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The Separated Flow Model (contd. ) 

 

Welcome back to the course on Two-Phase flow with phase change and conventional and 

miniature channels. We were discussing the modelling of two-phase flow in that we have 

discussed the homogeneous model and then the separated flow model with Lockhart 

Martinelli correlation. 
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Today we will continue the discussion of Separated Flow Model with another correlation 

Martinelli and Nelson correlation and after that we will solve some numerical examples 

with Lockhart Martinelli correlation and Martinelli and Nelson correlation. 
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Martinelli and Nelson correlation was obtained from Lockhart Martinelli correlation and 

it was developed for pressure drop in boiling channels. It applies to steam water mixture 

at all pressures between the atmospheric pressure and the critical pressure which is 

approximately 221 bar. And, this is of very much practical use because steam water 

mixture is used in many industrial applications like boilers and the boiling conditions as 

well as condensing conditions. 

The air water data of Lockhart and Martinelli, it was assumed to represent steam water 

mixture at atmospheric pressure and at the critical pressure we know that there is no 

distinction between liquid and gas.  

𝜙𝑓𝑜
2 = 1,    𝑋𝑡𝑡 = (

1 − 𝑥

𝑥
)

0.875

 

Lockhart and Martinelli assumed turbulent-turbulent regime which is exist in most of the 

industrial applications involvement conventional channels. As we will see in the numerical 

examples in case of conventional channels with realistic values we will get both phases as 

turbulent. So, then they plotted phi f o square as a function of X tt for P equal to 1 bar and 

P equal to P critical and then for intermediate pressures they interpolated. Now how did 

they get phi f o square? 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2{(𝑣}𝑓 + 𝑥𝑣𝑓𝑔) 

− (
𝑑𝑃

𝑑𝑧
)

𝐹,𝑓𝑜
=

2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓 , − (

𝑑𝑃

𝑑𝑧
)

𝐹,𝑓
=

2𝑓𝑓

𝐷
𝐺2(1 − 𝑥)2𝑣𝑓 

𝜙𝑓𝑜
2 = (

𝑑𝑃

𝑑𝑧
)

𝐹
(

𝑑𝑃

𝑑𝑧
)

𝐹,𝑓𝑜
⁄ =

𝑓𝑇𝑃

𝑓𝑓𝑜
(1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) 

 

𝜙𝑓
2 = (

𝑑𝑃

𝑑𝑧
)

𝐹
(

𝑑𝑃

𝑑𝑧
)

𝐹,𝑓
⁄ =

𝑓𝑇𝑃

𝑓𝑓(1 − 𝑥)2
(1 + 𝑥

𝑣𝑓𝑔

𝑣𝑓
) 

𝜙𝑓𝑜
2

𝜙𝑓
2 =

𝑓𝑓

𝑓𝑓𝑜

(1 − 𝑥)2 

𝑓𝑓𝑜 = 0.079 𝑅𝑒𝑓𝑜
−1/4

= 0.079 (
 𝜇𝑓

𝐺𝐷
)

1/4

,    𝑓𝑓 = 0.079 𝑅𝑒𝑓
−1/4

= 0.079 (
 𝜇𝑓

𝐺(1 − 𝑥)𝐷
)

1/4

 

𝜙𝑓𝑜
2 = 𝜙𝑓

2 (1 − 𝑥)1.75 

 



So, Lockhart Martinelli correlation gives phi f square and Martinelli Nelson have used phi 

f o square because phi f o square is more convenient in case of boiling or condensing 

channels because the local quality is difficult to know, but the overall flow rate is known. 

As you can see in phi f o square in the expression for in dP by d z f f o when we want to 

evaluate there is no x here, but in this dP by d z is f coma f in this there is local quality is 

invert. So, to calculate this quantity we will need to know local quality whereas, to 

calculate this pressure gradient we do not need any local quality. 

So, this pressure gradient is easier to evaluate in case of boiling channels and therefore, it 

is more convenient to use phi f o square. So, how do we obtain phi f o square from phi f 

square? For that we can derive a relation phi f o square we have derived this earlier; phi f 

o square is given by this and phi f square is given by this expression and then if we take 

the ratio then we get this relation between phi f o square and phi f square. And, now we 

need this ratio of the friction factors.  

So, since it is turbulent-turbulent regime using that we get f f o and f f and then we take 

the ratio and then we get this expression. So, they got phi f o square for atmospheric 

pressure as well as critical pressure and then by interpolation they got phi f o square for 

intermediate pressures. 
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This is the graph given by Martinelli and Nelson and here we have on the horizontal axis 

we have mass quality on the vertical axis we have phi f o square and these are for different 



pressures, this is for atmospheric pressure and then we have higher pressure and still higher 

pressures up to very high pressures. Here we have the same data in the form of tables. So, 

by knowing the quality and the pressure we can get phi f o square. 
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Martinelli and Nelson also plotted the void fraction alpha; again in a similar method they 

got alpha for atmospheric pressure using Lockhart Martinelli correlation and for critical 

pressure there is no distinction between the phases. So, and then by interpolation they got 

for the intermediate pressures.  

So, we have mass quality on the horizontal axis, void fraction on the vertical axis, the 

horizontal scale is logarithmic, it is a semi log plot and we have alpha for different 

pressures; so, for horizontal for atmospheric pressure and higher pressures and very high 

pressures. Actually we should sketch the plot of alpha versus x on a linear scale to see how 

it varies. It will be like this; 0 1 and here it is 0 1 here we have alpha at x equal to 0 alpha 

is equal to 0 and at x equal to 1 alpha is equal to 1, but it does not vary like that does not 

vary linearly.  

At critical pressure we get a linear graph, but at lower pressures we get this type of 

variation. So, for low values of x as x increases alpha increases very fast the slope is high 

dou by alpha by dou by x at constant pressure and this is the slope of the curve and this is 

very high for low values of x and for higher values of x the slope decreases and then for 



very high values of x the slope is very low, but for very high values even for not so high 

values of x alpha becomes very close to 1 ok. 
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Calculation of pressure gradients due to acceleration and gravity: 

(
1 − 𝛼

𝛼
) = (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑓
) (

𝑈𝑔

𝑈𝑓
) = (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑓
) 𝑆       

(
1 − 𝛽

𝛽
) = (

1 − 𝑥

𝑥
) (

𝜌𝑔

𝜌𝑓
) ⇒ 𝛽 =

𝑥𝑣𝑔

𝑣𝑓 + 𝑥𝑣𝑓𝑔
 

(
1 − 𝛼

𝛼
) = (

1 − 𝛽

𝛽
) 𝑆 

𝐻𝐸𝑀: 𝑆 = 1;    ℎ𝑒𝑛𝑐𝑒 𝛼 = 𝛽 

𝑆𝐹𝑀: 𝑆 > 1;      ℎ𝑒𝑛𝑐𝑒 𝛼 < 𝛽 

So, now how to calculate pressure gradient due to acceleration and gravity? For pressure 

gradient due to acceleration and gravity we need the void fraction and its partial 

derivatives. The void fraction alpha is given by this: the fundamental void quality relation 

which we have derived before in the first lecture and this quantity the ratio of the velocities 

of the phases is called the slip ratio S and usually S is greater than 1, for HEM we assume 

that both phases move with the same velocity. 



So, S is equal to 1 and then separated flow model we account for the difference of 

velocities and S is usually greater than 1 in horizontal flow as well as vertical upward flow 

or gas will move faster and liquid will move slower. So, slip ratio will be greater than 1. 

Now if we put S equal to 1 then the void fraction that we get is the volumetric quality and 

1 minus beta upon beta is equal to this expression and if we solve for beta we get this 

expression, from this we can calculate beta.  

And here this expression this is 1 minus beta upon beta. So, we get 1 minus alpha upon 

alpha is equal to 1 minus beta upon beta and to S. For homogeneous model S equal to 1, 

so, we get alpha equal to beta and for separated flow model S is greater than 1. So, alpha 

should be less than beta. 
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Calculation of pressure gradients due to acceleration and gravity using Lockhart-Martinelli 

correlation: 

𝛼 = [1 + 0.28X0.71]−1,  𝛽 =
𝑥𝑣𝑔

𝑣𝑓 + 𝑥𝑣𝑓𝑔
 

𝑋𝑣𝑣 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
μ𝑓

μ𝑔
)

0.5

(
1 − 𝑥

𝑥
)

0.5

,      𝑋𝑡𝑡 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
μ𝑓

μ𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

 

(
𝜕α

𝜕𝑥
)

𝑃
= (

𝜕α

𝜕𝑋
)

𝑃
(

𝜕𝑋

𝜕𝑥
)

𝑃
 



𝑣∗ = {
2𝑥𝑣𝑔

α
−

2(1 − 𝑥)𝑣𝑓

(1 − α)
} + (

δα

δ𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − α)2
−

𝑥2𝑣𝑔

α2
} 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= (

1

1 − 𝑀2
) {𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= [ρ𝑔α + ρ𝑓(1 − α)]𝑔 𝑠𝑖𝑛𝜃 

Now, if we use the Lockhart Martinelli correlation then we can find alpha from the graphs 

given by Lockhart Martinelli or we can use a correlation for example, the Butterworth 

correlation. This was obtained by fitting the graphs of Lockhart and Martinelli and beta 

can be obtained from this expression and then we should check whether alpha is less than 

beta or not. Now depending on the flow regime we can find capital X, to capital X the 

Martinelli parameter Xvv is equal to this and X tt is given by this expression as we know 

and then by substituting the appropriate correlation here we can express alpha in terms of 

properties and the quality. 

So, we get alpha as a function of pressure and quality and then we need this partial 

derivative dou by alpha by dou by x at constant pressure. So, this as I have just explained 

by finding the slope of the graph of alpha versus x for a constant pressure we can get the 

value of this partial derivative or if we are not using graph, but using a correlation like this 

correlation then we differentiate it after substituting for the Martinelli parameter we 

differentiate with respect to quality and by using the chain rule by multiplying these 2 

derivatives we get the this derivative.  

And then we substitute it here and get v star and then using the value of v star here we get 

the pressure gradient due to acceleration; M square has to be evaluated for that there is a 

long and complicated expression. So, in this course we will calculate M square from 

homogeneous model and use the same as M square here also as a rough estimate, but for 

a more accurate calculation M square has to be obtained using the expression for separated 

flow model. Now, this alpha in the pressure gradient due to gravity, this alpha can be 

substituted and then we can get the pressure gradient due to gravity ok. 
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Calculation of pressure gradients due to acceleration and gravity using Lockhart-Martinelli 

correlation: 

𝛼 = 𝛼(𝑥, 𝑃) − 𝑓𝑟𝑜𝑚 𝑔𝑟𝑎𝑝ℎ 

(
∂α

∂𝑥
)

𝑃
≈

Δα

Δ𝑥
−  𝑓𝑟𝑜𝑚 𝑔𝑟𝑎𝑝ℎ 𝑏𝑦 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑡𝑖𝑜𝑛 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

(1 − 𝛼)
} + (

𝛿𝛼

𝛿𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= (

1

1 − 𝑀2
) {𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 𝑠𝑖𝑛𝜃 

Now, if we use Martinelli Nelson correlation then we can get alpha from graph for a given 

quality and pressure and then by finding the slope of the graph we can get this partial 

derivative by taking 2 nearby values of the quality and corresponding values of the void 

fraction and then dividing we can get this partial derivative and then substitute it here and 

calculate v star then substitute v star here. And, calculate the pressure gradient due to 

acceleration the pressure gradient due to gravity can be calculated by using the void 

fraction obtained from the graph. 
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Now, let us consider some numerical examples using Lockhart Martinelli correlation. 
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Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 10 cm 

𝐺 = 100 𝑘𝑔/m2𝑠, x(0)=0, 𝑞′′ = 20 𝑘𝑊/m2. To find the pressure gradient at z = 5 cm 

Solution:  Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 𝑃𝑎. 𝑠,  𝜇𝑔 = 12.26 × 10−6 𝑃𝑎. 𝑠,  ℎ𝑓𝑔 = 2257.45 𝑘𝐽/𝑘𝑔  

𝑣𝑓 = 1.043 × 10−3 m3/𝑘𝑔,  𝑣𝑔 = 1.6939 m3/𝑘𝑔, 𝑣𝑓𝑔 = 1.693 m3/𝑘𝑔 

𝑑𝑥

𝑑𝑧
=

4𝑞′′

𝐺𝐷ℎ𝑓𝑔
= 0.  443 m−1,  𝑥(5cm) = 0.0221 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
1.6782-1.6939

1000
= −1.57 × 10−5m3𝑘g−1𝑃a−1 

𝑅𝑒𝑓 =
𝐺(1 − 𝑥)𝐷

𝜇𝑓
= 691 ⇒ 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤            𝑅𝑒𝑔 =

𝐺𝑥𝐷

𝜇𝑔
= 360

⇒ 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤  

𝑓𝑓 = 16 𝑅𝑒𝑓⁄ = 0.023                                                   𝑓𝑔 = 16 𝑅𝑒𝑔⁄ = 0.044 
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𝑋𝑣𝑣 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.5

(
1 − 𝑥

𝑥
)

0.5

= 0.793 

𝜙𝑔
2 = 1 + 𝐶 𝑋 + 𝑋2 = 5.59 (𝐶 = 5)  

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑔

𝐷
𝐺2𝑥2𝑣𝑔 𝜙𝑔

2 = 2.034 𝑘𝑃𝑎/𝑚 

Now, 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

1 − 𝑀2 ≈ 1 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} 
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𝛼 = [1 + 0.28 𝑋0.71]−1 =0.808,    𝑋𝑣𝑣 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.5

(
1−𝑥

𝑥
)

0.5

 

𝛼 = [1 + 0.28 {(
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.5

(
1 − 𝑥

𝑥
)

0.5

}

0.71

]

−1

 

𝜕𝛼

𝜕𝑥
= −𝛼−2 [0.28

𝑑

𝑑𝑥
{𝑋}0.71] = −𝛼−2 [0.28 × 0.71𝑋−0.29

𝜕𝑋

𝜕𝑥
] 

𝜕𝑋

𝜕𝑥
= (

𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.5
𝑑

𝑑𝑥
{(

1 − 𝑥

𝑥
)

0.5

} = 0.5 (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.5

(
1 − 𝑥

𝑥
)

−0.5

(
−1

𝑥2
) 

∴
𝜕𝛼

𝜕𝑥
= 5.97 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} = 0.236 m3/𝑘𝑔 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} = 1.045 𝑘𝑃𝑎/𝑚 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 2.034 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 1.045 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= 0 

− (
𝑑𝑃

𝑑𝑧
) = 2.034 + 1.045 + 0 = 3.08 𝑘𝑃𝑎/𝑚 
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Example-2: Water+steam @100 kPa, vertical upward flow, D=2 cm, L=2m 

𝐺 = 1000 𝑘𝑔/m2𝑠, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 𝑃𝑎. 𝑠,  𝜇𝑔 = 12.26 × 10−6 𝑃𝑎. 𝑠,   

𝑣𝑓 = 1.043 × 10−3 m3/𝑘𝑔,  𝑣𝑔 = 1.6939 m3/𝑘𝑔, 𝑣𝑓𝑔 = 1.693 m3/𝑘𝑔 

𝑥(1m) = 0.01,   
𝑑𝑥

𝑑𝑧
=

0.02

2
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
1.6782-1.6939

1000
= −1.57 × 10−5𝑚3𝑘𝑔−1𝑃𝑎−1 



𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 0.157,  1 − M2 = 0.843,  (1 − M2)−1 = 1.186 

𝑅𝑒𝑓 =
𝐺(1 − 𝑥)𝐷

𝜇𝑓
= 6.99 × 105 ⇒ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤 

𝑅𝑒𝑔 =
𝐺𝑥𝐷

𝜇𝑔
= 1.63 × 104 ⇒ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤  

𝑓𝑓 = 0.079 𝑅𝑒𝑓
−0.25 = 2.73 × 10−3                 𝑓𝑔 = 0.079 𝑅𝑒𝑔

−0.25 = 6.99 × 10−3 
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𝑋𝑡𝑡 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

= 2.05 

𝜙𝑔
2 = 1 + 𝐶 𝑋 + 𝑋2 = 46.2 (𝐶 = 20)  

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑔

𝐷
𝐺2𝑥2𝑣𝑔 𝜙𝑔

2 = 5.47 𝑘𝑃𝑎/𝑚 

Now, 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

1 − 𝑀2 ≈ 0.843 



𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} 
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𝛼 = [1 + 0.28 𝑋0.71]−1,   𝑋𝑡𝑡 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

 

𝛼 = [1 + 0.28 {(
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

}

0.71

]

−1

 

𝜕𝛼

𝜕𝑥
= −𝛼−2 [0.28

𝑑

𝑑𝑥
{𝑋}0.71] = −𝛼−2 [0.28 × 0.71𝑋−0.29

𝜕𝑋

𝜕𝑥
] 

𝜕𝑋

𝜕𝑥
= (

𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125
𝑑

𝑑𝑥
{(

1 − 𝑥

𝑥
)

0.875

}

= 0.875 (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

−0.125

(
−1

𝑥2
) 

∴
𝜕𝛼

𝜕𝑥
= 20.8 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} = 0.246 m3/𝑘𝑔 



− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} = 2.92 𝑘𝑃𝑎/𝑚 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 5.46 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 2.92 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃 = 2.99 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
) = 5.46 + 2.92 + 2.99 = 11.37 𝑘𝑃𝑎/𝑚 
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=2m 

𝐺 = 1000 𝑘𝑔/m2𝑠, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m 

Solution: Properties of water+ steam @10 MPa 

𝜇𝑓 = 81.80 × 10−6 𝑃𝑎. 𝑠,  𝜇𝑔 = 20.27 × 10−6 𝑃𝑎. 𝑠,   

𝑣𝑓 = 1.453 × 10−3 m3

kg
,  𝑣𝑔 = 1.803 × 10−2 m3/𝑘𝑔, 𝑣𝑓𝑔 = 0.01658 m3/𝑘𝑔 

𝑥(1m) = 0.01,   
𝑑𝑥

𝑑𝑧
=

0.02

2
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
0.01781-0.01803

1 × 105
= −2.20 × 10−9𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 2.20 × 10−5 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

𝑅𝑒𝑓 =
𝐺(1 − 𝑥)𝐷

𝜇𝑓
= 2.42 × 105 ⇒ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤            

 𝑅𝑒𝑔 =
𝐺𝑥𝐷

𝜇𝑔
= 9866 ⇒ 𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑓𝑙𝑜𝑤  

𝑓𝑓 = 0.079 𝑅𝑒𝑓
−0.25 = 3.56 × 10−3                                𝑓𝑔 = 0.079 𝑅𝑒𝑔

−0.25 = 7.93 × 10−3 
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𝑋𝑡𝑡 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

= 18.8 

𝛼 = [1 + 0.28 𝑋0.71]−1 = 0.308  𝛽 = 0.114 →  𝛼 > 𝛽 

𝜙𝑔
2 = 1 + 𝐶 𝑋 + 𝑋2 = 730.44 (𝐶 = 20)  

𝜙𝑓
2 = 1 +

𝐶

𝑋
+

1

𝑋2
= 2.06 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓f

𝐷
𝐺2(1 − 𝑥)2𝑣f 𝜙f

2 = 1.047 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑔

𝐷
𝐺2𝑥2𝑣𝑔 𝜙𝑔

2 = 1.047 𝑘𝑃𝑎/𝑚 

Now, 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

1 − 𝑀2 ≈ 1 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} 
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𝛼 = [1 + 0.28 𝑋0.71]−1,   𝑋𝑡𝑡 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

 

𝛼 = [1 + 0.28 {(
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

}

0.71

]

−1

 

𝜕𝛼

𝜕𝑥
= −𝛼−2 [0.28

𝑑

𝑑𝑥
{𝑋}0.71] = −𝛼−2 [0.28 × 0.71𝑋−0.29

𝜕𝑋

𝜕𝑥
] 

𝜕𝑋

𝜕𝑥
= (

𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125
𝑑

𝑑𝑥
{(

1 − 𝑥

𝑥
)

0.875

}

= 0.875 (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

−0.125

(
−1

𝑥2
) 

∴
𝜕𝛼

𝜕𝑥
= 257 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} = 0.756 m3/𝑘𝑔 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} = 7.56 𝑘𝑃𝑎/𝑚 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 1.047 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 7.56 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃 = 4.83 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
) = 1.047 + 7.56 + 4.83 = 13.44 𝑘𝑃𝑎/𝑚 
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Example-1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 10 cm 

𝐺 = 100 𝑘𝑔/m2𝑠, x(0)=0, 𝑞′′ = 20 𝑘𝑊/m2. To find the pressure gradient at z = 5 cm 

Solution:  Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 𝑃𝑎. 𝑠,  𝜇𝑔 = 12.26 × 10−6 𝑃𝑎. 𝑠,  ℎ𝑓𝑔 = 2257.45 𝑘𝐽/𝑘𝑔  

𝑣𝑓 = 1.043 × 10−3 m3/𝑘𝑔,  𝑣𝑔 = 1.6939 m3/𝑘𝑔, 𝑣𝑓𝑔 = 1.693 m3/𝑘𝑔 

𝑑𝑥

𝑑𝑧
=

4𝑞′′

𝐺𝐷ℎ𝑓𝑔
= 0.  443 m−1,  𝑥(5cm) = 0.0221 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
1.6782−1.6939

1000
= −1.57 × 10−5m3𝑘g−1𝑃a−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 3.47 × 10−3 ≪ 1,  1 − 𝑀2 ≈ 1,  (1 − 𝑀2)−1 ≈ 1 

𝑅𝑒𝑓 =
𝐺𝐷

𝜇𝑓
= 706 ⇒ 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤             

𝑓𝑓o = 16 𝑅𝑒𝑓⁄ = 0.023       
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𝛼 ≈ 0.73, 𝛽 = 0.973 

𝜙𝑓𝑜
2 = 12.98 

− (
𝑑𝑝

𝑑𝑧
)

𝐹
=

2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓𝜙𝑓𝑜

2 = 3.06𝑘𝑃𝑎/𝑚 

Now, 

− (
𝑑𝑝

𝑑𝑧
)

a
=

1

1 − 𝑀2
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

1 − 𝑀2 ≈ 1 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} 
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𝜕𝛼

𝜕𝑥
= 6 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} = 0.1678 𝑚/𝑠 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} = 0.743𝑘𝑃𝑎/𝑚 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 3.06 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 0.743 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= 0 

− (
𝑑𝑃

𝑑𝑧
) = 3.06 + 0.743 + 0 = 3.8 𝑘𝑃𝑎/𝑚 
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Example-2: Water+steam @100 kPa, vertical upward flow, D=2 cm, L=2m 

𝐺 = 1000 𝑘𝑔/m2𝑠, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 𝑃𝑎. 𝑠,  𝜇𝑔 = 12.26 × 10−6 𝑃𝑎. 𝑠,   

𝑣𝑓 = 1.043 × 10−3 m3/𝑘𝑔,  𝑣𝑔 = 1.6939 m3/𝑘𝑔, 𝑣𝑓𝑔 = 1.693 m3/𝑘𝑔 

𝑥(1m) = 0.01,   
𝑑𝑥

𝑑𝑧
=

0.02

2
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
1.6782-1.6939

1000
= −1.57 × 10−5𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 0.157,  1 − M2 = 0.843,  (1 − M2)−1 = 1.186 

𝑅𝑒𝑓o =
𝐺𝐷

𝜇𝑓
= 706 ⇒ 𝐿𝑎𝑚𝑖𝑛𝑎𝑟 𝑓𝑙𝑜𝑤             

𝑓𝑓o = 16 𝑅𝑒𝑓⁄ = 0.023       
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𝛼 ≈ 0.67, 𝛽 = 0.943 

𝜙𝑓𝑜
2 = 5.6 

− (
𝑑𝑝

𝑑𝑧
)

𝐹
=

2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓𝜙𝑓𝑜

2 = 0.1322 𝑘𝑃𝑎/𝑚 

Now, 

𝜕𝛼

𝜕𝑥
= 6 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} = 0.098 m/s 

− (
𝑑𝑝

𝑑𝑧
)

a
=

1

1 − 𝑀2
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} = 1.167 kPa/m 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 0.1322 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 1.167 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃 = 3.105 kPa/m 

− (
𝑑𝑃

𝑑𝑧
) = 0.1322 + 1.167 + 3.105 = 4.4 𝑘𝑃𝑎/𝑚 
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Example-3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=2m 

𝐺 = 1000 𝑘𝑔/m2𝑠, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m 

Solution: Properties of water+ steam @10 MPa 

𝜇𝑓 = 81.80 × 10−6 𝑃𝑎. 𝑠,  𝜇𝑔 = 20.27 × 10−6 𝑃𝑎. 𝑠,   

𝑣𝑓 = 1.453 × 10−3 m3

kg
,  𝑣𝑔 = 1.803 × 10−2 m3/𝑘𝑔, 𝑣𝑓𝑔 = 0.01658 m3/𝑘𝑔 

𝑥(1m) = 0.01,   
𝑑𝑥

𝑑𝑧
=

0.02

2
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
0.01781-0.01803

1 × 105
= −2.20 × 10−9𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 2.20 × 10−5 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

𝑅𝑒𝑓o =
𝐺𝐷

𝜇𝑓
= 2.44 × 105 ⇒ Turbulent 𝑓𝑙𝑜𝑤             

𝑓𝑓o = 0.079𝑅𝑒𝑓
−0.25 = 0.036       
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𝛼 ≈ 0.1, 𝛽 = 0.114 

𝜙𝑓𝑜
2 = 1.35 

− (
𝑑𝑝

𝑑𝑧
)

𝐹
=

2𝑓𝑓𝑜

𝐷
𝐺2𝑣𝑓𝜙𝑓𝑜

2 = 0.697 𝑘𝑃𝑎/𝑚 

Now, 

𝜕𝛼

𝜕𝑥
= 2 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} = 0.099 m/s 

− (
𝑑𝑝

𝑑𝑧
)

a
=

1

1 − 𝑀2
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} = 0.035 kPa/m 
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𝑋𝑡𝑡 = (
𝑣𝑓

𝑣𝑔
)

0.5

(
𝜇𝑓

𝜇𝑔
)

0.125

(
1 − 𝑥

𝑥
)

0.875

= 18.8 

𝛼 = [1 + 0.28 𝑋0.71]−1 = 0.308,  𝛽 = 0.114 

𝜙𝑔
2 = 1 + 𝐶 𝑋 + 𝑋2 = 730.44 (𝐶 = 20)  

𝜙𝑓
2 = 1 +

𝐶

𝑋
+

1

𝑋2
= 2.06 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓f

𝐷
𝐺2(1 − 𝑥)2𝑣f 𝜙f

2 = 1.047 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑔

𝐷
𝐺2𝑥2𝑣𝑔 𝜙𝑔

2 = 1.047 𝑘𝑃𝑎/𝑚 

Now, 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
=

1

(1 − 𝑀2)
{𝐺2

𝑑𝑥

𝑑𝑧
𝑣∗} 

1 − 𝑀2 ≈ 1 

𝑣∗ = {
2𝑥𝑣𝑔

𝛼
−

2(1 − 𝑥)𝑣𝑓

1 − 𝛼
} + (

𝜕𝛼

𝜕𝑥
)

𝑃
{

(1 − 𝑥)2𝑣𝑓

(1 − 𝛼)2
−

𝑥2𝑣𝑔

𝛼2
} 
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− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 0.697𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 0.035 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= [𝜌𝑔𝛼 + 𝜌𝑓(1 − 𝛼)]𝑔 sin 𝜃 = 6.12kPa/m 

− (
𝑑𝑃

𝑑𝑧
) = 0.697 + 0.035 + 6.12 = 6.85 𝑘𝑃𝑎/𝑚 

 


