Two-Phase flow with phase change in conventional and miniature channels
Prof. Manmohan Pandey
Department of Mechanical Engineering
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Lecture - 05
The Separated Flow Model (contd. )

Welcome back to the course on Two-Phase flow with phase change and conventional and
miniature channels. We were discussing the modelling of two-phase flow in that we have

discussed the homogeneous model and then the separated flow model with Lockhart
Martinelli correlation.
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Modelling of Two-Phase Flow
- The Separated Flow Model
(continued)

Today we will continue the discussion of Separated Flow Model with another correlation
Martinelli and Nelson correlation and after that we will solve some numerical examples

with Lockhart Martinelli correlation and Martinelli and Nelson correlation.
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Martinelli-Nelson Correlation

1. Developed for pressure drop in boiling channels

2. Applies to steam-water mixture at all pressures between
atmospheric (1 bar) and critical (221 bar).

3. Air-water data were assumed to represent steam-water mixture at
atmospheric pressure.,,

4. At the critical pressure, no distinction bet\ngese;g liquid and gas:

2 I=%
¢;‘o = 1, Xp= T

5. Plotted ¢, as a function of X,, for P = 1 barand P = P,,
6. Interpolation for intermediate pressures.

Martinelli and Nelson correlation was obtained from Lockhart Martinelli correlation and
it was developed for pressure drop in boiling channels. It applies to steam water mixture
at all pressures between the atmospheric pressure and the critical pressure which is
approximately 221 bar. And, this is of very much practical use because steam water
mixture is used in many industrial applications like boilers and the boiling conditions as

well as condensing conditions.

The air water data of Lockhart and Martinelli, it was assumed to represent steam water
mixture at atmospheric pressure and at the critical pressure we know that there is no

distinction between liquid and gas.

0.875

) 1—x
¢fo=1f Xtt=< x )

Lockhart and Martinelli assumed turbulent-turbulent regime which is exist in most of the
industrial applications involvement conventional channels. As we will see in the numerical
examples in case of conventional channels with realistic values we will get both phases as
turbulent. So, then they plotted phi f o square as a function of X tt for P equal to 1 bar and
P equal to P critical and then for intermediate pressures they interpolated. Now how did

they get phi f o square?
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So, Lockhart Martinelli correlation gives phi f square and Martinelli Nelson have used phi
f 0 square because phi f o square is more convenient in case of boiling or condensing
channels because the local quality is difficult to know, but the overall flow rate is known.
As you can see in phi f o square in the expression for in dP by d z f f 0 when we want to
evaluate there is no x here, but in this dP by d z is f coma f in this there is local quality is
invert. So, to calculate this quantity we will need to know local quality whereas, to

calculate this pressure gradient we do not need any local quality.

So, this pressure gradient is easier to evaluate in case of boiling channels and therefore, it
is more convenient to use phi f o square. So, how do we obtain phi f o square from phi f
square? For that we can derive a relation phi f o square we have derived this earlier; phi f
0 square is given by this and phi f square is given by this expression and then if we take
the ratio then we get this relation between phi f o square and phi f square. And, now we

need this ratio of the friction factors.

So, since it is turbulent-turbulent regime using that we get f f 0 and f f and then we take
the ratio and then we get this expression. So, they got phi f o square for atmospheric
pressure as well as critical pressure and then by interpolation they got phi f o square for

intermediate pressures.
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Mat Qualty % by ot

This is the graph given by Martinelli and Nelson and here we have on the horizontal axis

we have mass quality on the vertical axis we have phi f o square and these are for different



pressures, this is for atmospheric pressure and then we have higher pressure and still higher
pressures up to very high pressures. Here we have the same data in the form of tables. So,

by knowing the quality and the pressure we can get phi f o square.
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Martinelli and Nelson also plotted the void fraction alpha; again in a similar method they
got alpha for atmospheric pressure using Lockhart Martinelli correlation and for critical
pressure there is no distinction between the phases. So, and then by interpolation they got

for the intermediate pressures.

So, we have mass quality on the horizontal axis, void fraction on the vertical axis, the
horizontal scale is logarithmic, it is a semi log plot and we have alpha for different
pressures; so, for horizontal for atmospheric pressure and higher pressures and very high
pressures. Actually we should sketch the plot of alpha versus x on a linear scale to see how
it varies. It will be like this; 0 1 and here it is O 1 here we have alpha at x equal to 0 alpha
is equal to 0 and at x equal to 1 alpha is equal to 1, but it does not vary like that does not

vary linearly.

At critical pressure we get a linear graph, but at lower pressures we get this type of
variation. So, for low values of x as x increases alpha increases very fast the slope is high
dou by alpha by dou by x at constant pressure and this is the slope of the curve and this is

very high for low values of x and for higher values of x the slope decreases and then for



very high values of x the slope is very low, but for very high values even for not so high

values of x alpha becomes very close to 1 ok.
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Calculation of pressure gradients due to acceleration and gravity
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For HEM,S =1, hence a = j

For SFM, usually S > 1, hence a < 8

Calculation of pressure gradients due to acceleration and gravity:
<1 - a) 3 (1 - x) <pg> <Ug> B (1 - x) <pg>s

a X pr ) \Us X Pr
(5= )=,

p x Pr Vr + XVpg

(9= (595

HEM:S =1; hencea =

SFM:S >1; hencea<p

So, now how to calculate pressure gradient due to acceleration and gravity? For pressure
gradient due to acceleration and gravity we need the void fraction and its partial
derivatives. The void fraction alpha is given by this: the fundamental void quality relation
which we have derived before in the first lecture and this quantity the ratio of the velocities
of the phases is called the slip ratio S and usually S is greater than 1, for HEM we assume

that both phases move with the same velocity.



So, S is equal to 1 and then separated flow model we account for the difference of
velocities and S is usually greater than 1 in horizontal flow as well as vertical upward flow
or gas will move faster and liquid will move slower. So, slip ratio will be greater than 1.
Now if we put S equal to 1 then the void fraction that we get is the volumetric quality and
1 minus beta upon beta is equal to this expression and if we solve for beta we get this

expression, from this we can calculate beta.

And here this expression this is 1 minus beta upon beta. So, we get 1 minus alpha upon
alpha is equal to 1 minus beta upon beta and to S. For homogeneous model S equal to 1,
so, we get alpha equal to beta and for separated flow model S is greater than 1. So, alpha

should be less than beta.
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Calculation of pressure gradients due to acceleration and gravity using Lockhart-Martinelli correlation
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Calculation of pressure gradients due to acceleration and gravity using Lockhart-Martinelli

correlation:
XU,
a=[1+028X71]"t, p=—A T—
Vg + XVfg
Vf 0.5 llf 0.5 1 —x 0.5 vf 0.5 IJ-f 0.125 1 —x 0.875
Xpw =|— — ( ) y X = — ( >
Vg Hg x Vg Hg x

), = 59, G,
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Now, if we use the Lockhart Martinelli correlation then we can find alpha from the graphs
given by Lockhart Martinelli or we can use a correlation for example, the Butterworth
correlation. This was obtained by fitting the graphs of Lockhart and Martinelli and beta
can be obtained from this expression and then we should check whether alpha is less than
beta or not. Now depending on the flow regime we can find capital X, to capital X the
Martinelli parameter Xvv is equal to this and X tt is given by this expression as we know
and then by substituting the appropriate correlation here we can express alpha in terms of

properties and the quality.

So, we get alpha as a function of pressure and quality and then we need this partial
derivative dou by alpha by dou by x at constant pressure. So, this as | have just explained
by finding the slope of the graph of alpha versus x for a constant pressure we can get the
value of this partial derivative or if we are not using graph, but using a correlation like this
correlation then we differentiate it after substituting for the Martinelli parameter we
differentiate with respect to quality and by using the chain rule by multiplying these 2

derivatives we get the this derivative.

And then we substitute it here and get v star and then using the value of v star here we get
the pressure gradient due to acceleration; M square has to be evaluated for that there is a
long and complicated expression. So, in this course we will calculate M square from
homogeneous model and use the same as M square here also as a rough estimate, but for
a more accurate calculation M square has to be obtained using the expression for separated
flow model. Now, this alpha in the pressure gradient due to gravity, this alpha can be

substituted and then we can get the pressure gradient due to gravity ok.
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Calculation of pressure gradients due to acceleration and gravity using
Martinelli-Nelson correlation
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Calculation of pressure gradients due to acceleration and gravity using Lockhart-Martinelli

correlation:
a = a(x,P) — from graph

da Aa , . —
(a) ~ — — from graph by numerical dif ferentiation
P

Ax
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Now, if we use Martinelli Nelson correlation then we can get alpha from graph for a given
quality and pressure and then by finding the slope of the graph we can get this partial
derivative by taking 2 nearby values of the quality and corresponding values of the void
fraction and then dividing we can get this partial derivative and then substitute it here and
calculate v star then substitute v star here. And, calculate the pressure gradient due to
acceleration the pressure gradient due to gravity can be calculated by using the void

fraction obtained from the graph.
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Modelling of Two-Phase Flow

— The Separated Flow Model
(numerical examples using the
Lockhart-Martinelli correlation)

Now, let us consider some numerical examples using Lockhart Martinelli correlation.
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Example-1: Water+steam @100 kPa, horizontal flow, D=2 mm, L = 10 cm
G = 100 kg/m?s, x(0)=0, " = 20 kW /m? = e
To find the pressure gradient atz=5 cm

Solution:
Properties of water+ steam @100 kPa

Hy = 2829 x 107" Pa.s, = 12.26 X 107" Paus, by, = 2257.45K]/kg
v = 1043 x 107 m'/kg v, = 16939 m’/kg, vy, = 1693 m’/kg -

M o M3 a(em) = 00221
dz-CDh[g— y m ,x(ocm) = O f

/! /
(o) by, 16762-16939 i /
| =Ly s = 157 10" m’kg "' Pa”!
dp)” Bp___ 1000 o
2 2. [V -3) =M% M) &
M -g.r - ;=3A47x1407>,:5§,1.1 M ,.)'(1 M) 1/

G(1=x)D ixD
Re, = =691,= Laminarflow R, =—= 360/: Laminar flow
Wy i 7 g §

@: 16/Rey = 0023 , /\fq} 16/Re, = 0044 /



Example-1: Water+steam @100 kPa, horizontal flow, D =2 mm, L =10 cm

G = 100 kg/m?s, x(0)=0, q"" = 20 kW /m?. To find the pressure gradient at z =5 cm
Solution: Properties of water+ steam @100 kPa

ur = 2829 %107 Pa.s, u, = 12.26 X 107° Pa.s, hyy = 2257.45 kJ /kg

vy = 1.043 x 1073 m3/kg, vy, = 1.6939 m3/kg, v;, = 1.693 m*/kg

g 0. 443 m™%, x(5cm) = 0.0221
dz_Gthg_ . m~, x(5cm) = 0.
dvy, Avy, 1.6782-1.6939
=~ = = —1. X -5 3 -1 -1

7P = Ap 1000 1.57 x 107°m°kg™"Pa

G(1—-x)D ] GxD

Ref = ——— = 691 = Laminar flow Re; = —— =360
Kr Hg

= Laminar flow

fr = 16/Re; = 0.023 f, = 16/Re, = 0.044
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0.5 0.5 0.5
v 1—x
X,, = (—f> (“—f> ( ) — 0.793
Vg Iy x
$2=1+CX+X>=559(C=5)

N
- (_) - ﬁazxzvg ¢Z = 2.034 kPa/m

dz/r D
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1-M? =1
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dp
_ (—) — 2.034 kPa/m
Z/F
dp
_ (—) — 1.045 kPa/m
Z/)q
dp
@)
Z/ g
dp
_ (—Z) — 2.034 + 1.045 + 0 = 3.08 kPa/m
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Example-2: Waterssteam 3_31_00 kPa, vertical upward flow, D=2 cm, L=2m
6 = 1000 kg/mPs, x0)<0,(=2% — )
To find the pressure gradient at z=1m

Solution: Properties of water+ steam @100 kPa

= 2829 x 107" Pa.s,p, = 1226 107" Paus,
vy = 1043 107 m kg, = 16939 m fkg vy, = 1693 m' kg 7

de 002 ;
(im) =001, —=z=z—=001m"-
o de 2 /

du, Quy 16782-16939 157 % 105 ka1 Pa-!
ﬁzF'W'_ Al X mKyg u

)
—2l 201571 - M7 = 0843, (1- M) = 1186,

g
ME=6l
P

G(1-x)D
Rey = )

. GxD .
e =699 % 10° = Turbulent flow Reg = =163 x 10° = Turbulent flow
He — — YoMy —— —
fr = 0079 ReT ™ = 486 % an;' fo = 0079 Res™ = 699 %107,
o <

Example-2: Water+steam @100 kPa, vertical upward flow, D=2 cm, L=2m
G = 1000 kg/m?s, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m
Solution: Properties of water+ steam @100 kPa

iy = 2829 x107® Pa.s, py, = 12.26 X 107° Pa.s,

vy = 1.043 x 1073 m3/kg, vy, = 1.6939 m3/kg, v, = 1.693 m3/kg

dx 0.02

x(1m) = 0.01, —=——=10.01m™?
dz 2

dvy _ Ay, ~ 1.6782-1.6939

dP =~ AP 1000

= —1.57 x 10~>m3kg~1Pa~?!



dv
M? = G?*x |d_Pg| =0.157, 1 —M? =0.843, (1 —M?)"1 =1.186

G(1—-x)D s
Res = H— = 6.99 X 10° = Turbulent flow
f
GxD
Re, = . = 1.63 X 10* = Turbulent flow
g
fr = 0.079 Re; %% = 2.73 x 1073 fy = 0.079 Re; %% = 6.99 x 1073
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(dp) _ 1 {szx *}—292kp
dz), (1—M?) az' =~ a/m
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@ =546 kP
;) =4 a/m
@ =292 kP
-] =292 a/m

a

S5

_( ) = [pda+ pr(1-@)]g sinf =299 kPa/m

SE

= 546+ 2.92 4 2.99 = 11.37 kPa/m

v
r

= 5.46 kPa/m
=292 kPa/m

= [pga + p;(1 — a)]gsin® = 2.99 kPa/m

546 + 2.92 +2.99 = 11.37 kPa/m
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Example-3: Waterssteam @10 MPa, vertical upward flow, D=2 ¢cm, L=2m
G = 1000 kg/m?s, x(0)=0, x(L)s2% ~

— =
To find the pressure gradient at z=1m

Solution:
Properties of water+ steam @10 MPa
Lo ALK

Hp = 8180 x 107" Pa.s,p, = 20.27 X 107 Pas,
3
vy = 1453 % 10"’:—“,1:_, = 1.803 x 1073 m*/kg, vy, = 0.01658 m’/kg v

= — = o
x(1m) -0.(‘{1/ -3 0.01 m/

dv, By, 001781001803

T Ixw

dv,
M3 G =2 3220 X 107° « 1,1 -M? = 1,(1-M})" = 1

G(1-x)D : GxD
=242x10" = Turbulentflow  Rey = — = 9866 = Turbulent flow

E e S A | Be— p  —

= =220 10""m*kg~"Pa™}
L

Rl’, =

f = 0079 Re;*** =356 x 107 f,=0079 Re;"#* =793 x 10
PUTRISS T P



Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=2m
G = 1000 kg/m?s, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m
Solution: Properties of water+ steam @10 MPa

iy = 81.80 X 1076 Pa.s, u, = 20.27 X 107 Pa.s,
3
vy = 1.453 X 10_3T—g, vy = 1.803 X 1072 m3/kg, vy, = 0.01658 m*/kg

dx 0.02 B
x(1m) = 0.01, —=——=0.01m™?

dz 2
dv, Ay, 0.01781-0.01803
dP = AP 1 x 105

= —2.20 x 10~°m3kg~*Pa"!

dv
M? = G?%x |d—lj’| =220x10°«1,1-M?=1, (1-MH)1=1

G(1—x)D s
Res = M— = 2.42 X 10° = Turbulent flow
f
GxD
Re; = —— = 9866 = Turbulent flow
Kg
fr = 0.079 Re;*%° = 3.56 x 1073 fs = 0.079 Re; %% = 7.93 x 1073

(Refer Slide Time: 33:20)

05 1 20125, gas
(X’”= (L] (”_'J (u ! = 188, ,
oy Mol } I~ N N
=[1+028X7)1 <0308 p=014 7P
— p

N
gb!i =14CX+X = T30.:Hrf: = 20)
g [ ’ —
‘f’r =14 rANTh 2'0“6/

fdpy 2
_(_) - ﬁ;;u‘(] _;-}JW $F = 1.047kPafm
¥ D !

Py 2, ..
_(E)F— %r;z_wg 9} = 1047kPa/m

Now,
_(dP ol l(_,.r.‘ .
) ~ (-1 @z ),

1-M*=1
b {2]’1‘4 - 21 —.1',\|'|.‘|| . (r]a] I[I - 1)y B x“r,,l ;
1-a } axf | (1-af ]/

WA L



0.5 0.125 0.875

v 1—x
Xee = <—f> <‘u—f> ( ) = 18.8

Vg Ug X
a=[1+028X%1"1=0308 B =0114 - a>p

¢ =1+CX +X? = 73044 (C = 20)

21454 L =206
Pr=1tyty

— (j—i) 2foGz(l — x)%v; pf = 1.047 kPa/m
- (‘;—IZD) gg G2x%v, 2 = 1.047 kPa/m
Now,
SN

iz), = a—m2)
1-M2~1

. (2xv,  2(1—x)vy da\ ((1—x)vy x*y,
v _{ a l1l-a }+(a)p{(1—a)2 B az}

(Refer Slide Time: 35:16)

.L' L 05 0125 1 -y 0.875
a=[1+028K7)1K, = ( IJ (W] ( )
v, iy ) | x

vl

‘v 05 . 0125 ‘l_r..m?: ur
a= 1+n.zn1(—’) (L) (—) ] '
¥ i X
)
e m ‘ et (028 % 071X E”‘l
0x, dx
r!x .I.'I-.U HI- ).125 ]—.l' M75 ) l"] “r).].'b l—I' -0.12% _]\
() ) e T T )
i %7
"a— L

. vy, 2(1-x)yy dat 1 -x) zr XU
i {G‘ ﬂj()‘f{ G}I)T(rriﬂ.q

(i:) § 11:)! > ] _/k”



0.5 0.125 0.875
% 1—x
@ =[1+028X°71]7, X, = (—f> <—Zf> ( )

Ug g X

0.5 0.125 0.875)9-7
v 1—x
a=|1+0.28 (—f> (“—f> ( )
Vg Ug X

60(_
ox

dx Vg Ug dx X
0.5 0.125 -0.125
173 Ur 1—x -1
oos(2) () (%) (@)
9 Hg

1—1

d 11).4
-2 071 — _ -2 -0.29
a [0.28 I {X} ] a [0.28 X 0.71X ax]

2xv, 2(1—x)v 0 1—-x)%v, x*
v*={ g _ 2 )f}+(_“) {( ) vy _ 29}=0.756m3/kg
a

a l1—a ox/p| (1—a)?

(dp) _ 1 {szx *}—756kP
dz/), (1 —M?) az’ S~ " a/m

(Refer Slide Time: 36:10)

= 1.047 kPa/m
o
=7.56 kPa/m
= [pga+ pr(1 - @)]gsin® = 483 kPa/m

= 1.047 +7.56 + 4.83 = 1344 kPa/m



(dP) = 1.047 kP
i), b a/m

(dp) — 7.56 kP
).~ a/m

dpP
- (E) = [pga + ps(1 = @)|gsin6 = 4.83 kPa/m
Z

dP
- (E) = 1.047 + 7.56 + 4.83 = 13.44 kPa/m

(Refer Slide Time: 36:48)

Modelling of Two-Phase Flow

—The Separated Flow Model
(numerical examples using the
Martinelli-Nelson correlation)
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Example-1: Water+steam @100 kPa, horizontal flow, D=2 mm, L= 10cm
G = 100 kg/m*s, x(0)=0, ¢" = 20 kW/m* y:
To find the pressure gradient at2=5¢em ~

Solution:
Properties of water+ steam @100 kPa

ty = 2629 % 107 Paus pr, = 12.26 % 107 Pas, by, = 2257.45 k] kg

v = 1043 % 107" m*/kg v, = 16939 m’ kg, vy, = 1693 m' kg
dv 49" »

—=——=043m " x(5cm) = 00221 -

dz GDhey

dv, Au, 16782-16939

P~ AP 'a 1000
W= G 2] =347 x 107« L 1= M = 1,(1-M) T = 1

=-157% 10" mkg™ P2t

=~ 6D
Regy)= I =706 = Laminar flow

y I - —
(Fio\= 16/Rey = 0023

Example-1: Water+steam @100 kPa, horizontal flow, D =2 mm, L =10 cm

G = 100 kg/m?s, x(0)=0, q"" = 20 kW /m?. To find the pressure gradient at z =5 cm
Solution: Properties of water+ steam @100 kPa

up=2829 %107 Pa.s, pu, = 12.26 X 107 Pa.s, hy, = 2257.45 k] kg

vr = 1.043 x 107 m3/kg, v, = 1.6939 m3/kg, v, = 1.693 m3 /kg

dx  4q"

== = 0. 443 m™%, x(Scm) = 0.0221
dz~ GDhy, m™, x(Sem)

dv, Avy; 1.6782-1.6939

~ = 157 x 10~ 5m3ke~1Pa1
7P = Ap 1000 1.57 x 10"°m°kg™"Pa

dv
M? = G2x d—§| =347x103«1, 1-M?=1, (1-M¥»'=1

D
Res = Il_ = 706 = Laminar flow
f

fro = 16/Re; = 0.023
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(34 0973"\

cpfo -gzqaj N

P\ 2
—( ) Hro 2 fri:m—S{)ﬁkPa/m
F

dz D
Now;
dP 1 I a'x ]
(1 M?)
1-Mi=1

C(2xyy 2A1=x)vy)  foa (U Ny xty,
u_[T" l-a I+( )[(1 )? —:JZ] /



a=0.73,=0973

¢, = 12.98
dpy _ 2ff
( dz) 12 620,92, = 3.06kPa/m
Now,
@), ==l z]
dz), 1-—M? dz
1-M?=1
= 2xvy4 B 2(1 —x)vf N (a_a) (1- x)va 3 x2vg
a 1—a (1—a)? a?
(Refer Slide Time: 39:27)
da
o 'é.xv 201-x)v da\ ((1-x)v 2%
e _ )t S AN ¢ f_* g 3
v -[ P }+(5X)PI =0y ﬂz] 01678m kg

& : { dx ] [}74'}kP
@) T g

da 6
ox
. (2xv,  2(1 = x)vy (1 —x)%vf xzvg
v —{ Y 1-a +(ax) A= )2 e = 0.1678 m/s

_ (d_P) G_;MZ){GZ x } = 0.743kPa/m
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dP
—(—) =3.06 kPa/m
z), v
dp
- (—) =0.743 kPa/m
z a g
(dP)
-[—] =0,

(dP> = 3.06 kP
).~ a/m

(dP> = 0.743 kP
i), a/m

(dP) _ 0
dz),

dP
— (E) = 3.06 + 0.743 + 0 = 3.8 kPa/m
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Example-2: Water+steam @100 kPa, vertical upward flow, D=2 cm, L=2m
G = 1000 kg/m®s, x(0)=0, x(L)=2% 7
To find the pressure gradient at 2=1m S

Solution: Properties of water+ steam @100 kPa

pp=2829%107° Pa.s,py = 1226 X 107° Pa.s,
vp = 1043 x 107 m*/kg v, = 1.6939 m*/kg, vy, = 1.693m’/kg -
dx 002

x(1m) = 0.01 —= =001m™
x(1m) v S m

dyy Wy L6 g
— 2 — — ] § 7 X { ~
dp AP 1000 o

M?=G%x l% =0.157,1 = M? = 0.843,(1 - M})" = 1186 /

Rego = Z—D = 706 = Laminar flow

fro = 16/Re; = 0023
Example-2: Water+steam @100 kPa, vertical upward flow, D=2 cm, L=2m
G = 1000 kg/m?s, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m
Solution: Properties of water+ steam @100 kPa
pr =2829x107° Pa.s, pu, = 12.26 x 107° Pa.s,
vy = 1.043 x 1073 m3/kg, v, = 1.6939 m3/kg, vf, = 1.693 m?/kg

dx 0.02

x(1m) = 0.01, —=——=0.01m™?
dz 2

dv, Ay, ~ 1.6782-1.6939

dP = AP 1000

= —1.57 X 10~>m3kg~1Pa™?
5 5 dvy
M? = G%x |ﬁ| =0.157, 1 —M? = 0.843, (1—-M?)"1 =1.186

GD
Res, = Il_ = 706 = Laminar flow
f

fro = 16/Re; = 0.023
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ax 067 8 =0943)

4){0 - I; 6 e
dP\  2f,
—(d ) g G* fcj)?;*:o._wzzkpa/m
z F 9%
da _
ax

[2){]{,I 2(1—x)vf]+(a )\[(l—x)zvf xzbd,} 0098??1‘/1'%}
dx

dP ,dx
_( ) {I—MZ{ b]-l.lﬁikf’a{m

a = 0.67,0 = 0.943

$2, = 5.6
dp 2f;

(dz) 12 v, 62, = 0.1322 kPa/m
Now,
Jda —6
ox

. (2xvy  2(1 =)y da\ ((1—x)vy x*y,
v —{ 7 1-a +(—) A= )2 -— = 0.098 m/s

dp 1 X
_ (_) _ {GZ—ZU*} = 1.167 kPa/m
a
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= 0.1322 kPa/m

1.167 kPa/m

[pgo: +ps(1- a)]g sinf = 3.105 kPa/m

|

T e T e _—
S

S — — e
I

=0.1322 + 1.167 + 3.105 = 440 kPa/m

(dP> = 0.1322 kP
).~ a/m

(dP> = 1.167 kP
i), b a/m

dP
N (E) = [pga + ps(1 — a)]gsin6 = 3.105 kPa/m

dP
— (E) = 0.1322 + 1.167 + 3.105 = 4.4 kPa/m
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Example-3; Waterssteam @10 MPa, vertical upward flow, D=2 cm, L=2m
G = 1000 kg/m*s, x(0)=0, x{L}=2% s
To find the pressure gradient at z=1m ’

Solution:
Propertles of water+ steam @10 MPa

fy = 8180 % 107" Pas, e, = 20.27 % 107" Pacs,
Vs

v = 1453 x 10 “::.:'ﬂ = 1803 107F m' fkg, vy, = 001658 m' kg~
" [

dx 0,02 :
x(1m) =001, = =001 m™
de 2

diy by DOUBI-00I803
AT ixwr e e
dv,
P

s

M? =G

‘=2.20xm S@Ll-M=1(1-M) =l

GD .
Rey, = . = 244 10° = Turbulent flow

fra = fr = 0079 Re7 ™ = 0.0036

Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=2m
G = 1000 kg/m?s, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m
Solution: Properties of water+ steam @10 MPa

iy = 81.80 X 107° Pa.s, u, = 20.27 X 107° Pa.s,

3
v = 1453 x 107 =, vy = 1.803 x 1072 m*/kg, vyq = 0.01658 m*/kg

dx 0.02
x(1m) =0.01, —=——=0.01m™?
dz 2
dv, Ay, 0.01781-0.01803
~ - = —220%10~°m3ka-1Pa-1
7P = Ap X105 2.20x107"m°kg~"Pa
dvy
M? = G%x |—| =220x10°«1,1-M?=1, (1-MH)1=1

dP

GD
Reso = i 2.44 x 10° = Turbulent flow
f

fro = 0.079Re;*?° = 0.036
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g Fetrn
a =001, f=0111 e
(p}ﬂ :ﬂg 5/

(dp)l_- 2}}0 %)= 0697 kPa/
— — = — f !O.— . . a/m

dzj. D v
i'éa ""-.H *-2
o/ p

3
a 72 } 0.099m*/kg

(dp /P
“\ 7 { =0 H'i kPa/m
a / —

x 2xyy 2(1- x)vf] (a_aj [(l—x)zvf r,
v = #|=-

a~01p=0114

¢?, = 1.35
dp szo
(dz) D G*vrdf, = 0.697 kPa/m
Now,
da
ax
* ZXVg 2(1 - X)Uf Ja (1 — X)va xzvg
v _{ a B 1—-« +(_> (1-6!)2 - a2 = 0.099 m/s
(dp) - {02 o } = 0.035 kP
dz), 1—M? 2z’ =Y a/m
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V01250475

£~ s 03 u 5
=Y 4 1x My

Xl‘/ - ("-l) [MJ ( x ] - \]38’
a=[1+028X""11 = 0308, f=0114

=1+ CX+ X =T73044 (C=20)
21,8, _
¢y =1+5+; =206

P\ 2f, ,
—(—)F— Fa-(l - x)tvy ¢F = 1.047 kPa/m

Py 2, L,
- (E)F_ %rﬁ‘.\"vg ¢3 = 1.047kPa/m

Now;
dP) 1 dx
_(_ =—.{n-—:-'}
dz . (1=-M50 dz

1=-M=1

_{211;, 21 - x)uy) (r‘]fr] ({1 =20y x"r,,]
S a - B

1-a 5.— Ji{'w_r\il—u}" at

0.5 0.125 0.875
v 1—x
Xtt = _f H_f ( ) == 18-8
Ug ‘u.g X

a=[1+028%x%1"1=0308 p=0.114

P2 =1+CX+X?=730.44 (C = 20)

2—1+C+ 1 =2.06
d)f_ X XZ_ .

dapP _ fo 5 , )
_(E>F = - G*(1 = 2)*v; ¢f = 1.047 kPa/m

dP 2
_ <_> = ﬁszzvg qb; = 1.047 kPa/m
F

dz D
Now,

dP 1 dx
(&) -l

dz/, (1 —M?) dz
1-M?*=~1

= {vag _ 2(1 - x)vf} N (a_a) {(1 — x)%v; B x2vg}

a 1—a 0x/p | (1—a)? a?
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= 0.697 kPa/m

0.035 kPa/m

[pgaf +ps(1- a)]g sinf = 6.12 kPa/m

|

T e T e _—
S

S — — [ —
1l

=0.697 +0.035 + 6.12 = 6.85 kPa/m

(dP> = 0.697kP
).~ a/m

(dP> = 0.035 kP
i), a/m

dP
- (E) = [pga + ps(1 — @)]gsin 6 = 6.12kPa/m

dp
- (E) — 0.697 + 0.035 + 6.12 = 6.85 kPa/m



