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Lecture – 03 

Modelling of Two-Phase Flow 

-The Homogeneous Model 

 

Welcome back to the course on Two-Phase flow with phase change in conventional and miniature 

channels. Today, we will discuss the Modelling of Two-Phase Flow and in particular the homogeneous 

model. Modelling of two-phase flow is important to calculate pressure drop in two-phase flow and to 

design two-phase flow equipment. 
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There are different types of models of two-phase flow. There are flow regime based models. These are 

for specific types of flow regimes. If we know the flow regime then we can use the model for that 

particular flow regime. For example, there are models for annular flow; there are models for slug flow 

and similarly, there are specific models of different types of flow regimes.  
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But suppose we do not know the flow regime then there are some models which can be used regardless 

of flow regimes. The simplest of them is the Homogeneous equilibrium mixture model or in short it is 

called HEM model or popularly known as homogeneous model. In this the two-phases are assume to be 

a homogeneous mixture. And the properties of the mixture are calculated by weighted averaging of the 

properties of the two-phases. It is assumed that the velocities of the two-phases are the same.  

Actually, the phase velocities are usually different, but for simplicity in this model, it is assumed that both 

phases are moving together with the same velocity and it is also assumed that there is thermal equilibrium 

between the phases; that means, both phases are at the same temperature. If both phases are liquid and 

gas phases of the same substance; for example, water and steam, then both of them will be at the saturation 

temperature at the local pressure.  

So, therefore, the properties of the liquid and gas phases can be calculated by knowing the pressure. Then, 

there is a separated flow model which is comparatively general. In this the separate motion of the two-

phases is considered and the balance equations for the two-phases are written separately and solved. The 

phase velocity is are taken as different, but thermal equilibrium is assumed ok. Then there is a drift flux 

model.  

In this there is a concept of drift flux which we will discuss later and using that the relative motion between 

the phases is accounted for. But this combines the simplicity of the homogeneous model, but also takes 

into account the relative motion of the phases. The homogeneous model is used, but there are empirical 

correlations for the effect of the relative motion between the phases. So, first we will discuss the 

homogeneous model. 

 



(Refer Slide Time: 04:55)  

 

In the homogeneous model, the two fluid is assumed to be a homogeneous mixture of the two-phases and 

the velocities of the two-phases are assumed to be the same thermal equilibrium is assumed; that means, 

the same temperature and the properties are calculated by weighted averaging and there is a two-phase 

friction factor which is used to calculate the friction and pressure gradient.  

 

Figure 1: Two phase mixture flowing through a pipe 
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So, suppose a two-phase mixture is flowing through a channel (figure 1) and suppose the channel is at an 

angle theta with the horizontal. The inlet a mass flow rate is m dot and we will consider steady state. So, 

inlet and outlet mass flow rates are the same. The inlet pressure is P and outlet pressure is P+dP. We are 

considering a small element infinitesimal element of the length dz. The axial coordinate is denoted by Z. 

The inlet velocity is U outlet velocity is U+dU. As I have already mentioned the velocities of the of both 

phases assumed to be the same. The cross sectional area is A that is this and the wetted perimeter is 

denoted by Pw the wall shear stress is 𝜏𝑤. 

𝑈𝑔 = 𝑈𝑓 = 𝑈 

𝑣̅ = 𝑣𝑓 + 𝑥𝑣𝑓𝑔,  𝜌̅ = 1/𝑣̅ 

𝑚̇ = 𝜌̅𝑈𝐴,  𝐺 = 𝜌̅𝑈 = 𝑈/𝑣̅ 

Mass balance: 

𝑚̇ = 𝑚̇𝑔 + 𝑚̇𝑓 

𝑚̇𝑔 = 𝑚̇ 𝑥 = 𝐺𝐴𝑥 

𝑚̇𝑓 = 𝑚̇ (1 − 𝑥) = 𝐺𝐴(1 − 𝑥) 

Momentum balance:  

𝑃 𝐴 − (𝑃 + 𝑑𝑃)𝐴 − 𝜏𝑤𝑃𝑤𝑑𝑧 − 𝜌̅𝑔 sin 𝜃 𝐴𝑑𝑧 = 𝐺𝐴(𝑈 + 𝑑𝑈) − 𝐺𝐴𝑈 

−𝐴 𝑑𝑃 − 𝜏𝑤𝑃𝑤𝑑𝑧 − 𝜌̅𝑔 sin 𝜃 𝐴𝑑𝑧 = 𝐺𝐴 𝑑𝑈 

−
𝑑𝑃

𝑑𝑧
=

𝜏𝑤𝑃𝑤

𝐴
+ 𝐺

𝑑𝑈

𝑑𝑧
+ 𝜌̅𝑔 sin 𝜃 
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−
𝑑𝑃

𝑑𝑧
= − (

𝑑𝑃

𝑑𝑧
)

𝐹
− (

𝑑𝑃

𝑑𝑧
)

𝑎
− (

𝑑𝑃

𝑑𝑧
)

𝑧
 

where  

− (
𝑑𝑃

𝑑𝑧
)

𝐹
= 𝜏𝑤

𝑃𝑤

𝐴
=

𝑓𝑈2

2𝜌̅
×

𝜋𝐷

𝜋𝐷2/4
=

𝑓𝐺2𝑣̅

2
×

4

𝐷
=

2𝑓

𝐷
𝐺2𝑣̅ 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 𝐺

𝑑𝑈

𝑑𝑧
= 𝐺

𝑑

𝑑𝑧
(𝐺𝑣̅) = 𝐺2

𝑑𝑣̅

𝑑𝑧
= 𝐺2

𝑑

𝑑𝑧
(𝑣𝑓 + 𝑥 𝑣𝑓𝑔) 

                 ≈ 𝐺2
𝑑

𝑑𝑧
(𝑥 𝑣𝑓𝑔) = 𝐺2 [𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+ 𝑥

𝑑𝑣𝑔

𝑑𝑧
] ≈ 𝐺2 [𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+ 𝑥

𝑑𝑣𝑔

𝑑𝑧
]         

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 𝐺2 [𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+ 𝑥

𝑑𝑣𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑧
] 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= 𝜌̅𝑔 sin 𝜃 =

𝑔 sin 𝜃

𝑣̅
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Now, 

−
𝑑𝑃

𝑑𝑧
= − (

𝑑𝑃

𝑑𝑧
)

𝐹
− (

𝑑𝑃

𝑑𝑧
)

𝑎
− (

𝑑𝑃

𝑑𝑧
)

𝑧
 

           =
2𝑓

𝐷
𝐺2𝑣̅ + 𝐺2 [𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+ 𝑥

𝑑𝑣𝑔

𝑑𝑃

𝑑𝑃

𝑑𝑧
] +

𝑔 sin 𝜃

𝑣̅
 

−
𝑑𝑃

𝑑𝑧
[1 + 𝐺2𝑥

𝑑𝑣𝑔

𝑑𝑃
] =

2𝑓

𝐷
𝐺2𝑣̅ + 𝐺2𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+

𝑔 sin 𝜃

𝑣̅
 

−
𝑑𝑃

𝑑𝑧
= [

2𝑓

𝐷
𝐺2𝑣̅ + 𝐺2𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+

𝑔 sin 𝜃

𝑣̅
] [1 + 𝐺2𝑥

𝑑𝑣𝑔

𝑑𝑃
]⁄  

−
𝑑𝑃

𝑑𝑧
=

1

1 − 𝑀2
[
2𝑓

𝐷
𝐺2𝑣̅ + 𝐺2𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+

𝑔 sin 𝜃

𝑣̅
] 
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where  

𝑀2 = −𝐺2𝑥
𝑑𝑣𝑔

𝑑𝑃
= 𝐺2𝑥 |

𝑑𝑣𝑔

𝑑𝑃
| 

If 𝑀2 ≪ 1 then 1 − 𝑀2 ≈ 1 and  

−
𝑑𝑃

𝑑𝑧
=

2𝑓

𝐷
𝐺2𝑣̅ + 𝐺2𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
+

𝑔 sin 𝜃

𝑣̅
 

           = − (
𝑑𝑃

𝑑𝑧
)

𝐹
− (

𝑑𝑃

𝑑𝑧
)

𝑎
− (

𝑑𝑃

𝑑𝑧
)

𝑧
 

where  

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓

𝐷
𝐺2𝑣̅, − (

𝑑𝑃

𝑑𝑧
)

𝑎
= 𝐺2𝑣𝑓𝑔

𝑑𝑥

𝑑𝑧
, − (

𝑑𝑃

𝑑𝑧
)

𝑧
=

𝑔 sin 𝜃

𝑣̅
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where  

𝑀2 = −𝐺2𝑥
𝑑𝑣𝑔

𝑑𝑃
= 𝐺2𝑥 |

𝑑𝑣𝑔

𝑑𝑃
| 

If 𝑀2 → 1 then 1 − 𝑀2 → 0 and  

−
𝑑𝑃

𝑑𝑧
→ ∞ ⇒ Choked flow 

𝑀2 = 1 ⇒ 𝐺max
2  𝑥 |

𝑑𝑣𝑔

𝑑𝑃
| = 1 

⇒ 𝐺max = (𝑥 |
𝑑𝑣𝑔

𝑑𝑃
|)

−
1
2

⇒ 𝑚̇max = (
𝑥

𝐴
|
𝑑𝑣𝑔

𝑑𝑃
|)

−
1
2
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This is the maximum mass flow rate that can flow through the channel.  What does this mean? It means 

that if you go on increasing the inlet pressure or go on reducing the outlet pressure, then the pressure drop 

will increase; pressure gradient can increase in definitely, but the mass flow rate or the mass flux will not 

increase beyond a certain value. This is called Choked flow.  

Now, we will consider some numerical examples, but before that we will discuss how to calculate 

properties of fluids. So, there are property tables available for various fluids. Here, we will consider the 

properties of steam water mixture. So, properties of steam water mixture can be obtained from steam 

tables and there are equations of state for water and steam, there is an international association for 

properties of water and steam and its website is http://www.iapws.org.  

The equations of state can be downloaded from here and there is software called steam tab companion 

which is a free software and it is based on a IAPWS as equations of state which are very accurate. Let us 

look at that. 

http://www.iapws.org/
http://www.iapws.org/
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Figure 2 shows the interface of steam tab companion. 

And if you want to calculate the properties of saturated water or a steam, then you give input either 

temperature or pressure. So, let us give pressure in bar; 1 bar and press the calculate button. So, here it 

gives the saturation temperature is 99.6 degree C and various properties are given.  

Similarly, if you select liquid; then, it will give properties of saturated liquid at that pressure. If we select 

two-phase and give a quality. Let us say 0.1; 10 percent quality and click the calculate button, then it 

gives the properties of the mixture. Then, superheated and sub cooled properties can also be calculated. 

Figure 2: Screen shot of steam tab companion 



So, suppose we want sub cooled liquid water at 1 bar pressure and 25 degrees C. Here, it is giving; it is 

giving the condition as sub cooled and it is giving the properties of the sub cooled water at 1 bar and 25 

degree C. Now, suppose we want to calculate the properties of superheated steam at 1 bar and 125 degree 

C; now, it says that it is superheated and gives the properties of super heated steam ok. 
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Numerical problem 1: Water+steam @100 kPa, horizontal flow, D = 2 mm, L = 10 cm, 𝐺 = 100 kg/m2s, 

x(0)=0, 𝑞′′ = 20 kW/m2. To find the pressure gradient at z = 5 cm. 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 Pa. s,  𝜇𝑔 = 12.26 × 10−6 Pa. s,  ℎ𝑓𝑔 = 2257.45 kJ/kg 

𝑣𝑓 = 1.043 × 10−3 m3/kg,  𝑣𝑔 = 1.6939 m3/kg, 𝑣𝑓𝑔 = 1.693 m3/kg 

𝑑𝑥

𝑑𝑧
=

4𝑞′′

𝐺𝐷ℎ𝑓𝑔
= 0.  443 m−1,  𝑥(5cm) = 0.0221 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
1.6782-1.6939

1000
= −1.57 × 10−5m3kg−1Pa−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 3.47 × 10−3 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

𝑅𝑒𝑓𝑜 =
𝐺𝐷

𝜇𝑓
= 707 ⇒ Laminar flow 

𝑓𝑓𝑜 = 16 𝑅𝑒⁄ = 0.0226 
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𝑣̅ = 𝑣𝑓 + 𝑥 𝑣𝑓𝑔 = 0.0180 𝑚3/𝑘𝑔  

𝑓𝑇𝑃 ≈ 𝑓𝑓𝑜 = 0.0226 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2𝑣̅ = 4.07 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 𝐺2𝑣𝑓𝑔 (

𝑑𝑥

𝑑𝑧
) = 7.50 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= (

𝑔 sin 𝜃

𝑣̅
) = 0 

− (
𝑑𝑃

𝑑𝑧
) = 4.07 + 7.50 + 0 = 11.57 𝑘𝑃𝑎/𝑚 

𝐺max = (𝑥 |
𝑑𝑣𝑔

𝑑𝑃
|)

−
1
2

= 1984 kg/m2s 
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1

𝜇̅
=

𝑥

𝜇𝑔
+

1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 190.1 × 10−6 𝑃𝑎. 𝑠 (𝑀𝑐𝐴𝑑𝑎𝑚𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 1052 ⇒ Laminar flow 

𝑓𝑇𝑃 = 16 𝑅𝑒⁄ = 0.01521 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2𝑣̅ = 2.74 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 7.50 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= 0 

− (
𝑑𝑃

𝑑𝑧
) = 2.74 + 7.50 + 0 = 10.24 𝑘𝑃𝑎/𝑚 

 

 

 

 

 

 

 

 

 



(Refer Slide Time: 29:45) 

 

Numerical Problem 2: Water+steam @100 kPa, vertical upward flow, D=2 cm, L=2m, 𝐺 = 1000 kg/m2s, 

x(0)=0, x(L)=2%. To find the pressure gradient at z=1m. 

Solution: Properties of water+ steam @100 kPa 

𝜇𝑓 = 282.9 × 10−6 Pa. s,  𝜇𝑔 = 12.26 × 10−6 Pa. s,   

𝑣𝑓 = 1.043 × 10−3 m3/kg,  𝑣𝑔 = 1.6939 m3/kg, 𝑣𝑓𝑔 = 1.693 m3/kg 

𝑥(1m) = 0.01,   
𝑑𝑥

𝑑𝑧
=

0.02

2
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
1.6782-1.6939

1000
= −1.57 × 10−5𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 0.157,  1 − M2 = 0.843,  (1 − M2)−1 = 1.186 

𝑅𝑒𝑓𝑜 =
𝐺𝐷

𝜇𝑓
= 7.07 × 104 ⇒ Turbulent flow  

𝑓𝑓𝑜 = 0.079 𝑅𝑒𝑓𝑜
−0.25 = 4.85 × 10−3 
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𝑣̅ = 𝑣𝑓 + 𝑥 𝑣𝑓𝑔 = 0.0180 𝑚3/𝑘𝑔  

𝑓𝑇𝑃 ≈ 𝑓𝑓𝑜 = 4.85 × 10−3 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2𝑣̅ (1 − 𝑀2)−1 = 10.36 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 𝐺2𝑣𝑓𝑔 (

𝑑𝑥

𝑑𝑧
) (1 − 𝑀2)−1 = 20.1 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= (

𝑔 sin 𝜃

𝑣̅
) (1 − 𝑀2)−1 = 0.646 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
) = 10.36 + 20.1 + 0.646 = 31.1 𝑘𝑃𝑎/𝑚 

𝐺max = (𝑥 |
𝑑𝑣𝑔

𝑑𝑃
|)

−
1
2

= 2949 kg/m2s 
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1

𝜇̅
=

𝑥

𝜇𝑔
+

1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 232 × 10−6 𝑃𝑎. 𝑠 (𝑀𝑐𝐴𝑑𝑎𝑚𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 8.62 × 104 ⇒ Turbulent flow 

𝑓𝑇𝑃 = 0.079 𝑅𝑒𝑇𝑃
−0.25 = 4.61 × 10−3 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2𝑣̅ (1 − 𝑀2)−1 = 9.85 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 20.1 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= 0.646 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
) = 9.85 + 20.1 + 0.646 = 30.6 𝑘𝑃𝑎/𝑚 
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Numerical Problem 3: Water+steam @10 MPa, vertical upward flow, D=2 cm, L=2m, 𝐺 =
1000 kg/m2s, x(0)=0, x(L)=2%. To find the pressure gradient at z=1m. 

Solution: Properties of water+ steam @10 MPa 

𝜇𝑓 = 81.80 × 10−6 Pa. s,  𝜇𝑔 = 20.27 × 10−6 Pa. s, 

𝑣𝑓 = 1.453 × 10−3 m3

kg
,  𝑣𝑔 = 1.803 × 10−2 m3/kg, 𝑣𝑓𝑔 = 0.01658 m3/kg 

𝑥(1m) = 0.01,   
𝑑𝑥

𝑑𝑧
=

0.02

2
= 0.01 m−1 

𝑑𝑣𝑔

𝑑𝑃
≈

Δ𝑣𝑔

Δ𝑃
=
0.01781-0.01803

1 × 105
= −2.20 × 10−9𝑚3𝑘𝑔−1𝑃𝑎−1 

𝑀2 = 𝐺2𝑥 |
𝑑𝑣𝑔

𝑑𝑃
| = 2.20 × 10−5 ≪ 1,  1 − M2 ≈ 1,  (1 − M2)−1 ≈ 1 

𝑅𝑒𝑓𝑜 =
𝐺𝐷

𝜇𝑓
= 2.44 × 105 ⇒ Turbulent flow 

𝑓𝑓𝑜 = 0.079 𝑅𝑒𝑓𝑜
−0.25 = 3.55 × 10−3 



(Refer Slide Time: 38:41) 

 

𝑣̅ = 𝑣𝑓 + 𝑥 𝑣𝑓𝑔 = 1.619 × 10−3 𝑚3/𝑘𝑔  

𝑓𝑇𝑃 ≈ 𝑓𝑓𝑜 = 3.55 × 10−3 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2𝑣̅ = 0.575 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 𝐺2𝑣𝑓𝑔 (

𝑑𝑥

𝑑𝑧
) = 0.166 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= (

𝑔 sin 𝜃

𝑣̅
) = 6.05 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
) = 0.575 + 0.166 + 6.05 = 6.79 𝑘𝑃𝑎/𝑚 

𝐺max = (𝑥 |
𝑑𝑣𝑔

𝑑𝑃
|)

−
1
2

= 2.13 × 105 kg/m2s 
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1

𝜇̅
=

𝑥

𝜇𝑔
+

1 − 𝑥

𝜇𝑓
⇒ 𝜇̅ = 79.4 × 10−6 𝑃𝑎. 𝑠 (𝑀𝑐𝐴𝑑𝑎𝑚𝑠 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛) 

𝑅𝑒𝑇𝑃 =
𝐺𝐷

𝜇̅
= 2.52 × 105 ⇒ Turbulent flow 

𝑓𝑇𝑃 = 0.079 𝑅𝑒𝑇𝑃
−0.25 = 3.53 × 10−3 

− (
𝑑𝑃

𝑑𝑧
)

𝐹
=

2𝑓𝑇𝑃

𝐷
𝐺2𝑣̅ = 0.572 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑎
= 0.166 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
)

𝑧
= 6.05 𝑘𝑃𝑎/𝑚 

− (
𝑑𝑃

𝑑𝑧
) = 0.572 + 0.166 + 6.05 = 6.79 𝑘𝑃𝑎/𝑚 

 


