝜕𝑃
)
𝑥

 {
(1 − 𝑥)2𝑣𝑓
(1 − 𝛼)2

−
𝑥2𝑣𝑔

𝛼2
}| 



𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−
2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)
𝑃
{
(1 − 𝑥)2𝑣𝑓
(1 − 𝛼)2

−
𝑥2𝑣𝑔

𝛼2
} 

If 𝑀2 ≪ 1 then 1 −𝑀2 ≈ 1 and   

−
𝑑𝑃

𝑑𝑧
=
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2 + 𝐺2
𝑑𝑥

𝑑𝑧
𝑣∗ + [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃 

            = −(
𝑑𝑃

𝑑𝑧
)
𝐹
−(

𝑑𝑃

𝑑𝑧
)
𝑎
−(

𝑑𝑃

𝑑𝑧
)
𝑧
 

 

So, pressure gradient by separated flow model is given by this expression minus d P by d 

z is equal to 1 upon 1 minus M square in the bracket 2 f f o by D G square v f phi f o square 

plus G square d x by d z v star plus rho g alpha plus rho f 1 minus alpha g sin theta. Here, 

M square is an expression which represents the compressibility of the vapor phase and v 

star is a short hand for an expression which is given here.  

So, if M square is much less than 1 then again we can consider 1 minus M square to be 

approximately equal to 1. And in case m square is not negligible then we have to retain 1 

minus M square in the denominator and in that case we will have to do numerical 

integration. And we cannot derive any simple expressions, so we will consider only the 

case where M square is negligible.  

Now, by neglecting M square we get minus d P by d z is equal to this expression which 

was in the bracket. And we identify the first term as the pressure gradient due to friction; 

the second term is pressure gradient due to acceleration. And the third term is the pressure 

gradient due to gravity and by integrating these pressure gradients we will get the pressure 

drops. 
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Pressure drop in an evaporator tube with saturated liquid at inlet 

Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  

Δ𝑃𝐹 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝐹
𝑑𝑧 =

𝐿

0

∫
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2 𝑑𝑧
𝐿

0

= ∫
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓  𝜙𝑓𝑜

2
𝑑𝑧

𝑑𝑥
𝑑𝑥

𝑥𝑜

0

 

Δ𝑃𝑎 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑎
𝑑𝑧

𝐿

0

= ∫ 𝐺2
𝑑𝑥

𝑑𝑧
𝑣∗ 𝑑𝑧

𝐿

0

=  ∫ 𝐺2 𝑣∗ 𝑑𝑥
𝑥𝑜

0

 

Δ𝑃𝑧 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑧
𝑑𝑧 =

𝐿

0

∫ [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃 𝑑𝑧
𝐿

0

 

Δ𝑃𝑧 = ∫ [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃
𝑑𝑧

𝑑𝑥
𝑑𝑥

𝑥𝑜

0

 

 

So, now consider pressure drop in an evaporator tube with saturated liquid at the inlet. The 

total pressure drop will be equal to delta P F plus delta P a plus delta P z and delta P F is 

the integral of the frictional pressure gradient and we substitute the expression and convert 

from d z to d x. So, we get integral 0 to x o 2 f f o by D G square v f phi f o square d z by 

d x d x, delta P a is the integral of d P by d z a and we substitute the expression, so, we get 

0 to x o integral of g square v star d x.  



Then delta P z is the integral of d P by d z and after substituting the expression and 

converting to d x we get 0 to x o rho g alpha plus rho f 1 minus alpha g sin theta d z by d 

x d x. Now, we will make some assumptions, so that we can do the integration analytically. 
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Assumptions  

𝑓𝑓𝑜 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   

𝑑𝑥

𝑑𝑧
= const. =

𝑥𝑜
𝐿

 

Δ𝑃𝐹 =
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 

𝑑𝑧

𝑑𝑥
∫ 𝜙𝑓𝑜

2  𝑑𝑥
𝑥𝑜

0

=
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓

𝐿

𝑥𝑜
∫ 𝜙𝑓𝑜

2  𝑑𝑥
𝑥𝑜

0

 

Δ𝑃𝐹 =
2𝑓𝑓𝑜 𝐿

𝐷
𝐺2𝑣𝑓𝜙𝑓𝑜

2̅̅ ̅̅ ̅     where 𝜙𝑓𝑜
2̅̅ ̅̅ ̅ =

1

𝑥𝑜
∫ 𝜙𝑓𝑜

2  𝑑𝑥
𝑥𝑜

0

 

Δ𝑃𝑎 = 𝐺2∫ 𝑣∗ 𝑑𝑥 =
𝑥𝑜

0

𝐺2 𝑣𝑓 𝑟2 ,   where  𝑟2 =
1

𝑣𝑓
∫ 𝑣∗ 𝑑𝑥

𝑥𝑜

0

 

𝑟2 =
1

𝑣𝑓
∫ [{

2𝑥𝑣𝑔

𝛼
−
2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)
𝑃
{
(1 − 𝑥)2𝑣𝑓
(1 − 𝛼)2

−
𝑥2𝑣𝑔

𝛼2
}]  𝑑𝑥

𝑥𝑜

0

 

𝑟2 = [
𝑥𝑜
2

𝛼𝑜

𝑣𝑔

𝑣𝑓
+
(1 − 𝑥𝑜)

2

(1 − 𝛼𝑜)
− 1] 

Δ𝑃𝑧 = 𝑔 sin 𝜃
𝑑𝑧

𝑑𝑥
∫ [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑑𝑥

𝑥𝑜

0

=
𝑔 sin 𝜃  𝐿

𝑥𝑜
∫ [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑑𝑥

𝑥𝑜

0

 

 



So, we will assume f f o equal to constant over the length and v f g by v f is equal to 

constant and d x by d z is equal to constant which is equal to x o upon L. So, most of the 

quantities will come out of the integration and we are left with the integral of 0 to x o phi 

f o square d x. And d z by d x is equal to L upon x o and then we define phi f o square bar 

that is the average phi f o square as 1 upon x o 0 to x o phi f o square d x.  

So, then we get delta P f is equal to 2 f f o L by D G square v f phi f o square bar. Delta P 

a is equal to g square integral 0 to x o v star d x and the integral of v star d x upon v f is 

called r 2, so we get delta P a is equal to G square v f r 2. The expression for r 2 after 

integrating v star we get this, x square upon alpha o v g by v f plus 1 minus x o whole 

square upon 1 minus alpha o minus 1. You can do this integration as c check whether you 

get the same expression. Now, delta P z here we get g sin theta L upon x o integral 0 to x 

o rho g alpha plus rho f 1 minus alpha d x.  
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Δ𝑃𝑧 =
𝑔 sin 𝜃  𝐿

𝑥𝑜
∫ 𝜌̅𝑑𝑥 

𝑥𝑜

0

= 𝑔 sin 𝜃  𝐿 𝜌̿,  where 𝜌̿ =
1

𝑥𝑜
∫ [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑑𝑥

𝑥𝑜

0

 

𝜌̿ = 𝜌𝑓 −
(𝜌𝑓 − 𝜌𝑔)

𝑥𝑜
∫ 𝛼 𝑑𝑥

𝑥𝑜

0

= 𝜌𝑓 − (𝜌𝑓 − 𝜌𝑔) 𝛼̅,  where 𝛼̅ =
1

𝑥𝑜
∫ 𝛼 𝑑𝑥

𝑥𝑜

0

 

Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  



Δ𝑃𝐹 =
2𝑓𝑓𝑜 𝐿

𝐷
𝐺2𝑣𝑓  𝜙𝑓𝑜

2̅̅ ̅̅ ̅ 

Δ𝑃𝑎 = 𝐺2 𝑣𝑓 𝑟2 

Δ𝑃𝑧 = 𝑔 sin 𝜃  𝐿 𝜌̿ 

Δ𝑃 =
2𝑓𝑓𝑜 𝐿

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2̅̅ ̅̅ ̅ + 𝐺2 𝑣𝑓 𝑟2 + 𝑔 sin 𝜃  𝐿 𝜌̿ 

 

So, this expression within the integral is actually an average density the weighted average 

density and we call at rho bar. This expression we are calling rho bar and then the integral 

of rho bar over 0 to x o we are calling it as rho double bar. So, rho double bar is equal to 

rho f minus rho f minus rho g upon x o integral of 0 to x o alpha d x. And then we call the 

average void fraction as alpha bar equal to 1 upon x o 0 to x o alpha d x. So, rho double 

bar is equal to rho f minus in the bracket rho f minus rho g into alpha bar, so if we can 

calculate this alpha bar then we can calculate delta P z.  

So, finally, we have delta P is equal to delta P F plus delta P a plus delta P z where delta P 

F is equal to 2 f f o L by D G square v f phi f o square bar. Delta P a is equal to G square 

v f r 2 and delta P z is equal to g sin theta L rho double bar and then by adding these 3 

pressure drops we get the total pressure drop delta P. Now, if we can find phi f o square 

bar r 2 and rho double bar then we should be able to find the pressure drop. So, with 

separated flow model we will use the Martinelli and Nelson correlation and then evaluate 

these pressure drops. 
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We have seen some graph given by Martinelli and Nelson they had given some more 

graphs they had plotted this phi f o square bar. So, here we have pressure on the x axis, on 

the y axis we have phi f o square bar and for knowing the pressure and the exit quality we 

can find phi f o square bar from this figure. The scales are logarithmic both scales are 

logarithmic it is a log log plot ok. So, we can find phi f o square bar from this graph and 

then substitute and get the frictional pressure drop delta P F.  
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For delta P a we need r 2 Martinelli and Nelson had plated r 2 also, here pressure is on the 

horizontal axis and r 2 is on the vertical axis and for different pressures. And different exit 

qualities we can find r 2 and here also the scales are logarithmic it is a log log plot. Using 

this we can find r 2 and substitute and get the acceleration pressure drop delta P a. 
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Now, to calculate delta P z we need rho double bar and then to calculate rho double bar 

we need alpha bar the average void fraction over the length, but there is no graph which 

directly gives alpha bar. So, we have to find alpha at different points at different locations 

on the pipe from the inlet to the outlet and then integrate from inlet to the outlet from x 

equal to 0 to x equal to x o we have to integrate.  

So, as a simple approximation we can take the average quality which is the quality at the 

midpoint and then find the void fraction for that quality. And then assume that alpha bar 

is approximately equal to that quality that void fraction. Here the scale one scale is 

logarithmic this the horizontal scale is logarithmic and the vertical scale for alpha is linear.  
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Pressure drop for two-phase flow in an adiabatic pipe, assuming   

𝑓𝑓𝑜 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   𝑥 = const. 

Δ𝑃𝐹 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝐹
𝑑𝑧 =

𝐿

0

∫
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2 𝑑𝑧
𝐿

0

=
2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2 ∫  𝑑𝑧
𝐿

0

 

Δ𝑃𝐹 =
2𝑓𝑓𝑜𝐿

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2  

Δ𝑃𝑎 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑎
𝑑𝑧

𝐿

0

= ∫ 𝐺2 (0) 𝑣∗𝑑𝑧
𝐿

0

= 0 

Δ𝑃𝑧 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑧
𝑑𝑧 = [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)] 𝑔 sin 𝜃

𝐿

0

∫ 𝑑𝑧
𝐿

0

 

Δ𝑃𝑧 = [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)] 𝑔 sin 𝜃 L 

Now, let us consider pressure drop for two phase flow in an adiabatic pipe. So, we assume 

f f o equal to constant, v f g by v f equal to constant and since it is an adiabatic pipe and 

we are not considering higher order effects therefore, x will also be equal to constant. So, 

everything comes out of the integral sign in the expression for delta P F and we are left 

with only integral 0 to L d z and this is nothing but L.  

So, therefore, we get delta P F equal to 2 f f o L by D G square v f phi f o square and phi f 

o square we can get from the graph given by Martinelli and Nelson. Delta P a because that 



d P by d z a is 0, so delta P a will also be equal to 0. Delta P z here also everything comes 

out of the integral and we have only 0 to L integral d z which is equal to L therefore, delta 

P z is equal to rho g alpha plus rho f 1 minus alpha g sin theta L. So, by finding alpha we 

can find delta P z and alpha we can find from Martinelli and Nelson graphs.  
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Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  

Δ𝑃𝐹 =
2𝑓𝑓𝑜𝐿

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2  

Δ𝑃𝑎 = 0 

Δ𝑃𝑧 = [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃  L 

Δ𝑃 =
2𝑓𝑓𝑜𝐿

𝐷
𝐺2𝑣𝑓 𝜙𝑓𝑜

2 + [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)] 𝑔 sin 𝜃  L 

 

So, delta P is equal to delta P F plus delta P a plus delta P z, where delta P F is equal to 2 

f f o L by D G square v f phi f o square. Delta P a is equal to 0 and delta P z is equal to rho 

g alpha plus rho f 1 minus alpha g sin theta L.  
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Phi f o square we can find from this Martinelli-Nelson graph here we have quality and phi 

f o square for different pressures and there is a table also which gives the two phase 

multiplier phi f o square for different pressures and different qualities, so using this we can 

find delta P F. Now, for delta P z we need alpha the void fraction and that we can find 

from this graph for any given pressure and given quality we can find alpha from this graph 

and then we can find delta P z.  
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Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 5 cm, 𝐺 =
100 kg/m2s, x(0)=0, 𝑞′′ = 50 kW/m2. To find the pressure drop at the end of the pipe 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 Pa. s,  𝜇𝑔 = 12.26 × 10−6 Pa. s,  ℎ𝑓𝑔 = 2257.45 kJ/kg  

𝑣𝑓 = 1.043 × 10−3 m3/kg,  𝑣𝑔 = 1.6939 m3/kg, 𝑣𝑓𝑔 = 1.693 m3/kg 

𝑑𝑥

𝑑𝑧
=

4𝑞′′

𝐺𝐷ℎ𝑓𝑔
= 0.  443 m−1,     𝑥𝑜 = 0.0221 

𝑑𝑣𝑔

𝑑𝑃
≈
Δ𝑣𝑔

Δ𝑃
=
1.6782−1.6939

1000
= −1.57 × 10−5m3kg−1Pa−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 3.47 × 10−3 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

 

Now, let us consider examples, in example 1 we have the same data as before except that 

the length is 5 centimeter here. And the property is at the same as before we get d x by d z 

and x o and then d v g by d P and then we find m square which is negligible. 
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𝑅𝑒𝑓,𝑜 =
𝐺𝐷

𝜇𝑓
= 707 ⇒ Laminar flow 

𝑓𝑓,𝑜 = 16 𝑅𝑒⁄ = 0.0226 



𝜙𝑓𝑜
2̅̅ ̅̅ ̅ = 5.2     𝑟2 = 2 

Δ𝑃𝐹 =
2𝑓𝑓𝑜 𝐿

𝐷
𝐺2𝑣𝑓  𝜙𝑓𝑜

2̅̅ ̅̅ ̅ = 0.0613 𝑘𝑃𝑎 

Δ𝑃𝑎 = 𝐺2 𝑣𝑓 𝑟2 = 0.0209 𝑘𝑃𝑎 

Δ𝑃𝑧 = 0 

Δ𝑃 = 0.0613 + 0.0209 + 0 = 0.0822 kPa 

 

R e f o is equal to 707, so it is laminar flow and f f o is equal to 0.0226. So, phi f o square 

bar we get from the Martinelli and Nelson graph for the given pressure and outlet quality 

we know the pressure and outlet quality. And then we get phi f o square approximately 5.2 

from the graph and for the same given pressure and given outlet quality we get r 2 is 

approximately equal to 2.  

So, we substitute these values and get delta P f equal to 0.0613 kilo Pascal, and delta P a 

is equal to 0.0209 kilo Pascal. Delta P z is equal to 0 because it is a horizontal pipe and the 

total pressure drop delta P is calculated as 0.0822 kilo Pascal.  

(Refer Slide Time: 39:49) 

 

 

 



Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1 m, 𝐺 =
1000 kg/m2s, x(0)=0, x(L)=1%. To find the pressure drop at the end of the pipe 

Solution: Properties of water+ steam @10 MPa 

𝜇𝑓 = 81.80 × 10−6 Pa. s,  𝜇𝑔 = 20.27 × 10−6 Pa. s,   

𝑣𝑓 = 1.453 × 10−3m3/kg,  𝑣𝑔 = 1.803 × 10−2 m3/kg, 𝑣𝑓𝑔 = 0.01658 m3/kg 

𝑥𝑜 = 0.01,   
𝑑𝑥

𝑑𝑧
=
0.01

1
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈
Δ𝑣𝑔

Δ𝑃
=
0.01781−0.01803

1 × 105
= −2.20 × 10−9𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 2.20 × 10−5 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

𝑅𝑒𝑓𝑜 =
𝐺𝐷

𝜇𝑓
= 2.44 × 105 ⇒ Turbulent flow  

𝑓𝑓𝑜 = 0.079 𝑅𝑒𝑓𝑜
−0.25 = 3.55 × 10−3 

 

Now, we will not consider example 2 because there M square is not negligible and we will 

have to do numerical integration by writing a code. So, we will consider example 3, here 

the data is same as before except that the length is 1 meter and the outlet quality is 1 

percent. So, x o is equal to 0.01 and d x by d z is equal to 0.01 per meter, then d v g by d 

P is calculated M square is calculated and it is very small. So, therefore, 1 minus M square 

can be taken has 1 R e f o is of the order of 10 raise to 5, so it is turbulent flow, and then 

we use the Blasius correlation to calculate the friction factor f f o. 
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𝜙𝑓𝑜
2̅̅ ̅̅ ̅ = 1.3     𝑟2 = 0.1           ∫ 𝛼 𝑑𝑥

𝑥𝑜

0
= 0 

𝜌̿ = 𝜌𝑓 −
(𝜌𝑓−𝜌𝑔)

𝑥𝑜
∫ 𝛼 𝑑𝑥
𝑥𝑜

0
= 688 𝑘𝑔/𝑚3           

Δ𝑃𝐹 =
2𝑓𝑓𝑜 𝐿

𝐷
𝐺2𝑣𝑓  𝜙𝑓𝑜

2̅̅ ̅̅ ̅ = 0.671 𝑘𝑃𝑎 

Δ𝑃𝑎 = 𝐺2 𝑣𝑓 𝑟2 = 0.145 𝑘𝑃𝑎 

Δ𝑃𝑧 = 𝑔 sin 𝜃  𝐿 𝜌̿ = 6.74 𝑘𝑃𝑎 

Δ𝑃 = 0.0613 + 0.0209 + 6.74 = 6.82 kPa 

 

And then we use the Martinelli and Nelson graphs and for the given pressure and outlet 

quality we get phi f o square bar equal to 1.3 and r 2 equal to 0.1 and alpha bar is roughly 

estimated as 0.05. So, this has been done by assuming that alpha bar is approximately 

equal to the alpha corresponding to the quality at the midpoint of the pipe. 

Rho double bar using this alpha bar it is calculated as 656 kg per meter cube which is only 

slightly less than the density of the liquid rho f. So, after substituting these values we get 

delta P F equal to 0.67 1 kilo Pascal delta P a is equal to 0.145 kilo Pascal and delta P z is 

equal to 6.43 kilo Pascal. And then by adding these pressure drops we get the total pressure 



drop delta P equal to 6.51 kilo Pascal. Now, consider the drift flux model and let us see 

how two phase pressure drop can be calculated using the drift flux model. 
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Pressure Gradient by DFM 

−
𝑑𝑃

𝑑𝑧
=

1

1 −𝑀2
[
2𝑓𝑇𝑃
𝐷

𝐺2𝑣̅ + 𝐺2
𝑑𝑥

𝑑𝑧
𝑣∗ + {𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)}𝑔 𝑠𝑖𝑛 𝜃] 

where  

𝛼 =  
𝑗𝑔

𝐶0 𝑗 + 𝑉𝑔𝑗
=

𝐺𝑥𝑣𝑔

𝐶0 {𝐺𝑥𝑣𝑔 + 𝐺(1 − 𝑥)𝑣𝑓} + 𝑉𝑔𝑗
, (
𝜕𝛼

𝜕𝑥
)
𝑃
=
𝛼

𝑥
−
𝛼2𝐶0𝑣𝑓𝑔

𝑥𝑣𝑔
 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−
2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)
𝑃
{
(1 − 𝑥)2𝑣𝑓
(1 − 𝛼)2

−
𝑥2𝑣𝑔

𝛼2
} 

𝑀2 = 𝐺2 |
𝑥2

𝛼

𝑑𝑣𝑔

𝑑𝑃
+ (

𝜕𝛼

𝜕𝑃
)
𝑥

 {
(1 − 𝑥)2𝑣𝑓
(1 − 𝛼)2

−
𝑥2𝑣𝑔

𝛼2
}| 

If 𝑀2 ≪ 1 then 1 −𝑀2 ≈ 1 and  

−
𝑑𝑃

𝑑𝑧
=
2𝑓𝑇𝑃
𝐷

𝐺2𝑣̅ + 𝐺2
𝑑𝑥

𝑑𝑧
𝑣∗ + {𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)}𝑔 𝑠𝑖𝑛 𝜃 

 

If using drift flux model we calculate the frictional pressure gradient using the 

homogeneous model and the expression for the acceleration pressure gradient. And 



gravitational pressure gradient at the same as those for the separate at flow model, but 

alpha here will be calculated by using the drift flux model.  

So, alpha is equal to j g upon C 0 j plus V g j and then if we substitute for j and j g and 

then we get this expression G x v g upon C 0 G x v g plus G 1 minus x v f plus V g j. And 

then we differentiate this with respect to x keeping pressure constant; that means, v g and 

v f are constant. So, we get deba alpha by deba x at constant pressure equal to alpha by x 

minus alpha square C 0 v g v f g upon x v g.  

V star expression is given here and the expression of M square is also given here these are 

the same as goes for the separated flow model. And in case M square is much less than 1, 

we can neglect it and we can take 1 minus M square is approximately equal to 1. So, here 

we will assume that M square is negligible, so we get the total pressure gradient as 2 f T P 

by D G square v bar plus G square d x by d z v star plus rho g alpha plus rho f 1 minus 

alpha g sin theta ok.  
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Pressure drop in an evaporator tube with saturated liquid at inlet, assuming  

𝑓𝑇𝑃 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   

𝑑𝑥

𝑑𝑧
= const. =

𝑥𝑜
𝐿

 

Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

where  



Δ𝑃𝐹 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝐹
𝑑𝑧 =

𝐿

0

2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑎
𝑑𝑧

𝐿

0

= 𝐺2 𝑣𝑓 𝑟2 ,   where  𝑟2 =
1

𝑣𝑓
∫ 𝑣∗ 𝑑𝑥

𝑥𝑜

0

 

Δ𝑃𝑧 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑧
𝑑𝑧 =

𝐿

0

𝑔 sin 𝜃  𝐿 𝜌̿,  𝜌̿ = 𝜌𝑓 − (𝜌𝑓 − 𝜌𝑔) 𝛼̅,  𝛼̅ =
1

𝑥𝑜
∫ 𝛼 𝑑𝑥

𝑥𝑜

0

 

Δ𝑃 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) + 𝐺2 𝑣𝑓 𝑟2 + 𝑔 sin 𝜃  𝐿 𝜌̿ 

 

So, now let us consider an evaporator tube in which the inlet is saturated liquid and we 

will assume f T P equal to constant over the length of the pipe, v f g by v f is equal to 

constant and d x by d x equal to constant equal to x o upon L. So, the total pressure gradient 

delta P is equal to delta P F, plus delta P a, plus delta P z and here delta P F is the integral 

of the pressure gradient due to friction.  

And we get this expression which is the same as that for the homogeneous model 2 f T P 

L by D G square v f 1 plus x o by 2 v f g by v f. And for the acceleration pressure drop we 

integrate the acceleration pressure gradient and get G square v f r 2 and where r 2 is equal 

to 1 by v f 0 to x o v star d x integral. Delta P z is the integral of d P by d z and this is equal 

to g sin theta L rho double bar and this is the same as what we got for the separated flow 

model.  

So, the total pressure drop delta P is equal to 2 f T P L by D G square v f 1 plus x o by 2 v 

f g by v f plus G square v f r 2 plus g sin theta rho double bar. So, now to calculate this 

pressure drop we have to find r 2 for that we will have to find alpha and we have to find 

rho double bar for that also we have to find alpha.  
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Pressure drop for two-phase flow in an adiabatic pipe, assuming   

𝑓𝑇𝑃 = const. ,   
𝑣𝑓𝑔

𝑣𝑓
= const. ,   𝑥 = const. 

Δ𝑃𝐹 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝐹
𝑑𝑧 =

𝐿

0

2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) 

Δ𝑃𝑎 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑎
𝑑𝑧

𝐿

0

= ∫ 𝐺2 (0) 𝑣∗𝑑𝑧
𝐿

0

= 0 

Δ𝑃𝑧 = ∫ (−
𝑑𝑃

𝑑𝑧
)
𝑧
𝑑𝑧 = [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)] 𝑔 sin 𝜃  L 

𝐿

0

 

Δ𝑃 = Δ𝑃𝐹 + Δ𝑃𝑎 + Δ𝑃𝑧 

Δ𝑃 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) + [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)] 𝑔 sin 𝜃  L 

 

So, now consider an adiabatic pipe and assume f T P equal to constant, v f g by v f equal 

to constant and x will be constant in this case. So, delta P F will be equal to 2 f T P L by 

D G square v f 1 plus x v f g by v f, delta P a will be 0 in this case and delta P z will be 

equal to rho g alpha plus rho f 1 minus alpha g sin theta L. And by adding these 3 we get 

delta P equal to 2 f f o L by D G square v f phi f o square, actually here we do not have to 



use phi f o square. So, instead of this expression we will use this expression ok and plus 

rho g alpha plus rho f 1 minus alpha g sin theta L.  
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Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 5 cm, 𝐺 =
100 kg/m2s, x(0)=0, 𝑞′′ = 50 kW/m2. To find the pressure drop at the end of the pipe 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 Pa. s,  𝜇𝑔 = 12.26 × 10−6 Pa. s,  ℎ𝑓𝑔 = 2257.45 kJ/kg  

𝑣𝑓 = 1.043 × 10−3 m3/kg,  𝑣𝑔 = 1.6939 m3/kg, 𝑣𝑓𝑔 = 1.693 m3/kg 

𝑑𝑥

𝑑𝑧
=

4𝑞′′

𝐺𝐷ℎ𝑓𝑔
= 0.  443 m−1,     𝑥𝑜 = 0.0221 

𝑑𝑣𝑔

𝑑𝑃
≈
Δ𝑣𝑔

Δ𝑃
=
1.6782−1.6939

1000
= −1.57 × 10−5m3kg−1Pa−1 

𝑀2 = 𝐺2𝑥𝑜 |
𝑑𝑣𝑔

𝑑𝑃
| = 3.47 × 10−3 ≪ 1,  1 −M2 ≈ 1,  (1 − M2)−1 ≈ 1 

 

Now, let us consider some numerical examples, example 1 is the same as before except 

that the length of the pipe is 5 centimeter. And the property data is the same as before d x 

by d z is equal to 0.443 per meter, x o is equal to 0.0221 and d v g by d P is of the order of 

10 raise to minus 5 s i units and M square is of the order of 10 raise to minus 3, so we can 

neglect it.  
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1

𝜇̅
=

𝑥

𝜇𝑔
+
1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 190.1 × 10−6 𝑃𝑎. 𝑠 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 1052 ⇒ Laminar flow 

𝑓𝑇𝑃 = 16 𝑅𝑒⁄ = 0.01521 

𝛼𝑜 = 0.82 

𝑟2 = [
𝑥𝑜
2

𝛼𝑜

𝑣𝑔

𝑣𝑓
+
(1 − 𝑥𝑜)

2

(1 − 𝛼𝑜)
− 1] = 5.27 

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) = 0.00793 𝑘𝑃𝑎 

Δ𝑃𝑎 = 𝐺2 𝑣𝑓 𝑟2 = 0.055 𝑘𝑃𝑎 

Δ𝑃𝑧 = 0  

Δ𝑃 = 0.00793 + 0.055 + 0 = 0.0629 kPa 

 

The average viscosity is calculated using McAdams relation and R e T P is 1052, so it is 

laminar flow and f T P is equal to 0.01521. And alpha o is calculated using the outlet 

quality and using the outlet quality we calculate C 0 and V g j and then after substituting 

these values of C 0 and V g j we get alpha.  



So, we get the value of alpha o as 0.82 and then we calculate r 2 by using this value of 

alpha o and it turns out to be equal to 5.27. And then we substitute the values and get delta 

P F equal to 0.00793 kilo Pascal delta, P a is equal to 0.055 kilo Pascal, delta P z is equal 

to 0. So, adding these pressure drops we get the total pressure drop as 0.0629 kilo Pascal. 
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=1m, 𝐺 =
1000 kg/m2s, x(0)=0, x(L)=1%. To find the pressure drop at the end of the pipe 

Solution: Properties of water+ steam @10 MPa 

𝜇𝑓 = 81.80 × 10−6 Pa. s,  𝜇𝑔 = 20.27 × 10−6 Pa. s,   

𝑣𝑓 = 1.453 × 10−3
m3

kg
,  𝑣𝑔 = 1.803 × 10−2 m3/kg, 𝑣𝑓𝑔 = 0.01658 m3/kg 

𝑥𝑜 = 0.01,   
𝑑𝑥

𝑑𝑧
=
0.01

1
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈
Δ𝑣𝑔

Δ𝑃
=
0.01781−0.01803

1 × 105
= −2.20 × 10−9𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥𝑜 |
𝑑𝑣𝑔

𝑑𝑃
| = 2.20 × 10−5 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

 

Now, as before we will keep example 2, because M square is not negligible and then we 

have to do numerical integration by writing a code. So, we will consider example 3, in this 



the length is 1 meter and the outlet quality is 1 percent, the other data at the same as an 

example 3 we have considered before. The property data as the same outlet quality is 1 

percent and d x by d z is 0.01 per meter d v g by d P is calculated and M square is calculated 

which is of the order of 10 raise to minus 5, so it is negligible, so 1 minus M square can 

be taken as 1.  

(Refer Slide Time: 50:59) 

 

1

𝜇̅
=

𝑥

𝜇𝑔
+
1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 79.4 × 10−6 𝑃𝑎. 𝑠 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 2.52 × 105 ⇒ Turbulent flow 

𝑓𝑇𝑃 = 0.079 𝑅𝑒𝑇𝑃
−0.25 = 3.53 × 10−3 

𝛼𝑜 = 0.0908,       𝑟2 = [
𝑥𝑜
2

𝛼𝑜

𝑣𝑔

𝑣𝑓
+

(1−𝑥𝑜)
2

(1−𝛼𝑜)
− 1] = 0.0916 

Δ𝑃𝐹 =
2𝑓𝑇𝑃𝐿

𝐷
𝐺2𝑣𝑓 (1 +

𝑥𝑜
2

𝑣𝑓𝑔

𝑣𝑓
) = 0.512 𝑘𝑃𝑎 

Δ𝑃𝑎 = 𝐺2 𝑣𝑓 𝑟2 = 0.133 𝑘𝑃𝑎 

𝛼̅ =
1

𝑥𝑜
∫ 𝛼 𝑑𝑥

𝑥𝑜

0

= 0.0476 

𝜌̿ = 𝜌𝑓 − (𝜌𝑓 − 𝜌𝑔) 𝛼̅ = 658 𝑘𝑔/𝑚3           

Δ𝑃𝑧 = 𝑔 sin 𝜃  𝐿 𝜌̿ = 6.49 𝑘𝑃𝑎 



Δ𝑃 = 0.512 + 0.133 + 6.49 = 7.135 kPa 

 

Then mu bar is calculated and R e T P is calculated and it is turbulent flow, so using Blasius 

correlation we get the friction factor and alpha o we get from the expression for the drift 

flux model. We get the C 0 and V g j and substitute and then get alpha o corresponding to 

x o which is 0.0908. And then we substitute it in order to and we get r 2 equal to 0.0916.  

Then after substituting the values we get delta P F equal to 0.512 kilo Pascal, delta P a is 

equal to 0.133 kilo Pascal, and alpha bar is the average alpha and that is equal to 0.0476. 

And this we have taken as the void fraction corresponding to the average quality, average 

quality is taken as the quality at the midpoint which is half of the outlet quality. And 

corresponding to that the void fraction alpha has been calculated using the drift flux model 

and we get alpha bar equal to 0.0476. 

Then we substitute this alpha bar and get rho double bar equal to 658 kg per meter cube 

and then by substituting it we get delta P z equal to 6.49 kilo Pascal, so the total pressure 

drop by adding these pressure drops we get 7.135 kilo Pascal. So, as I have mentioned 

before in the earlier numerical examples that these examples are for the purpose of 

illustration only, please check the calculations there maybe errors in the calculations, so 

please do your own calculations and check.  

But, the methodology I hope is clear and using this methodology you should be able to 

calculate pressure drop with homogeneous model, or separated flow model or drift flux 

model whichever model you choose. And for a evaporator tube, or condenser tube or 

adiabatic two phase flow are all these 3 types of cases you should be able to calculate 

pressure drop.  

If M square is negligible and if you make simplifying assumptions, then the expressions 

which we have derived by analytical integration can be used and then you can calculate 

pressure drops by hand. Otherwise if the simplifying assumptions cannot be made then 

you will have to do numerical integration by writing a code.  

Thank you.  


