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Hello everybody, so far we have discussed on the elastic model or maybe elasticity problem

related to the manufacturing processes.
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Now we will try to discuss the plastic deformation behaviour and what we can develop the

different laws of plasticity, specifically there are more generally we use the von Mises yield

condition  during  the  plastic  deformation  of  the  particular  component.  So  we  will  try  to

explore these things and we try to develop how the von Mises yield conditioned actually

comes and whatever you can utilize these things for the development  of the any kind of

mathematical model.

So plasticity, we know that the data are normally if we conduct one universal tensile testing

machine the tensile testing of a specimen we apply the load in particular single direction and

then we define this is a yield point particular the yield point is a transition point between

elastic deformation and plastic deformation and therefore what we are normally most of the

material actually behaves within the elastic limit.



The stress is proportional to the strain and based on that we define the Young's modulus and

other material parameters and we utilize all these things in the development of the elastic

model, but in actual practical application most of the engineering materials behave like last

row plastic material that means in the plastic deformation whatever we can represents the

plastic deformation and specifically it is one dimension.

It is very and if you want to develop from the experiment we can easily extract the data for

the plastic deformation, but if it is three dimensional situation say in machine component or

in any particular component it is subjected to three dimensional stress state of the stress. Then

what  we  can  define  we can  explain  the  plastic  behaviour  or  plasticity  of  this  particular

material.

So therefore it is very important to know and the material behaviour specifically very large

strain forming operation so more that means plastic zone is to a some very large extent. In

that cases first task is to define the yield surface. What way we can define the yield surface?

Yield maybe a point when we apply the unidirectional load, but it may not be a point when it

is subjected to some kind of a say more than one load is acting, one direction load is acting.

For  example,  both  sigma x  and sigma y  is  acting  and  having  2  principal  stresses  for  a

particular  stress  issues  and  in  that  cases  we  can  or  maybe  more  than  2  that  means  3

dimensional,  3  principal  stresses  we  can  evaluate,  nonzero  principal  stresses  exist  in  a

particular situation in that cases we can define the yield surface rather than yield point. So

therefore first part of the plasticity model or plasticity analysis the how to define the yield

surface.

Second point is that to sustain the plastic deformation we need to put some condition that is

called normality condition or material stability and that material stability is analogous to the

plastic deformation behaviour. So what we can establish the material stability or normality

condition  we put  to  sustain  the  plastic  deformation.  Then flow curve  also,  so  in  plastic

deformation then we define the flow curve.

But to basically flow curve behaviour is necessary we try to develop the plasticity model but

we will be focusing most on the yield surface and this normality condition and of course once

we define the yield surface then what we can incorporate the effect of the strain hardening,



because we have seen in the stress-strain diagram this is elastic limit, stress is proportional to

the strain.

But beyond that there if you within the plastic zone there is a increment each and every point

if you see there is increment of the strain. So that strain as well as the when there is increment

of the strain that means plastically deform the material the strength level also increases, the

stress level also increases. So that that is because of the material having the strain hardening

effect.

So in single point it is well defined the strain hardening effect can be defined but if it is a

surface what we can define the strain hardening happening that means how the yield surface

evolves during the plastic deformation process then that way so that we can takes care of the

strain hardening effect of a particular meter specific to one and plasticity theory. So therefore

strain hardening effect will try to look how we can incorporate.

So  therefore  flow theory  of  the  plasticity  means  the  flow behaviour  plastic  deformation

happens  at  the  so  basically  we are  interested  to  this  zone,  plastic  deformation  zone.  So

analysis in plasticity model normally done in the incremental mode. So that mean incremental

strain, we look into the incremental strain that depends on the stress value. So suppose this is

the plastic deformation zone.

So we normally divide in this small component, small incremental strain. So this strain and

stress and then that incremental strain and depends on the stress value so we predict because

in  plastic  deformation  if  you look into  that  that  each  and every  elemental  thing  there  is

change of the slope, so that continuous change of the slope. So that is why the accuracy of the

calculation depends on how small we can take this elemental strength.

So that in incremental mode normal stress analysis or plasticity model normally develops

using the incremental strain. Now normally we use the stress induces the strain rate which is

analogous to the pressure and the velocity. So if there is a pressure difference then only fluid

flow and with certain velocity. So here also if stress induces also strain rate and that also

stained it also having some influence in the plastic deformation behaviour standard.



So therefore two-stage behaviour elastic and plastic, but it is normally implied in the sense

that of course we normally we do the elasto-plastic analysis. So there is an elasto-plastic

analysis in most of the manufacturing process. For example, in case of bending process. So in

bending process also there must be some amount of the elastic spring back effect.

So we need to incorporate that the elastic spring back effect then only we can get the actual

plastic deformation needed to get particular bend angle, that we will discuss in the during the

material  forming  process  module  there,  but  of  course  that  elastic  spring  back  effect  is

basically nothing but the material having some kind of the elastic components.

So that once even if we know already discussed that even if you do in a plastic deformation

zone so when you remove the load at a particular point there is some recovery will be there,

that  recovery  because  of  the  metal  having the  some sort  of  some amount  of  the  elastic

properties. So that is why we can represent the material behaviour in the sense of that either

elasto-plastic material kind of this thing or perfectly plastic material or we can say perfectly

elastic material.

So based on the stress-strain diagram of a particular material. So that kind of situation we can

explain here also.
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For example, true stress-strain curve for a ductile material. If you see the true stress-strain

curve ductile, we have already discussed true stress-strain curve for a ductile material. Here

we can see that  sigma 0 is  the yield stress value here and from here to  this  is  a plastic



deformation. Now if there is at point A if we remove the load then it will come back to this

point.

So therefore this is the amount is the permanent strain exist within the material because it

cross the yield point so permanent  strain must exist  but this amount strain represents the

elastic  recovery  during  this  deformation  process.  So  this  is  typically  called  elasto-plastic

material behaviour or this is typical stress-stain diagram of a particular ductile material and

most of the engineering materials actually follows this kind of stress strain behaviour.

Now for example,  if this  is the situation stress-strain curve is something like that here if

removed the load and reload it there is some gap exists. So then that is represented in the

stress strain, it happens during the stresses so that we see that if this is representation of the

stresses of a particular stress strain curve in typical nature and of course we have already

discussed in terms of material properties.

If  the area is  more that  means material  is  having good damping properties  it  having the

capability of observing the vibratory load during application. So that is why it is a typical

behaviour of the material. So that if this curve is not exactly linear and parallel to the elastic

portion of the curve. So then some sort of gap is there. So that gap represent some kind of the

material properties.
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If stress strain behaviour is something like that is a applying the tensile load reach this point

and we remove we just reverse the load from tensile to we apply the it is come back to this



point remove the load and if we apply the compressive load then it will reach up to this point.

So  therefore  yield  point  in  the  tensile  load  and  yield  point  in  the  compressive  load  are

different.

So this type of situation arise then we say this is the material is having Bauschinger effect. So

if we consider the Bauschinger effect that means if the yield point in tensile load and yield

point in compressive load both are same then we can say the material having Bauschinger

effect. Similarly, this is the stress-strain diagram of a particular metal this is called a Rigid

ideal plastic material.

So  that  means  there  is  no  elastic  component  here,  directly  it  starts  from  the  plastic

deformation here at this point and that there is no strain hardening effect also because this

line is parallel to the strain axis. So therefore this type of behaviour material is called the rigid

ideal plastic material behaviour and of course you can see that ideal plastic material with the

elastic region that is also that means this part is the linear part that is called the elastic part

exist within material, but there is no strain hardening effect.

It is simply parallel to the during the plastic deformation zone. So this is called the ideal

plastic material with elastic region, this type of behaviour. Of course Piecewise linear that

means here linear component is there and we can say another linear part is there, piecewise.

We can say also bilinear curve also, but of course it is having some strain hardening effect

because this line is not exactly parallel to the strain axis.

It is having some slope with respect to having some slope that is why it is, slope means there

are some positive slope exist during the plastic second linear part. It indicates that material

having the state hardening effect. So these are the typical material behaviour we can represent

by simple stress-strain diagram and having the different nature.  So based on that we can

develop the material  model and we can analyse the deformation behaviour of a particular

material.
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Now why you are interested to know that yield point of a particular  situation because in

applying the yielding condition the resistance of a material given by the yield strength of

course yield criteria we need to find out the yielding criteria that yielding means just starting

on the plastic  deformation  zone.  So therefore it  is  important  to know at  which point  the

plastic deformation starts.

That is why we always try to find out what is the yielding condition or yielding criteria for a

particular material. Of course even if you define the fracture criteria then we should know

what is the ultimate tensile strength of a particular material is normally used. So therefore

ultimate  tensile  strength  is  normally  used  to  decide  the  fracture  criteria  of  a  particular

component.

So that is why yield stress and ultimate tensile strength having some significance and to

analyse the failure criteria of a particular material. So therefore failure culture of isotropic

material is often expressed in the mathematical form that failure criteria would design the

functional form of the failure criteria of sigma 1, sigma 2 and sigma 3. These are the three

principal stresses.

So that means we can find out that it  is a function of the, so for example, in a particular

component it is subjected to some different kind of the loading and combined loading but we

represent it in terms of the stress tensor, we represent the 6 components of the stress and 3

components of the normal stress and 3 components of the shear stress. So total 6 components

of the shear stress that can be represented in terms of the principal stress component.



That is sigma 1, sigma 2 and sigma 3 so then you even try to decide the failure criteria from

the analysis with the external applied load we can find out what are the principal stresses

acting  for  a  particular  material  and then for  the  same material  we have  the  data  for  the

different values of the for example, sigma C maybe yield strength or maybe ultimate tensile

strength.

But that ultimate tensile strength and yield strength is actually defined in a uniaxial tensile

testing  of  a  particular  specimen  or  particular  sample.  So  therefore  failure  criteria  either

yielding or a fracture we can decides which is predicted to occur on a specific mathematical

function  f  is  equal  to  the  failure  strength  from a  uniaxial  tension  test.  So  this  data  are

available for a particular material or well defined.

But this data is not defined this is during the process the load is acting to this component and

then we can based from there we can find out the principal stresses and we can compare

whether it is fracture or yielding happens or not by just comparing the experimental data for

the same material. Now usually effective stress that means when we say the effective stress or

we can say that effective stress is significant because effective stress can be represent one

single numerical value.

So that can be a function of sigma 1, sigma 2 and sigma 3, because sigma 1, sigma 2 and

sigma 3 are the principal stresses and these principal stresses are basically defined sigma y,

sigma z that at rest tau xy, tau yz, tau zx. So therefore this is the original state of the stress

acting  for  a  particular  material  at  a  certain  situation  from there  we can  finding  out  the

functional form of this sigma.

And sigma 2 in terms of principal stresses and then based on that we decide what may be the

functional  form of  this  principal  stresses  such that  it  can  be  represented  in  terms of  the

equivalent stress or that is representation of the single value. Then when we represent the

single value then we compare this single value stress with respect to the experimental value.

It may be either c or sigma y.

So then if we compare this way this is theoretically estimated, we convert it single value and

then we compare with the experimental value. Then we decide whether we can fit the criteria



whether there is a failure happens or yielding happens or not for a particular material. So this

is the normal procedure to find out to compare this thing, the experimental value and the

theoretical value.

But of course what may be the functional form of this principle as a function of principles in

this functional form is to decide depending upon the different hypothetical processes or some

assumptions based on that we can predict the different kind of theory and from that theory we

can define the functional form. One of the such theory I will try to explain that what we can

define this functional form such that we can decide the failure criteria or yield criteria for a

particular material.
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Now before that what we can define the yield surface of a particular material. So it is well

defined that  yield point of a particular  material  if  we do that uniaxial  tensile  testing that

means material is subjected to only one directional load or one directional stress based on that

we can define the yield point, but in practical the material is not subjected to the uniaxial

loading condition may be material is most of the cases practically the multi  axial loading

condition.

And there is a multi-axial loading condition then how we can define the yield surface. So for

example, suppose sigma 1 is acting on a particular element at the same time sigma T is also

acting. So in this cases what do we define the yield stress value. So practical approach is that

we can decide we can keep either sigma 1 or sigma 2 as a constant value. For example, we

consider sigma 2 as a constant fixed value.



Then if we conduct the stress percent, if we vary the sigma 1 for a particular sigma 2 we can

get a single curve like this. So maybe this is the failure point, ideal condition. Now if we

change the sigma 2 value, if we increase or decrease the next level increment or decrement of

the sigma 2 value then can we reconduct the tensile testing, then we can get this curve, this

similar curve may be different.

And this is the sigma 2, different values of the sigma 2. So in that way at the different value

of the sigma 2 we can get the stress versus strain that means sigma 1 versus epsilon 1 a

different curve. So therefore it is a different curve and that in each and every different curve

there may be some yield point. So that yield point when you join together then it clears the

kind of the curve if it is 2-dimensional.

If it is 3-dimensional then that can be represented in the form of a surface. So therefore but

this changing the sigma to maybe there is a change, the gap, this is the one yield point, this is

another yield point may happens and of course if we try to experimentally define all this thing

at this yield surface maybe it is an huge number of experiments just by changing manually

the different values of the sigma 2.

And of course if it is 3 dimensional then it becomes more complicated because there are so

many combination of a particular because we have to keep this for a fixed value of sigma 2

and sigma 3 we can conduct the experiment for varying the sigma 1. So therefore with this

combination the lots of combination is possible and therefore we need to define a lots of

experiments to define the yield surface.

So therefore even if we do conduct the experiment or not exactly there is a range actually

when we changing sigma 2 dot next value so it is a range of the stress, so suppose if it is a

two dimension the sigma 1 and sigma 2 on this stress axis if we plot it this is the curve that

represents the yield stress value. So it is within that elastic beyond that plastic deformation.

So that way but it is not exactly if we are not fitting exactly curve.

There is a some variation actually happens during this process. What we roughly estimate this

can be the closed curve on a stress axis that represents the yield curve when it is subjected to

2-dimensional state of the stress. Similarly, if it is 3-dimensional then we define as a surface.
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So that  but  question is  that  we increase delta  sigma 1 and delta  sigma 2 to  conduct  the

experiment, but what may be the amount as minimum as possible then we can create the good

estimation of the yield surface profile or yield curve, but in that cases we need a lots of

experiment. So therefore it actually vary depending upon the delta sigma 1, sigma 2, it is

actually in this vary the yield profile.

So we approximate it as a curve so some averaging value. Of course presence of the strain

hardening requires the new specimen for each and every specimen therefore since there is a

strain hardening effect is also there in elasto-plastic material so therefore we need to conduct

more number of experiment  and of course the surface may not smooth also is a kind of

curvature is there.

So therefore most of the measurement of yield surface are made with the radial path so that

means this direction radial path we can measure most of the yield surface. Therefore it is

almost impossible to conduct the experiment for different conditions by changing sigma 1,

sigma 2 for a particular material. Then people have developed different theoretical analysis of

this thing to predict the yield surface for a particular material.

Of course just looking into the analogy of a particular during the experimental process. So we

can assume the ill function we assume that yield surface is a closed and smooth surface rather

than some wavy surface. Now once we assume the yield surface is a closed smooth surface



for three-dimensional state of the stress therefore at particular instant the yield surface can be

defined in the functional form.

For example,s f sigma ij is the index form, sigma is the stress tensor, so is having all those

components 1, 2, 3, 4, 5, 6, 7, 8, 9; 9 components will be there. So therefore it is a function of

assume  that  sigma  1  1,  sigma  2  2,  3  3  that  means  normal  stress  and  the  shear  stress

components and equal to K is a constant. Now this is the functional form, we assume this is

the functional form because all stress component having the contribution toward the yielding

of a particular component where it is subjected to 3-dimensional state of the stress.

Now if we assume that isotropic material, so isotropic material means same properties in all

direction.  If  we assume these  things  so  therefore  it  is  possible  to  write  in  terms  of  the

principle  stresses.  So once we assume it  is  a  isotropic properties  of  a  material,  isotropic

material, then once we assume the isotropic material this functional form is reduced in terms

of the principle stresses sigma 1, sigma 2, sigma 3.

So therefore once we as a function of sigma 1, sigma 2, sigma 3 in terms of the principle

stresses then we can represent that this is what we can find out the principal stresses then that

if you having this stress component then from here we can finding the characteristic equation

and from this characteristic equation we can form the cubic equation. This cubic equation is

in this form and where I 1, I 2 and I 3 as the stress invariant.

And this lambda is the basically roots of this equation. So these roots of this equations are the

principal stresses. This equal to 0 or algebraic form of this equation can be represented in that

way sigma - lambda 1, sigma - lambda 2, sigma - lambda 3. So here lambda 1, lambda 2,

lambda 3 are the roots of this equation and it's a cubic equation for that. So this is the way to

represent this stress component in terms of the principal stress components.

And that we are just simply representing the cubic equation such that the roots of the cubic

equation represents the principal stresses of a particular situation. Now stress invariant we

have already discussed.
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But stress invariant just for I 1 = C in terms of the principal stresses. These are the stress

invariants sigma 1, sigma 2, sigma 3. I 2 also sigma 1, sigma 2, sigma 2, sigma 3 + sigma 3

sigma 1 and I 3 is the sigma 1, sigma 2, sigma 3. These are the stress invariant of this cubic

equation. Now isotropic material  so therefore K functional form is a function of isotropic

material we can use with the original stress state to principal stress state.

Function of this, or this sigma 1, sigma 2, sigma 3 as a function of one way or we can say it is

a function of sigma f is I 1, I 2, I 3 because I 1, I 2, I 3 actually represented in terms of the or

this stress invariance is in terms of the principal stresses sigma 1, sigma 2 and sigma 3. So

therefore isotropic material we can represent K the functional form either as a function of

stress invariant or K as a function of all the 3 principal stress components.

Now to  a  very  high  accuracy  plastic  deformation  we  have  already  discussed  that  stress

components can be decomposed in to 2 part, one is the hydrostatic stress component and the

deviatoric  stress  component  and  we  have  already  discussed  that  hydrostatic  stress

components  having  no  influence  on  the  plastic  deformation.  So  therefore  since  plastic

yielding having no influence and of the hydrostatic stress component.

Therefore  we  can  separate  out  this  stress  component  original  stress  component  to  the

deviatoric stress component because the yielding depends on the deviatoric stress component

and  it  is  independent  of  the  hydrostatic  stress  component.  So  therefore  solace  under

hydrostatic pressure do not deform plastically, the hydrostatic stress having no influence on

the plastic deformation.



Therefore we just rule out the hydrostatic stress component from the original stress step. So

therefore if  you look into only the deviatoric  component,  so deviatoric  component  is  the

sigma 1 is the actual principal stress minus the hydrostatic stress component. Similarly, we

represent  the  all  3  deviatoric  stress  components  in  this  way  such  that  hydrostatic  stress

component is the average of all these things that we have already discussed.

Now we can say that K is a function of the stress invariant I 1, I 2 and I 3 and original stress

state, but when we convert to into the deviatoric stress component I 1d, I 2d and I 3d from

here  to  here  we  can  see  since  hydrostatic  component  having  no  role  on  the  plastic

deformation yielding, so even try to finding out the yield criteria then we can convert it in

from the original stress to the deviatoric stress component.

But if you look into deviatoric stress invariant here I 1d. So I 1d we can see the I 1d actually

0. If you find out that I 1 = sigma 1 sigma 2 Sigma 3 and then and in terms of the deviatoric

component  I  1d is  actually  I  1d = sigma 1d + sigma 2d + sigma 3d. If  we add all  this

components d, so here we can find out that it becomes actually 0. So then if it is 0 because

sigma 1d = 0.

Then we can say the K is a function of only the I 2d and I 3d that means this functional form

we can reduce that only to stress invariant and to stress deviatoric stress invariant I 2d and I

3d.  So  therefore  for  isotropic  material  and  pressure  independent  material  pressure

independent material in the sense that pressure does not influence the yielding of a particular

material.

So therefore for isotropic pressure independent materials the functional form can be reduced

into this k f I 2d I 3d. Now the plastic response of the materials is often the plastic response

we observe most of the engineering materials that there is no Bauschinger effect, that means

the yield stress in tensile and yield stress in compressive load are same. So in that sense we

can say that material is having no Bauschinger effect.

So  since  the  material  having  no  Bauschinger  effect  then  we  can  say  that  in  analogy  to

material having no Bauschinger effect.
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We can say that can be mathematically said that I 2d sigma I3 = I2d - sigma IJ, so this is

actually is a even function that I3d sigma I3. So this when you represent this mathematical

expression, it actually represents that if these are equal changing the sign the function is the

even function. So therefore even function in the sense that since the loading in the tensile and

compressive yield stress value.

Compressive yield stress value in the negative sign will seem but same magnitude, the same

magnitude  but  signs  are  different  mathematical  we can  say  the  function  should  be  even

function.  So therefore  f.2  indicate  no  Bauschinger  effect  that  means  the  functional  form

should be the even functions. Now it should satisfy these two that indicates mathematically

that no Bauschinger effect exists here.

But if we look into that functional from the I2 and I3 or I2d or I3d we can if we see that if we

change the sign of the sigma 1, sigma 2 and sigma 3 together then we can see there is no

change of the sign in the functional from here. If we replace sigma 1 = - sigma 1 sigma 2 =

-sigma 2, sigma 3 = - sigma 3. If we put it here then it becomes the same expression, but if

we put here then it changes sign I 3 becomes now - sigma 1 sigma 2 and sigma 3 or same

thing for deviatoric component.

Therefore I 3 does not satisfy this conditions that means in mathematical sense this functional

form is not even function, it is not satisfying. So therefore we can say for isotropic pressure

independent if there is no Bauschinger effect then the functional form can be represent only



on the second stress invariant because it is not satisfying, it means that, it is not satisfying

mathematically means it is not satisfying the Bauschinger effect.

Therefore we can say I can reduce further the functional form is in the form of only second

invariant. Now we can do the further calculation manipulation of the second invariant in that

way.
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Sigma 1 sigma 2, sigma 2 sigma 3, sigma 3 sigma 1 d, deviatoric component, if we put all

these values we can find out in terms of the principle stresses, this is the expression for that

and we can convert it in the 1/6 of this is the expression for that, now K becomes finally as

function of sigma 2 I  2d as second stress invariant  and it  is  in  terms of this,  this  is  the

functional form.

Or in terms of the principal stress or this is the in terms of the original initial stress test. So

therefore we can see that factor K we can say in this way that it is the functional form but

factors 1/6 inducted included in the arbitrary constant. So it is we can just maintaining the

constant, but the functional form is this one. So this functional form actually represents the

well-known the von Mises yield function.

And this von Mises yield function is one of the most widely used in the plasticity model and

we can see that how this functional form actually develops by assuming the several functions

this functional from actually valid with the assumptions that material in practically material is



isotropic material  and the yielding is pressure independent and if there is no Bauschinger

effect then only the yield functional form can be represent in this way.

Now we can cross check also that this functional form of the yield surface.
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So if you see the isotropic material, isotropic material the properties is independent of the

direction therefore written in the principal stresses and each principal stresses enters in the

functional form equivalently, in the sense that if you see all components sigma 1 sigma 2,

sigma 1 sigma 3 and sigma 2 sigma 1,  all  enters  the equivalent,  there is  no constant  or

something like that.

So therefore it is validating the isotropic material properties and the pressure independent

means mathematical you can say adding a constant term to the principal stresses does not

change the functional form. If we add that constant term in all sigma 1 and = say sigma 1 +

some constant term similarly, sigma 2 = sigma 2 + and sigma 3 = sigma 3 + P. If you put add

constant term.

And if you put here also then there is no change in the functional form, so that means the

yielding actually independent of the pressure and of course the Bauschinger singer effect, the

Bauschinger  can be proved that  if  sign of  the stresses  does  not  alter  the function  if  you

change the sign of the stresses sigma 1 to - sigma 1, sigma 2 to - sigma 2 and sigma 3 to –

sigma 3, the functional form remains the same.



That means there is no Bauschinger effect in this expression. So we can represent that this is

yielding in graphically, this is the yield surface and this axis represents the sigma 1 = sigma 2

and sigma 3 and this is the yield surface and that yield surface can be here also that means the

value actually increasing it is independent of the hydrostatic stress component.
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Now  two-dimensional  that  is  the  from  3  dimensional  yield  stress  components  to  2

dimensional curve, we would try to discuss that things for example, plane stress plasticity

problem sigma 3 = 0, then what will be the yield surface functional form, their functional

form K = sigma 1 - sigma 2 = 0, sigma and – sigma 2 square + sigma 1 – sigma 3, just simply

sigma 3 = 0.

This is the yield surface functional form of the yield surface, yield curve for a 2 dimensional

stress state. Now we can find out the value of the K also, this is the, K is the this thing that K

can be normally decided from the experimental observation. What we can do these things for

example, we assume the uniaxial tensile testing, the situation uniaxial testing the sigma 1 =

sigma bar.

Say for example, this is the yield stress value, uniaxial tension is sigma 2 sigma 3 = 0, so id

we put all these condition, this expression then we can find out that k = twice sigma bar

square or sigma bar = root over of K/2. So this is the K value of this thing. So now we find

out twice K value sigma bar square = sigma 1 - sigma 2 square + sigma 1 square + sigma 2

square.



So this is the yield surface functional form and this is the situation and we can define the K

by simply doing into the uniaxial tensile stressing specimen. So therefore this sigma bar is

actually this is the functional form and this sigma bar is the yield stress, normal yield stress of

a particular material. Similarly, K can have the different values if you do the biaxial tensile

testing.

See in biaxial tension if we see sigma 1 sigma 2 both are same equal to sigma bar and sigma

3 = 0, then we can find out sigma bar = this expression. Similarly, if pure shear condition we

can conduct the experiment, pure shear condition the principal, the situation is that sigma 2 =

- sigma 1 and sigma 3 = 0 and in this cases we can find out that sigma bar = root over K/6, so

therefore the K value or expression of this yields curve can be modified looking into the

different type of the observation.

So  for  example,  uniaxial  tensile  testing,  biaxial,  pure  shear  all  these  different  cases  are

different value. Now we can see if this is the sigma 1 and this is sigma 2 axis and if we put

this this is the point represents a uniaxial root over K/2 and this represents the biaxial here the

sigma bar = root over of K/2 and of course pure shear condition this is the point and this axis

represent the sigma 1 sigma axis.

This is the major axis of an ellipse. So this is the minor axis of an ellipse. So this is the locus

of all this point such that minor to major axis = root over 2/3, so this way we can represent

the different value of the K and the different functional form of a yield curve and the different

situation.
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Now equivalent or effective stress, the constant K determines the size of the yield surface

definitely the size of the yield surface and that yield surface and if we put the value of the K

from the different experimental value that actually decides the yield surface size as opposed

to the shape, shape is decided by this functional form, but K define the actually size of the

yield surface.

Now K represents the hardness, now if there is a change of the value for example, we can

conduct the sigma 1 is the for example, the value of the, from the uniaxial tensile test we can

find out the sigma 1 value, but uniaxial stress testing value, this is the yield point, the first

yield point, just elastic to plastic zone, sigma 1 for example,. Then with the strain hardening

effect it changes.

So therefore if you incorporate the strain hardening effect the yield surface about something

like that, it is the first yield point then this is next yield point, next yield point mean this

moves  from here  to  here  because  of  the  strain  hardening effect  of  a  particular  material.

Similarly, it changes from here to here, from here to here. The strain hardening effect can be

incorporated by simply changing the size and that size change is decided by what is the value

of K we are using.

So therefore by modifying the value of the K we can incorporate the strain hardening effect.

So equivalent or effective stress refers to the yield surface as an iso state surface representing

all the combination of the state that represent the elasto-plastic transition. This is iso stress



surface.  Now this  represents  the  equivalent  stress  value.  So  we  can  say  this  is  a  single

numerical value.

But that single numerical value is a function of sigma 1, sigma 2 and sigma 3, but if we

follow the one measures yield surface condition then it is having functional form of this one.

So this called K value or sigma bar, this is called the equivalent stress that means one single

value which is a function of all the principal stress components and of course this functional

form can change if we follow different kind of the theory also.

For uniaxial  tensile testing K already discussed by sigma bar square and von Mises yield

function become this one, sigma bar square = 1/2 these things, but this is for uniaxial tensile

testing, we can define this value, this is the yield surface and that yield surface in the form of

the sigma bar square and of course this Sigma bar if you say what is the Sigma bar value then

we can say the root over half, half of all this expression sigma 1 - sigma 2 square.

So this is the equivalent stress if we follow the von Mises yield condition. 
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Similarly, flow rules and the normality conditions that also exist during yielding and what

way we can define the how the yield surface evolves but the sustainability of the yield surface

during  the  plastic  deformation  continuous deformation  we need to  put  some kind of  the

normality conditions in the plasticity model also.



So this  yielding  the ratio  of the resulting strain,  now we will  try  to look it  to the strain

condition  resulting  strain  depends  on  the  stress  that  causes  the  yielding  so  therefore  the

relation between the plastic strain and the stress state are called the flow rules, flow rules

what  we  can  represents  that  d  epsilon  increment  of  the  strain  is  the  plastic  multiplied

basically d lambda some constant term.

And d lambda is arbitrary constant and df/d sigma z, so therefore the increment of the strain

depends on the basically the state of the stress. So suppose this is the yield surface for a

particular situation, yield surface, this yield surface represented by f and f = k, that is the K is

the functional form of the sigma 1, sigma 2, sigma 3. Now normality condition for this cases

can be represented.

What is the increment of the strain particular direction. So this value increment of the strain

value that shoud follow this multiplier and this how that d delta F/delta Sigma Iz. Now if we

follow this  equation  sigma bar  square  =  half  of  this  thing  we  can  find  out  what  is  the

increment of the strain in particular direction d epsilon 1 = d sigma by I think here we can see

that delta sigma y.

It is the functional form by sigma 1, so here we can find out the derivative of this one with

respect to delta sigma 1. We can find out this is the expression. Similarly, d epsilon 2 = this is

the expression d epsilon 3 = this is the expression. Now of course in this cases the material

will remain unchanged so therefore the elemental in d epsilon 1 d epsilon 2 and d epsilon 3

should be 0, that can be proved also.

If you try to, there is no change in the material volume during the deformation process. Now

this rule says that direction of the d epsilon that which direction the increment of the strength

is  independent  of  the d sigma.  It  is  not  necessary this  should be the  same direction.  So

therefore d epsilon is the vector normal to the yield surface that we will have to define that.

The d epsilon is the normal to the yield surface f and d lambda is the arbitrary constant.

So therefore this deformation behaviour or increment of the strain depends on the what are

the arbitrary constant we are considering and of course it depends also the at the stress state

for  a  particular  situation.  This  is  normally  called  the  normality  condition  in  the  plastic

deformation situation.
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Now we can find out the real stress and strain ratio during the with looking into the normality

conditions for uniaxial tensile testing in particular x the uniaxial tensile testing what we can

find out this normality condition that x1 direction sigma 1 = sigma for example, sigma 2 thus

some stress value sigma 3 = 0. So in this cases d epsilon 1 = this, similarly, d epsilon 2 = this,

d epsilon 3 = this for uniaxial tension rating.

So in this  case the increment  ratio  of the incremental  strain is  2:-1:-1,  similarly, balance

biaxial tension sigma 1 and sigma 2 = sigma and sigma 3 = 0. In that situation we can find

out epsilon 1 epsilon 2 and the epsilon 3 is like that and the issue is something like that 1:1:-

2. So during the deformation so ratio of the different strain components are different for the

different deformation weaver and that this ratio actually valid if you follow some kind of the

normality condition during the plastic deformation process.
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Now strain hardening effect what we can incorporate the strain hardening effect during the

plastic deformation behaviour. So strain hardening the plasticity with the strain hardening we

can say that  von Mises yield function not explicitly  mention the models  about  the strain

hardening effect because we say that k = as a functional form of sigma 1 sigma 2 like that,

but what a k evolves that it is not well defined.

So if we follow the isotropic hardening for a 3-dimensional stress strain region 3-dimensional

plasticity then sigma bar evolves in that way also. So this is the functional from 1 f 1 and then

it  evolves from here to here and that  because of this  value or this  depends on the strain

hardening and this is all equal way it evolves from initial strain yield point to the next yield

point due to the strain hardening effect.

Then this  is  this  type  of  call  this,  this  is  called  the  isotropic  hardening.  Now kinematic

hardening also possible, the yield surface size and shape remains the same, but the location

actually translates. So suppose this is the initial yield surface. Now initial yield surface here it

evolves next, it actually transfers from one position to another position.

So therefore this kind of hardening effect is called the kinematic hardening and of course this

situation arises when Bauschinger effect is important or there is a change of the stress state or

abrupt reversals of the strain path takes place, this is the kinematic hardening model and this

is isotropic hardening model but in practically most material model material behaviour may

follow combining of the isotropic and hardening model.



And it becomes more complicated when we combine all this material behaviour.
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Now we look into the work hardening and effect or necking effect during the process. So we

have already discussed that 3-dimensional stress state and in terms of the principle stress and

finally we can make at the equivalent stress value and that equivalent stress most of the cases

we can say that equivalent state there are single dimensional stress they can in most easiest

way or simple way represents the stress strain in terms of this equation.

So where k is the strength coefficients and this is called the Holloman type of the equation

that is simply relates the one dimensional stress to the one dimensional strain it may be like

that in 3-dimensional situation this is the equivalent stress and this is the equivalent strength

and that equivalent stress and equivalence terms related to in this form and a single value.

So therefore K is the strength coefficients and n normally represent the strain hardening effect

and work hardening effect. So now in the logarithm if we put in the logarithm scale and

sigma = ln K + n ln epsilon then we can find out this is the expression ln sigma = ln k + n +

ln epsilon. So therefore in this case this is the equation of most convenient simple way to

represent the relate between the stress and strain.

But in actual deformation process of thing if we look in the stress-strain diagram we assume

the neglect the elastic component if we replace only the plastic behaviour. So this equation K

epsilon to the power n and now up to certain point there is a uniform deformation and once



uniform deformation at this point, the necking starts in a deformation of a particular sample.

So therefore when the necking starts at this point.

So at the necking point or maximum load actually if we look into engineering stress-strain

diagram the necking point the maximum load and localization of the stress, necking means

there  is  a  reduction  of  the  cross  section  and  localization  of  the  stress.  So  therefore

competition between the work hardening that means large deformation means it start to work

harden more then with strength level also increases.

And at the same time the reduction in the cross section they are competitive with respect to

each other, but there is a reduction at this point. So that represents the in load deformation

card in engineering stress-strain diagram is the optimum slope. So therefore at this necking

condition mathematically we can find out that change of the force = 0, DF = 0, that means

slope = 0 at this point.

Now if dF = 0, so therefore f can be represented in the load exist stress into a cross section

area. So that is d sigma A = 0, that is the condition of the necking.
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Now d sigma A can be represented this A d sigma or sigma dA = 0 from here we can d

sigma/sigma = -dA/A, but dA/A can be represent if you see during the plastic deformation

also we can assume that there is no change in the volume. So when no change in the volume

means dV = 0. So dV suppose V is the crossing area of a cylindrical component, A cross

sectional L = length L.



So therefore d AL= 0 therefore we can decompose into AdL/LdL = 0 from here find out that

dA/A = -dL/L. So –dL/L is the elemental strain of a particular component. So that we will put

it here and here we can put it this value we can find out this sigma. So d sigma with d epsilon

= sigma. So this is the conditions that condition is called d sigma/d epsilon = sigma, this is

the condition for the necking for a particular deformation of a particular component.

Now of course this during this necking point it is assumed that it is acting as a equivalent load

or single axial,  single direction load is acting on this particular component. So now if we

assume that stress is related to strength by following the Holloman's type of the equation if

we assume the stress strain relation is this. Of course stress and strain relation may be are

different equation.

But if we assume this is the relation stressed and then what will be the necking condition. So

then if we follow from here d sigma/d epsilon = K, n epsilon n – 1, but we can find out that K

which is = c, this is the expression and then, but d sigma/d epsilon = condition = sigma and

sigma = K epsilon to the power n, so therefore K epsilon to the power n equal to this. From

here we can find out that n = epsilon that means this is called the considere criteria.

And that criteria actually established the necking condition but this criteria comes assuming

that stress-strain relation follow the Holloman type of equation, but remember that if stress

strain relation is something different then this you may not find this kind of condition. We can

start with this expression and in this expression we can assume some stress as a function of

strain, but different expression.

If  we put  this  expression  here  then  we can  find  out  the  necking  condition,  but  for  this

particular  situation if  you follow the  Holloman type of  equation this  is  the considered a

condition.
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We can easily explain using this graph if we look into that and this is suppose this is the 2

stress strain diagram here and of course this depends on the slope d sigma/d epsilon. Now this

if d sigma/d epsilon greater than sigma particular situation if you get this is the sigma curve.

So if this slope is greater than this sigma this side this indicates the before necking and this

sigma with d epsilon less than sigma.

That means d sigma/sigma is less than sigma that actually indicates this side is the necking

situation.
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Now we can do further calculation also that work hardening. So maximum load here you can

put if you use the Holloman type of the equation, this relation with stress strength. So in these

cases the considered condition is this one sigma = n, now what is the maximum load actually



that means necking condition the load becomes maximum. So at maximum loading condition

stress = K epsilon to the power n then K is this value and epsilon = n.

So k n to the power n, this is the condition and of course we can find out the engineering

stress and true strength and because here we can when using this relation sigma = K epsilon

to the power n actually we are using the value of the true stress and true strain here. So

therefore the relation between the true stress equal to engineering stress into 1 + engineering

strength.

This is the relation between the true stress and engineering stress well. So here if we put this

value sigma T and epsilon to the power n here our engineering strain = true stress engineering

stress =  true stress into e to the power – strain. So if we put this well we can find out this is

the  expression  and from here sigma e can  also  be estimated  sigma = sigma T, sigma T

actually sigma T = K epsilon T to the power n.

So therefore K n to the power n because here epsilon = n. T = n. So different exponential n.

So here we can find out this expression so all in terms of the non material parameter strain

coefficient in hardening coefficients and e and n, in terms of that we can find out. Of course

within this stress strain diagram we can find out what is the work done per unit volume is the

simple relation between it is the stress curve, strain, stress.

So here integration of the stress d epsilon n from here we can find out the expression for that

and we can find out this expression work hardening and making phenomena in this particular

case. So here you see all this expression is basically on this epsilon to the power n what if we

know epsilon = n. So you put epsilon n to the power n + 1. So therefore we can do this kind

of sample calculation and if we set the criteria for the necking conditions.

And if we know the relation with the stress and strain we can do all this kind of further

calculation.  Now even standards  sensitivity  can also be used most  of  the analysis  in  the

engineering problem. So like what are you can represent the Holloman type of equation.
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K = k epsilon to the power n, but strain is the strain hardening coefficients but similar we can

represent the standard where k dot is the strength coefficients maybe or some constant value

and epsilon dot so epsilon dot = the strain rate here to the power m. So M is the standard

sensitivity  index.  Now in  logarithm scale  we  can  find  out  this  is  the  expression  and  in

logarithm scale M is the slope basically.

Slope of the stress versus strain rate curve. So if we find out the slope particular point we can

find out what is the m value here. Now if we have due to different situation the different

value of the sigma 2 and sigma 1 experimental also we can do different value of the sigma 1

and sigma 2 we can estimate the corresponding strain rate 1 and corresponding strain rate 2

we can estimate the value of M also.

Because  this  M  is  the  very  practical  useful  parameter  for  a  particular  material  and

experimental we can evaluate. For example, suppose strained can be represented like that d

epsilon/dT change of this thing d epsilon can be represented like that d epsilon = elemental

length with respect to original length. So dL/L / dT, so dL/dT/1/L dL/dT simply velocity V/L.

Now if we look into actual in a universal tensile testing machine. So here we control the cross

head speed so when you conduct  the experiment  at  the 2 different  velocity  means the 2

different cross head speed and length of the sample remains the same at the 2 different cases.

So now once the length of the sample is the same and if you conduct the experiment in 2

different  strain  rate  that  means  2  different  cross  head speed then  we can  find  out  the  2

different strain rate value ratio of epsilon 2 to epsilon 1 = V2/V1.



Assuming the L2 that means L = constant. So here this graphical you can represent this V1

and this is the 2 different cross head speed and that ratio can be easily estimated and if you

put this value here we can easily find out the value of the standard sensitivity index. So this

way we can through simply experiment we can find out the value of the M and then we use

this M value for a particular  model  when there is effect of the strain rate in a particular

situation.
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Now of  course  if  you  see  we  have  used  the  2  different  coefficients  one  is  the  n  work

hardening or strain hardening coefficients another is the m, m is the standard sensitivity index

and of course physical interpretation of the n and m are differing these cases. So of course the

very work hardening effect is only the n up to uniform strain. So basically up to the uniform

strain before making the value of n is more important.

Therefore in that cases stress K epsilon to the power n is the most suitable equation there

such that there is effect of only the strain hardening, but beyond the ones the necking start in

that cases the strain hardening effect is not significant rather strain rate sensitivity is more

significant there. So therefore beyond the necking point we represent the stress model is the

epsilon to the power m dot is more relevant.

So therefore  but  actually  in  some material  and depending upon the material  deformation

behaviour the model can also be done considering the effect of the both strain rate effect as

well as the strain hardening effect, so in that cases the expression can be modified like this



sigma = K, epsilon to the power n and epsilon dot to the power m. So thank you very much

for your kind attention.


