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Lecture — 04
The Separated Flow Model

Welcome back to the course on Two-Phase flow with phase change in conventional and miniature

channels. We are discussing the modeling of two phase flow and last time we have discussed the
homogeneous model.
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Modelling of Two-Phase Flow
— The Separated Flow Model
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Separated Flow Model

* Two phases flow separately and interact with each other
« Velocities of the two phases can be different

* Thermal equilibrium between phases

* Properties of the two phases evaluated separately

* Correlations for two-phase frictional multiplier

+ Correlations for void fraction or slip ratio



Following are its assumptions:
» Two phases flow separately and interact with each other.

» Velocities of the two phases can be different but there will be thermal equilibrium between
phases. This means if the two phases are liquid and gas phases of the same substance
(water and steam) then both will be at the saturation temperature corresponding to the local
pressure.

» Properties of the two phases will be evaluated separately
» Correlations for two-phase frictional multiplier will be used.

» Correlations for void fraction or slip ratio will be used. Void fraction is required to

calculate the gravitational and acceleration pressure gradients.
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So, consider a two phase flow flowing through a channel (figure 1). So, as explained in earlier
lecture, z coordinate is the axial coordinate; the angle with the horizontal is theta. The channel
cross section area is A and the cross sectional area occupied by the liquid phases As and the area
occupied by the gas phases Ag. The mass flow rate of the gas is nig, velocity of the gas phase is
Ug, mass flow rate of the liquid phase is nif, velocity of liquid phase is Ur and the pressure at the
inlet is P, the length of the element is dz. The pressure at the outlet is P+dP, velocities are Ug+dUq

and Us+dUs and mass flow rates are ni,; + dni, and mis + dnig. The wall shear stress is t,,, which



Figure 1: Two phase mixture flowing through a pipe

we will divide into two parts t,,, and t,,, also as mentioned before the interactions between the

two phases are taken into account in this model.

So, there will be wall shear stress at the interface, also | should mention that here the two phases
are shown separately. Gas phase is here, liquid phase is here, but this does not mean that this
model is only for stratified flow; it is applicable for other types of like flow patterns also; like
annular flow. This model is better for the flow patterns in which the phases are separated, but it

need not necessarily be stratified flow. So, this is just a representation; it is a schematic diagram.
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Mass balance
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So, now consider the mass balance:

T = 1y + 1y
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Momentum balance for gas phase &
-A dpjb (Ag +dAg)(P +dP) - TgWPgwd7 rg}ngdz
—pghgdz gsinf - U gdiig = 1hgdUg

= AydP - Pqu Tow dez rq,qud7 pJAqdzgsmG
=0, gdmg + quU o (1)

Momentum balance for liquid phase
~AgdP= (A +dAp)(P + dP) ~(i7Prdz - Ttz T
-ppAsdz gsin@ = Updiny = 1y dUy

= ArdP - PdAs — 7, Py dz — 17 Prydz — ppAsdz g sin
= Updmg + mpdUs....... (2)/,

Momentum balance for gas phase:
—AgdP + (Ag + dAg)(P + dP) — T4y Pywdz — 145 Pyrdz — pgAgdz g sin @ — Uydmy = mydU,

= AydP — PdAy — 14, Pywdz — T4 Pyrdz — pgAgdz g sin@ = Ugdmy + mydUy... ...

Momentum balance for liquid phase:



= Afdp - PdAf - TfWPdeZ — ngpfgdZ - pfAdeg sinf = demf + mdef ........... (2)
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Adding eqs. (1) and (2)

(Ag+A,)dP = P(dA, +dA;) = (2 Py + T P )iz

(tgr +1rg)Pgrdz = (pghg + prAs)dz g siné
= Ugdihg + 1igdUy +Up diiy + thed Uy

= AdP = (1 Py + 1Py )dz = [yt + pp (1 - @)]Adz g sin @
= d(ingUy + 1t U).coccee (3)

dp o1d
T E(rgw‘ugw + 71w Prw) = [pga + pp(1 - a)] gsind = Eﬁ(my Ug + i Uy)
dP 1

ld . , :
dz E(Tgw‘?qw + T Pry) + 1dz (m‘q Uy + m!Uf) +[pga + ps(1-a)] gsin

Adding equations (1) and (2):
(Ay + Ap)dP — P(dA, + dAr) — (TgwPyw + TrwPrw)dz
—(tgr + Trg)Pyrdz — (pgAg + prAs)dz g sin @ = Ugdmy + mgdUy+Urdmy + medUs
= AdP — (TgwPyw + TrwPrw)dz — [pga + pr(1 — @)]Adz g sin 0 = d(m,U, + mipUp)............ 3)

dp 1 _ 1d .
— Z(TgWPgW + TfWPfW) - [pga + pf(l —a)] gsing = e (mgUg + mef)

dP 1 1d,. . .
== {Z (TgwPyw + ‘L'fWPfW)} + {ZE (mgUg + mef)} + [{pga +pr(1— a)}g sin 0]
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Choked flow
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This is the maximum mass flow rate that can flow through the channel.
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This is the maximum mass flow rate that can flow through the channel.
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Two-Phase Frictional Multipliers
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Now, there is the question of two phase frictional multipliers which are defined as follows:

dpP B dpP 5 2fto 5 5
‘(—Z)F = ‘(—Z)F,fo ro =~ GV ¥fo
dpP B dpP 2 2ff 5 5 5
‘(—Z)F = ‘(—Z)F,f o7 = "1 =X ¢
_(d_P) — _(d_P) 2 ngo GZ 2
z/)p Z)pgo 0° D g 740
dP dP 2f,
() =_(— 2 -9 ~2,2 2
(@), =~ (@), % =5 ¢

As discussed in the earlier lecture, the subscript fo and go denotes the hypothetical frictional
pressure gradient assuming all the fluid is in liquid and gas phase respectively. Similarly, the

subscript f and g means only liquid or gas is flowing.
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Multipliers for the homogeneous model
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Multipliers for the homogeneous model
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Mixture viscosity
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Similarly, expressions for the other multipliers can be obtained.

Mixture viscosity

x 1—x
= —+ ——(McAdamsCorrelation)
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Where veg = vy — vy, lrg = ly — lg

For turbulent flow through smooth pipes
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Similarly, expressions for the other multipliers can be obtained.
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Lockhart-Martinelli Correlation

Martinelli parameter

X(d—P) /(ﬁ) =0}/03,  X=gy/0
: Fiz i dzf_’,ﬂ ’P_q; — -.f_ ,

Liquid Gas Martinelli parameter
Turbulent Turbulent Xee
Viscous Turbulent p
Turbulent Viscous X
Viscous Viscous p o

Now, the question is how to find the frictional multipliers for Martinelli; for separated flow model?
For that there are correlations; the classic correlation is by Lockhart and Martinelli; in this a new

parameter is defined which is called Martinelli parameter and it is denoted by capital X.

= () /), =i = 5=

Four flow regimes
Liquid Gas Martinelli parameter
Turbulent Turbulent Xet
Viscous Turbulent Xyt
Turbulent Viscous Xev
Viscous Viscous Xow

Now, the question is how to estimate X for that correlations are required. Lockhart and Martinelli
considered four flow regimes (as shown in the above table); these are based on the Reynolds
numbers of the liquid phase and the gas phase. If the liquid phase is in the turbulent regime and

the gas phase is also in the turbulent regime, then it is called turbulent- turbulent; turbulent-



turbulent regime and the corresponding Martinelli parameter is denoted by X;,. If the liquid phase
is laminar or viscous and the gas phase is turbulent; then it is called viscous turbulent regime and
is denoted by X,.. Commonly, in conventional channels the regime is turbulent-turbulent; both
the phases are turbulent, but in miniature channels commonly it is viscous-viscous; both phases

are laminar.

(Refer Slide Time: 33:39)

For turbulent-turbulent regime (smooth pipes)
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Xu and Xy will also depend of the mass flux and the diameter.

Chisholm and Liard relations

, . €1
oy _1+}+F
dr=1+CX+ X2

For turbulent-turbulent regime (smooth pipes)

Uf 0.5 .Uf 0.125 1—x 0.875
e ) (1) 05)
Ug ,ug X

For viscous-viscous regime

v, 0.5 iy 05 | _ 105
() )
vy Kg X

X, and X, will also depend of the mass flux and the diameter.

Now, to correlate the frictional multipliers; there are relations given by Chisholm and Liard.
Originally, Lockhart and Martinelli had given graphs (figure 2), then later on Chisholm and Liard
gave these relations:

22148y
d)f - X ' X2

pz=1+CX+X°
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Liquid Gas C-parameter
Turbulent Turbulent Eq\

Viscous Turbulent jZ/
Turbulent Viscous E’l

Viscous Viscous i@

C-parameter for different flow regimes
Liquid Gas C-parameter
Turbulent Turbulent 20
Viscous Turbulent 12
Turbulent Viscous 10
Viscous Viscous 5

For the turbulent-turbulent regime; the value of C is 20, for viscous turbulent regime it is 12, for
turbulent viscous regime it is 10 and for viscous-viscous regime; it is 5. So, using these four values

of C; we can find these gbj% and ¢>§, for all the four flow regimes as functions of the Martinelli

parameter X.
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Figure 2: Lockhart-Martinelli Correlation (Image source: internet)

The original graphs given by Lockhart and Martinelli (figure 2) as shown here; the frictional
multipliers phi have plotted as functions of Martinelli parameter capital X. Here also it is ¢; both
scales are logarithmic here; to further four flow regimes we have different graphs, four different
graphs for four flow regimes. And so here also we have four graphs for ¢, for the four flow
regimes. So, from these graphs for any of these four flow regimes; we can find ¢ or ¢,. Then

the upper graph is far the void fraction a which is also a function of the Martinelli parameter X.
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Wallis model
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Butterworth correlation for void fraction
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There is also an analytical expression given by Wallis:

i 2
1
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19
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For the void fraction Butterworth gave a relation:
a =[1+0.28 Xx071]1

So, you can either use the graphs originally given by Lockhart and Martinelli; these graphs for the
frictional multiplier and the void fraction or you can use the Wallis expressions for qu% and
Butterworth’s relation for void fraction or alternately for the frictional multiplier; you can use

these Chisholm and Liard relations also; using the appropriate value of the C parameter.



