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Response of Measurement Systems

Hello friends, welcome back to the second lecture of our second week, where we are

talking about the Response of Different  Measurement  Systems. If  you remember our

discussion from the previous week, I am sure you remember that there we have talked

about the characteristics of measurement system. 

And  primarily,  there  are  two  kinds  of  classifications  we  get.  One  is  the  static

characteristics  where we talk about  both time invariant  input  and output,  that  means

neither of the input and output changes with time both are perfectly in under steady-state

condition. So, then whatever we get that we call the static characteristics. 

Common  static  characteristics,  we  have  already  discussed  last  week  like  sensitivity,

linearity, zero-bias,  resolution,  then  drift,  hysteresis  etcetera,  different  kinds  of  static

sensitive  or  I  should  say  static  characteristics  not  sensitivity.  We have  already  seen

different  examples  of  each  of  those  characteristics,  and  also  from  some  given

information how to harness information about each of the static characteristics, some of

the exercise we have also done. I am sure you have done the assignments also where

similar questions are there.

Now, one question that may be popping up in your mind that we are talking about both

input and output to be time invariant. And the very common perception there may be if

the input is a study one that is it is not varying with time, then you can expect the output

from your measurement system also to be time invariant. 

And then why we need to mention both input and output separately? The answer to this

question is that it may be possible even if your input is under steady-state time invariant,

your output that is the output that you are going to get from your measurement system

may keep on varying with time. And we shall shortly be seeing a few examples right in

this particular lecture. 



And therefore, to ensure the static characteristics both input and output needs to be time

invariant  and  then  only  we  can  talk  about  those  characteristics  like  sensitivity,  and

linearity, and resolution, etcetera. However, when the both of them are varying with time

or at least the output is varying with time, we talk about the dynamic characteristics. 

And in this week’s content, we are primarily talking about the dynamic response of a

system. And some of  such characteristics  we have already discussed in  the previous

lecture,  where  we focused quite  a  bit  on different  kind of  inputs  particular  the  time

variant inputs in the form of periodic function. 

We know that whenever we are dealing with a periodic function, however complicated it

may  be  using  the  Fourier  transform we can always  convert  that  to  a  series  of  or  a

summation of a series of sine and cosines. And from there we can easily identify the

amplitude  and  frequency,  and  if  there  is  any  phase  lag  at  all.  For  each  of  those

components, and we can represent them either as a times in signature or in the in terms

of the frequency spectrum etcetera.

And when that kind of input signal periodic or sometimes may be time varying non-

periodic signals are imposed, and measurement  system. Of course, the output  is  also

going to be varying with time. And whenever such kind of periodic signals particularly,

we are talking about we there are several very common dynamic characteristics that we

have to be careful of like the amplitude response, phase response and frequency response

which are the most common used.
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So, today’s lecture we are going to discuss about 0th and 1st order measurement system,

it  is  response to  certain  standard  input  signals.  Now, in  towards  the  end of  the  last

lecture, I started developing a mathematical model of a general measurement system, but

because of the paucity of time I had to quit very early. 

And so I shall be starting that one from fresh, we have got the idea that the purpose of a

measurement system or the operation of a measurement system can be viewed to be like

a mathematical operation being performed on a input to get some output. Like as shown

in this slide if x is the input that is given to the measurement system, we can view the

system to be performing some kind of mathematical operations to give us, and output as

y. 

And of course, here we are restricted our self to single input single output systems, it is

possible for the same system to have multiple inputs and have multiple outputs, but that

will be too complicated to discuss in a course like this. So, we are restricting our self to a

single input which is denoted as x, and a single output which is denoted as y. 

Then the most common relation between this x and y in terms of differential equation

can  be  a  form like  this,  where  the  left  hand side  corresponds  to  the  input  or  sorry

corresponds to the output, where we have the y here a naught, a 1, a 2 all these are the

coefficients. And this n or maybe this n, this is generally referred as the order of the

system. 



Whereas, on the right hand side we have the input part in terms of x, here again we have

several coefficients b naught, b 1, b 2, etcetera to m n and m may be same or maybe

different, but both are integer numbers. Order of the system, I repeat is given by the n

and not by m. So, order of the system we refer in terms of this n. 

And when n is equal to 0, we call that 0th order system; when we call to 1, we call it is

1st order system, and it goes on that way. Now, quite commonly in mathematics or any

such kind of system analysis instead of using the differential notation which is d dt here,

we like to represent this in terms of an operation capital D. So, if you introduced that

capital D operator, it looks quite similar to an algebraic equation, but be careful here D is

not any algebraic quantity rather it is just an operator the differential operator. So, this is

the equation or relationship between y and x in terms of this operator D. 
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And so again drawing analogy to the algebra, we can represent them in a form like this.

In the numerator contains the coefficients associated with the output, and denominator

contains the coefficient associated with the input. Here we are getting then a ratio of the

output to that of the input to the input both maybe time varying, maybe time invariant.

But, here our importance our focus is more on this right hand side, which is giving this

ratio  of  output  to  input.  Quite  often  here  when  we  are  dealing  with  a  higher  order

equation that is n is a higher than n is a high in value or n has a large magnitude, then

dealing with such ordinary differential equation may be quite complicated, and that is



why quite often for solving such equations instead of directly solving that in the time

domain we prefer to perform a Laplace transform, so that the instead of using this time t

as the independent variable, we get that to converted to s which is the frequency domain

parameter s is the frequency, which is actually a complex number.

And using the  Laplace  transform,  we can  get  this  conversion  from this  independent

variable time to the independent variable frequency. And I have already asked you last

week itself to take a look at Laplace transform just to revise your Laplace transform of

exercises.
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And from that knowledge, we know that the differentials  can be directly related to s

using the Laplace transform to have a form like this,  where all  this  D operators can

directly be replaced with this s to get a very similar algebraic operation like this. The

advantage of this Laplace transform is  that  the ordinary differential  equation that  we

have here with time as the independent variable gets converted to an algebraic equation

with s as a primary variable. 

And hence, we get this particular thing, where input capital X is the Laplace transform

version of the small x input small x. And capital Y is the again the output represented in

the frequency domain and in between we have the mathematical operator, which is being

performed on X to get Y. This mathematical  operator we often refer to as a transfer



function. G is one of the common way of representing this, but there are several others

ways also we represent this transfer function. 

So, this concept of transfer function is a very important one in this topic of measurement

system. Some of you may have already gone through some course of control systems,

and their similar treatment we have already found. Actually, now if you have already

done control systems, the entire content of this week you may be very much familiar

with. 

But,  the  idea  of  transfer  function  is  to  represent  the  entire  mathematical  operation

performed  by  this  measurement  system in  terms  of  a  single  operator,  which  is  this

transfer function. And once you know the transfer function of one instrument, then we

can very easily relate the input and output by performing corresponding mathematical

manipulations. And even more and even bigger advantage is that when we have multiple

instruments  are  multiple  components  to  deal  with  during  measurement  using  this

operators,  we  can  easily  connect  different  components  to  get  an  equivalent  transfer

function this. 
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Let  us  see  an  example  here.  Here  we  have  an  example  of  a  quiet  complicated

measurement system of where we are using series of operations. Here R refers to the

input, Y refers to the output. Let us just instead of using R; let us just stick to our original

notation X. So, X is the input, Y is the output. And here there are several operations



being performed. Like, here we have several instruments having their transfer functions

as G 1, G 2, G 4 etcetera. There are different components also you can see there are three

H, H 1, H 2, and H 3 three components which refers to feedback.

I  am sure you have some idea about feedback,  which are primarily  used for control

operations. Like here whatever variable value that you have here that is being proceed to

G 5 towards the component having transformation as G 5, but also that same signal is

being routed through this particular feedback component to come get back to the original

input position, which returns this which gives at this particular point instead of supplying

the original signal X, if there is no feedback the original signal would have been X. 

But, here as we are supplying something, then the original signal will be X plus H 2

times, if whatever we have here. Suppose, if at this particular point our variable value is

X 1, then it will be H 2 times X 1. This is the signal that is coming to this particular

portion through this line. 

And then we are having another feedback. Here if the value of the signal at this particular

point is X 2, then whatever being transferred here is X plus H 2 X 1, which was already

coming plus this H 1 X 2, this is a signal that is reaching this particular component. This

is  the  idea  of  feedback.  And so using these  components  we can easily  calculate  the

corresponding transformations. 

Now, there are several components. If we count properly, there are we can see there are 5

plus 3 total eight components involved each of them having its own transfer function. So,

somehow you have to combine them that combination process can be very easy. There

are generally three kinds of possibilities we get. 
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First possibility let me erase it make it a bit cleaner first possibility is where we have two

components  connect  in  series.  Connect  in  series  means,  the  output  from  the  first

component is directly fed to the second component. Like if the first one is having output

G 1, second one is having sorry first one is having transfer function G 1, second one is

having transfer function G 2. 

And let us say X 1 is the signal that is being fed to G 1, its output is X 2. Then this output

is directly fed as input to the component having transfer function of G 2, and giving a

final output as X 3. Then how can you calculate using the notations that we have for the

first component we know that output of an input if X 2 of a X 1 will be equal to G 1,

which is giving X 2 is equal to G 1 X.

Now, look at the second component. Output from the second component is X 3, what is

the input that you are giving that is G 1 into X, and that leads to our output as oh sorry G

1  X 1,  so  that  leads  to  our  output  as  X  3  output  I  repeat  output  from the  second

instrument  is  X 3. And its  input is G 1 X 1 that will  be equal to the corresponding

transfer function, which is G 2 which gives X 3 is equal to G 1 G 2 X 1. 

Hence X 3 upon X 1 is equal to G 1 G 2, which is the combine transfer function of these

two components that means, when two or more components are connected in series their

equivalent transfer function will be a product of their individual transfer function. We

can see one such arrangement here in this case. So, this is possibility number-1. 
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Let us move to the second possibility. Second possibility is when the components are

connected in parallel, parallel means where they are not being subjected to same inputs

rather something like here. Their both ends are connected to the same point. Something

like see if X 1 X is the net output that net input that you are supplying A component of X,

which is  X 1 is  going to the first  component  having transfer  function G 1.  And the

remaining portion that is X 2 is going to the component having transfer function G 2. 

So, from the first component, you are getting an output Y 1 from the second one you are

getting an output Y 2, which is giving us the net output Y. Now, we can easily see that X

will be equal to X 1 plus X 2. Now, what will be the relation between X 1 and Y 1 using

the definition of transfer function, we know Y 1 upon X 1 will be equal to G 1. And Y 2

upon X 2 will be equal to G 2.
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Hence, Y which is Y 1 plus Y 2 that will be equal to G 1 X 1 plus G 2 X 2. So, this is the

net output that we are going to get and if our interest is to get the net transfer function or

equivalent transfer function of this  full assembly. Then we have to get a relationship

between the net output Y by net output X, which will be of course G 1 X 1 upon X plus

G 2 X 2 upon X. 

Now, if once we are connecting them with a position like this, there essentially we have

X is equal to X 1 is equal to X 2 that means, that the same signal is being directed to both

the components. So, it leaves us with G 1 plus G 2 to be equal to the net equivalent

transfer  function  that  is  G that  means,  when  multiple  components  are  connected  in

parallel then their equivalent transfer function will be the summation of their individual

components. 
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So, using this particular knowledge, we can clearly say that like say for this particular

assembly  our  equivalent  transfer  function  will  be  G  1  into  G  2,  whereas  for  this

particular assembly our equivalent transfer function will be G 3 plus G 4, and that is

what we have here G 1 into G 2 here replacing the G 1 and G 2 individual components

and here again G 3 plus G 4 replacing the individual components. 

Now, we have another situation here which represents or which involves one feedback.

Now, the idea of feedback is that say let me clean it again idea of feedback is that let you

have an input X being transfer to a component having transfer function G to get a net

output Y, but you want to control the value of X itself. Then this output whatever you are

getting  this  Y itself  is  routed  back  to  a  feedback  controller  generally  denoted  as  H

corresponding transfer function,  and supply to this where there may be connected by

suitable summation based components. 

So, X is being supplied here, and also a modified portion of voice also being supplied

here giving us this net. So, this one maybe now become X 1, and we are getting Y is the

output from this. Then what will be your X 1, X 1 will be equal to X, which is the

original input plus H times Y, then we are going back to the original component that is

this one, but its output is Y. And what input it is sensing that is X 1, which is basically X

plus H into Y that is giving us G. So, we are having Y plus sorry Y equal to GX plus

GHY.



If we rearrange them, then 1 minus GH Y is equal to G into X, which leads us to a net

transfer function. If you represent that as G bar, which will be equal to Y upon X as G

upon 1 minus GH. Here of course we have assume that in this summation component, we

have assume that both signals are getting added to each other. 

But, that may not be the case like you can see in this particular one both are getting

added to  each other, but  in  this  case  they  are  getting  subtracted  from each other. If

subtraction is there, then it will become 1 minus instead of 1 minus G I, it will become 1

plus G I. So, this way we can connect a feedback loop as well.
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Let us see what we have here let me clear all litter from here. So, in this third step of

modification, we have added the feedback components, look at what we have. Now, this

G 1 G 2 combination has been added with H 1 to get G 1 G 2 by 1 plus G 1 G 2 H 1 look

at where we have the minus sign here and which has led to this plus sign here. 

And also  we have  made another  transformation,  this  particular  component  has  been

shifted to this particular part to make it easy. I would leave to you about how to calculate

this H 2 upon G 5 just same algebraic modification that we can do. And now this part is

quite easy, this whole thing here we have G 3 plus G 4 and G 5, so the equivalance of

this one will become G 3 plus G 4 into G 5, and that is a H 3 as a feedback component

leading to this particular one. 



And we already have this particular thing remaining, and this is a feedback from this

which leads to this final transfer function. So, your input gets modified and to have this

form output in terms of this  function transfer function.  And now if  we know all  the

expression for each of this individual eight components, then we have the final transfer

function. 

So, the concept of transfer function mixes very easy to combine different components of

a measurement system in a single transfer function. And once we have the single transfer

function,  we  can  delete  with  quite  easily  there  are  quite  there  are  several  standard

mathematical  procedure.  So,  today in the  remaining part  of this  lecture,  we shall  be

discussing about how to derived this transfer functions. 
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But, before that we have to talk a bit about the standard inputs also. Once you know the

transfer function of a particular component, then theoretically it is possible to subject that

instrument with infinite number of inputs, infinite types of inputs, but it is not possible to

standardize the response for each of such possible inputs. 

So, what is commonly done is we test the response of measurement system with known

transfer function against some standard inputs. And then whenever you are dealing with

an  unknown  or  a  different  kind  of  input,  we  generally  try  to  represent  that  as  a

combination of the standard input, like we have already seen in the previous lecture.

Whenever you are having a periodic function to deal with, we can separate it into several



harmonics component. And then the net response of the system should be the summation

of the individual responses or the response to each of the individual harmonics. 

Similarly, there are a few other types of also types of standard inputs also possible. Like

this is the first one something like this we have already seen in the previous lecture. Here

the input is 0 or constant in a particle  particular instant of time.  And then there is a

sudden jump in the input, sudden change in the input to reach another constant value, and

remain there for rest of the time. This is referred to as a step input. 

So, it is x equal to 0 as per the diagram here till t less than 0, and for t greater equal to 0,

it becomes a constant. Now, this constant can be positive or negative means it and also

initial value this 0, it may have also some other value also. Like the example that we

have discussed in the last lecture.

A thermometer was initially at a temperature of say 30 degree Celsius, and now suddenly

you take it to an environment having temperature of 90 degree Celsius, then this is being

subjected to step input. Instead of increasing the value, we can also subject it to suppose

you take it in contact with a block of ice. Then it has again been subjected to a step input,

but instead of being an increase in the value it is suffering a decrease in the value such

inputs  are  called  step  inputs.  Along  with  thermometer  there  can  be  several  other

examples also.

Let us say very arbitrary examples; you want to measure the mass of a pack of sand. So,

initially your measuring platform is empty no load on this on this one, and now you

suddenly  drop  this  entire  bag  on  top  of  this.  So,  its  load  was  initially  0,  and  now

suddenly it is being subjected to a static load a constant mass. If the mass of the bag is 50

kg, then suddenly the load on this one is increasing from 0 to 50 kg. And then that 50 kg

is retained, so that what is referred as a step input. 
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Next is the ramp input. Here it is the input signal is 0 till  a certain time, and then it

increases but I should say it changes, but it there is no drastic change rather its changes

continuously which time following a linear path. This kind of inputs are referred as ramp

input. So, it is input is equal to 0 initially, and from t equal to 0, t greater equal to 0

onwards, it is a linear function of time, where a is certain may be giving you the slope of

this particular line. 

So,  the ramp version of the examples  can be thought  about say the example for the

[team/ thermometer] thermometer] that we thought about. We initially you have a pool of

water, and your thermometer is being dipped into this pool. This is the thermometer bulb

dipped into this pool, both the thermometer bulb and the water at the same temperature. 

Now, suddenly  you take  this  assembly  into  a  heater  and start  hitting  the  water  at  a

constant rate. Then we can expect the temperature of water to increase also following a

constant  rate.  And hence the thermometer  will  be sensing a continuous change units

input value, input temperature value something resembling the ramp input. 

If you talk about the pack of sand, instead of suddenly dropping the entire bag, we kept

on adding sand on the measuring platform at a constant rate we just cut the cut open the

bag. And then at a constant rate we keep on dropping the sand on this, so that is like a

ramp input. Both step and ramp are quite common kind of inputs in practical application



that  we get,  and hence it  is  very important  to  test  the response of any measurement

system against these two inputs. 
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Another  one we can have is  called  an impulse.  Impulse means just  think about  that

measuring platform again. Here we are not just directly drastically increasing the load by

dropping a bag of sand or we are also not continuously adding the mass rather what we

are doing, we are taking a hammer and striking the platform, just for a very very small

fraction of time. Then what is happening for a very small duration of time? It is being

subjected to a very large amount of load, before that instant there was no load after that

instant there was no load, but only for a very small duration of time, it is being subjected

to huge amount of load. 

It is like so take the thermometer, now you in a somewhere you have a water kept at very

high temperature, we just take the thermometer dip it into the pool of water for a fraction

of second, and then immediately take it out that is something like an impulse input. 

For time less than that instant, it was 0 for the next instant onwards again it is 0, but for a

very small duration of time it will be infinite. Theoretically it is infinite, but there may be

certain value for this. A more about impulse input, we shall be discussing in the next

lecture, when we shall be subjecting systems to the impulse input. 



And the other one is a standard periodic input, as we can represent any periodic function

as combination of several sine waves. So, we generally test any measurement system

against  a  standard  sine  wave,  and  test  its  response  corresponding  to  the  change  in

amplitude, and change in frequency omega, so that means, this A and omega both can

both  are  generally  valid  to  test  the  response of  the  system,  and accordingly  we can

extrapolate it for any periodic function. 

The  response  of  a  system  against  any  standard  input  generally  referred  with  the

corresponding name. Like, when is when we X site one measurement system using a step

input, we call is a step response. When we use a ramp input, we call it a ramp response,

similarly you call it impulse response. And when you are subjecting this by a periodic

function,  we  generally  call  it  a  frequency  response;  the  term  which  was  already

introduced in the last lecture. 
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So, the first one in line is the zero-order system. Zero-order system is when the order of

the system that is that n that we have referred is equal to 0, so what will be the form for

this, it will be a naught y is equal to b naught x, here we are talking about n equal to 0.

We are not putting any restriction on m. 

So, instead of having b naught x, we can have several other terms also that is b 1 d x d t

plus b 2 d 2 x d t 2, and go on like this. But, a from our practical experience you have

seen that we never need to consider this higher order terms on for the input, it is just this



b naught x itself is sufficient regardless of what type of system or what order of system

you are dealing with. So, we shall be restricting our input side only to this b naught x

component, but on the in output side we are taking a zero-order system that is you are

putting n equal to 0. 
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And once you have putting n equal to 0, then your transfer function that is y upon x will

be equal to b naught upon a naught. This particular component b naught upon a naught is

referred as a static sensitivity or steady state gain of an instrument. What it suggest or

what it is looking like, it is just a this static sensitivity is just a ratio of output to input

something very similar to the amplification or gain that we have talked about earlier that

is the static sensitivity is nothing but an amplification in the output.

It is giving a ratio of input to sorry output to input, and if both x and y are time invariant,

then what will happen the static sensitivity reduces to the sensitivity that we have defined

in the previous week that is why, it is wrong this name is actually drawn from there. It

represents the slope of a static calibration curve, and if the instrument is subjected to a

steady-state input, then it will also give you the amplification this. 

Zero-order  system  is  therefore  is  characterized  by  the  static  sensitivity,  which  is  a

measure of the amplification, it is the most ideal system that we can have because, here

our transfer function is just a single K just a one para meter K none of the differential

operator appearing. 



And so once you know the value of this K, the static sensitivity we can easily correlate

the output and input. And it is the simplest possible measurement system we can that we

can have, there is no lag no time lag between the input and output means whatever input

you provide, you will be instantly getting the output. And the value of input and output

will be differing by this static sensitivity K. It is the ideal dynamic behavior that we

expect from any measurement system. 

Like, suppose if we are subjecting the instrument to step input, this blue line represents

the input, then depending on the value of the K, it is instantaneously going to give you

the output given by this red line. Depending upon the value of K the output, magnitude

can be higher than the input magnitude or can be less than this or K equal to 1, both the

red and blue line will superimpose on each other. 

But, there is no time lag that is you can see here as soon as you provide the input your

system is able to respond, it is immediately giving the output value which is what we

want means, we do not have to wait to get any measurement, we have get the measure

value immediately. And by varying the value of this K, we can also amplify the signal

means we can increase it  in magnitude  or we can even reduce in  magnitude also to

whatever range that we want. 

Even if they even when the, it is subjected to some kind of periodic signal, just look at

this. Here as the output the red one again it is showing. The output in the output we are

again  getting  another  sine  wave  having  the  same  frequency,  but  maybe  a  different

amplitude depending upon the static sensitivity of your instrument. 

So, zero-order system is the most ideal system that we want, which we say which is able

to provide instantaneous response to your system like look at this case. Here it is there is

no phase lag, if you are dealing with zero-order system in there are suppose several three

harmonics present in the input signal, it will not impose any artificial phase lag be the

harmonics that you are going to get in the output, so that is the most ideal behavior that

we can expect. 
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Something that  very closely resembles  the input is  the resistance based displacement

sensor called the potentiometer. In the concerned model,  we shall be discussing a bit

more about potentiometer. But, the principle of potentiometer is that here you have a

resistance like this  which is being subjected to which is being excited by a constant

voltage source kept here. 

Let us say the height of the resistance is this X i or say x 1 is the original height of the

resistance. And your the displacement that you want to measure or the displacement of

the device following of the system which you want to measure that is being connected

with this particular needle or and this needle as the system is moving, this needle keeps

on moving up and down along this register. 

So, as the system in moving up and down accordingly the voltage available at this side

that also will keep on varying and suppose at if the total resistance, if resistance we take

as proportional to the length of the resistor, then x 1 is the original length. And at a

particular instant of time your indicator is connecting this x 2. 

Then if E is a voltage that is being imposed, and small e refers to the voltage or small e

naught this refers to the voltage that your indicator is showing what will be the ratio, it

will be the output is e naught input is capital E that will be a straight forward relation

between  these  x  2  and x  1  that  is  a  straight  line  relation,  it  is  a  perfect  zero-order

instrument that we can get. Instead of being such a linear scale sometimes, we can also



use an angular scale to measure the angular displacement, but regarding potentiometer

assembly talking about a bit more. 

Another  system which  another  very common system which  you already know about

which is also quite can be it thought about is a zero-order system, can be a spring gauge

or a spring balance I should say spring balance, which is generally used for measuring

the weight of something. 

As the system is as the system or the measurand is connected to the hook of the spring

gauge, immediately you will find a deflection of the spring indicating which will cause

the deflection of the indicator on a scale which will move on a scale, and you get that

measured weight; weight of the measurand directly from the scale that is also quite close

resembles of a zero-order system.

But, practically there may be several issues. For each such examples, which may limit

the zero-order behavior. Like in case of potentiometer, there can you several issues we

can force it deviate. One can be the here to measure this e naught, we have to connect

some voltage measuring instrument maybe a voltmeter, maybe an oscilloscope, which is

going to show the output. 

Now, that itself requires some current for its own operation. And therefore, it is going to

make a some change in the value of this e naught itself, thereby causing some distortion

in the or some change in the final output. And then secondly the resistance that you are

talking about here, this resistance you are representing by the in terms of its length, but

that is true only for a pure resistor. And there is nothing like a pure resistor in nature.

Every  resistor  will  always  have  whatever  small  may  be  some  inductance,  and

capacitance associated with this. And those inductance and capacitance will lead to some

amount of voltage leakage from this. 

Another very common reason the indicator or this particular indicator, which is moving

over the resistor that itself may suffer from mechanical friction that we have some quanta

friction  associated  with it,  may have some inertia  associated  with it  means once the

system suffers some displacement the indicator itself may take some time to move over

the indicator, move over the resistor rather, and so those lags those mechanical  lags,

mechanical friction will also cause some change or some distortion in the final value. 



And all such reasons may force the potentiometer or any such zero-order instrument to

deviate practically from the ideal zero-order behavior, but still zero-order instrument is

the most preferable one for any kind of measurement. Unfortunately, we have very few

examples  for  zero-order  instrument,  but  there  are  several  examples  of  a  first-order

instrument.
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So, for a first-order instrument now, we have n equal to 1. So, if we go back to our

original equation what we have, our equation now is a 1 d y d t plus a naught y is equal

to b naught x, remember we are not taking any term after the first one on the right hand

side. So, going back to our differential representation, we can write it is a 1 D plus a

naught into y is equal to b naught x. So, we have three coefficients to deal with a 1, a

naught, and b naught, all other coefficient are zero for first order system. 

Truly speaking we do not need three coefficients. We can always define divide the other

two by any one of the coefficients, thereby reducing the required number of parameters

to just two. We can either divide everything by a 1 or a naught, but just to be consistent

with what you have done for zero-order system. Let us divide everything by the a naught,

we are dividing everything by this a naught. 

So, if we divide everything by a naught, we have a 1 upon a naught D plus 1 y is equal to

b naught upon a naught into x. What is b naught upon a naught, we already seen for the

zeroth-order system that is the static sensitivity or steady state gain, but we are having a



new term here. This a 1 upon a naught, a 1 upon a naught what do you feel, what will be

the  dimension  for  this  quantity  ok.  Before,  that  what  is  the  dimension  of  the  static

sensitivity that is this K static sensitivity on this if we just go think about the zero-order

instrument itself, there K which is b naught upon a naught is directly your y t upon x t. 

So, the unit of K will be your unit of the output by unit of input. Like if you think about

say one thermometer liquid in glass thermometer, there your output is the displacement

of  mercury  inside  the  column.  So,  y  will  be  having  a  unit  of  meter  or  some

corresponding  length  scale.  And  x  is  the  input  which  is  the  temperature  change  in

temperature,  so  it  will  be  say  degree  Celsius  or  degree  Kelvin.  So,  output  to  input

whatever is the unit the same will be the unit for this K.

But, what about this quantity a 1 upon a naught, look at this particular equation carefully.

a 1 upon a naught whatever may be the nature of your x and y, you will always find this

ok.  Once  more  you  just  take  a  look  here,  you  have  one  involved  here,  which  is

dimensionless quantity. And you have a differential operator involved here for this. 

So, if you look at carefully your this a 1 upon a naught will always have a dimension of

time, you shall be seeing one example may be next slide that is why, it is often referred

to as a time constant tau which you gives a measure of the speed of the system response. 

And accordingly, we can represent this first order system as tau D plus 1 y is equal to K

into x or this is the corresponding form in transfer function K upon tau D plus 1 is the

transfer function for a first order system, it is different from the zeroth-order, because

here we have been a denominator involved, and we cannot have just a straight one to one

correspondence between output into output and input. Rather we have one differential

operator involved in this D. 

And also like in zeroth-order system, there is only one cauterizing parameter in form of

static sensitivity; here we have another one to deal with which is this time constant. So,

time constant I repeat is a measure of the speed of system response, and it is always

desirable ok. Let us wait to see whether we want a larger value of tau or a smaller value

of tau, we shall be seeing through some examples. 
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Now, example for first-order system, there are several most common one is a liquid in

glass thermometer. There can be other examples like one capacitor discharging current

through a resistor, there can be one tank of water leaking through a wall, these are all

very common examples of first-order system. We shall be seeing a few more examples

later on, let us just concentrate on this one. 

You have or we have a common thermometer which is being dipped into a pool of water.

Let us perform an energy balance over the bulb of the thermometer. Now, if we think

about  the  thermometer  bulb,  say  this  is  your  thermometer  bulb  maybe  a  very  bad

drawing of that, so this is the bulb the hashed portion, what is bulb maybe having a

volume V b, and it is having a surface area of A s. 

So, bulb is having a volume V b, and a surface area of A s, then what it is doing if

whatever may be the initial temperature, if that is different from the temperature of the

water surrounding water, then it will experience some heat exchange. So, let us assume

that the surrounding water surrounding fluid is at a higher temperature. Then heat will be

flowing into this, what is the mode of heat transfer here, correct it is convective heat

transfer. 

And the result of this heat transfer will be a change in the energy content of the fluid the

thermometric  fluid  here.  So,  using  this  let  us  write  an  energy  balance  for  this

thermometer bulb. So, how much energy that is being supplied in the form of convection



that will be U, which is the overall heat transfer coefficient into the surface area, which is

this A s into the T of the surrounding fluid, let us say T infinity refers to the surrounding

fluid minus T f refers to the thermometric fluid. Both can be function of time, of course T

infinity  itself  can be a function of time,  and the fluid temperature T f definitely is a

function of time. 

Let us neglect any heat loss from this. So, this the amount of heat addition, there is no

loss. This entire quantity will lead to a change in the energy content of the system. Now,

how we can calculate the energy content of this or how much is the energy change in this

energy content. Let us perform this energy balance over a small interval d t, then this is

the total amount of energy that has been received by a thermometer bulb minus there is

no loss. 

And if this over this small period of time d t, let us say there is d T f amount of change in

the temperature of the thermometric fluid may be mercury. Then how much will be the

change in total energy content that will be the mass of the thermometric fluid, which is

rho into V b into specific  heat  into  the change in  its  temperature  this  here C is  the

specific  heat,  rho  is  the  density  both  corresponds  to  the  thermometric  fluid,  V b  as

mentioned. 

And so we simplify this, so we have U A s T infinity minus U A s T f is equal to rho V b

C to d T f d t or write in more formal way rho V b C d T f d t plus U A s of T f is equal to

U A s t infinity remember U A t infinity itself can be a function of time. So, how this

equation is looking like very similar to your first-order equation. 

Like here this one is your a 1, this one is a naught, and this one is your b naught. T

infinity it represents the x, T f represents the y, and time is a variable for this, but think

about the thermometer itself.  Our output is it  coming in terms of T f, because actual

system output is coming only in terms of expansion of the fluid through the capillary

tube. 

So, we have to somehow convert this T f to the expansion of the field in the capillary

tube. Let us assume that when T f was equal to 0, all those mercury or all the fluid was

restricted inside the bulb. And so there was the length l of fluid column in the capillary, it

was 0. As T f keeps on increasing l also keeps on increasing. 



Then how can we relate this T f with l, if of course the length or let us writes at a certain

instant of time. If l is the length of this thermometric fluid column in the mercury, what is

the volume of that it volume is definitely l into cross section area of the capillary here A

c refers to the cross section area of this particular capillary.

So, l into A c is the total volume inside the total volume of mercury that is there inside

the capillary, and from where this is coming this is coming because of the thermometric

volumetric expansion of mercury which was there inside the bulb originally. So, if beta

refers to the volumetric expansion coefficient, then beta into the original volume V b into

T f that gives a relationship between l and T f or we can write T f to be equal to A c upon

beta V b into l. 

(Refer Slide Time: 48:41)

So,  let  us  replace  this  one  in  the  earlier  equation.  So,  if  we  go  back  to  the  earlier

equation, then we have row V b C into from here we can also write that d T f will be

equal to A c upon beta V b into d l. So, putting it there we have A c upon beta V b into d l

d t plus original equation at U A s into AC upon beta V b into l of course is equal to U A s

T infinity. 
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So, the original equation we have now converted in terms of T f, it was there now you

have converted that to the terms in terms of l. And l is the output, and T infinity is the

input. And now if you divide everything by your a naught that is this quantity, then what

you are going to get? You are going to get rho V b C divided by U A s that is going to be

equal to d l d t plus l will be equal to beta V b upon A c terms of T infinity. 

So, what we have? This is the final equation just written in a much clear fashion. So, this

one what is this one beta V b by A c, this is a static sensitivity of steady state gain. And

this row C V b upon U A s, it is what? It is the time constant for a system. Of course,

wild so we have a situation of a first-order system where you already got the expression

for both static sensitivity and the time constant.

And once you know this parameters, like you can just look at this V b A s and A c are

geometric parameters. V b refers to the volume of the bulb, A s it is the surface area of

the bulb, and A c is the cross section area of the capillary tube. So, once you are having a

thermometer, you have all this information known. 

Row C and beta are properties of the fluid that you are using mercury or whatever. So,

those are also generally well known. And only problem is with this U, U is the overall

heat transfer coefficient the U may depend on the surrounding or general depends on the

surrounding like if the thermometer is dipped into stagnant full of liquid, whatever will

be your heat transfer coefficient. 



If it  is dipped into a flowing pool filled of liquid, then we can expect U to be much

higher. And also if it is dipped into institute of liquid, we keep it in air, then U will be

much lower. So, U is not truly a system parameter, we need some information about the

surrounding as well to get a measure of U. 
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But, like in case of zeroth-order system, there are also several factors which may cause

the first order system to deviate from its first order behaviour. Like there are several

assumptions, we have already taken in this derivation. First we have neglected any heat

storage capacity of the wall material like the glass. We are assume that, that is not storing

any heat, and also there may be a small film of liquid out on the outer side of this, and

also small film of thermometric liquid on the inner side of the bulb. We are neglecting

the heat storage capacity of those. 

We have assumed U to be constant, but truly speaking U itself may be a function of

temperature,  because properties of the fluid both thermometric  fluid, and the exterior

fluid both can vary with temperature. We have neglected the expansion and contraction

of the bulb that is not a bad assumption truly speaking. Like glass kind of material has

very small expansion coefficient, and generally are negligible, as long as the temperature

change is limited. 

We have neglected any heat conduction along the stem to the upper side of the capillary

tube. Again a if you choose a material with very low thermal conductivity, this is not a



bad assumption. Constant mass of fluid inside the bulb that we have assumed, whenever

there  is  an  expansion  taking  place  some  fluid  is  moving  out  of  the  bulb  during

contraction some fluid moving back into the bulb. But if the diameter of the capillary is

very small, then the amount of mass that goes out of the bulb that can be very small

almost negligible and finally, we have assume the fluid properties to be constant. 

So, with this we have got this two expressions for K and tau, just look at this what will

be the unit place for this K and tau. We do this unit calculation from the right hand side,

beta is a volumetric expansion coefficient what is its unit, do you remember, it is rate of

change of volume per unit volume per unit temperature.

So, its unit is 1 upon degree Celsius, where we are sticking ourselves to Celsius as the

unit for temperature.  V b is volume, so it is meter cube A c is area, so meter square

giving the unit of this quantity to be meter per degree Celsius. Like, we have discussed

earlier meter is the unit for your actual output which is length degree Celsius is the unit

for your actual input, which is the temperature of the exterior fluid. 

Come to the time constant. Here you have row, so row is SI unit is kg upon meter cube,

C is specific heat. So, it can be taken as joule per kg degree Celsius, then you have V b

upon A s V b is meter cube upon meter. And U volumetric expansion coefficient watt per

sorry user overall heat transfer coefficient watt per meter square degree Celsius. As we

have already having a joule left, so instead of watt we write it as joule per unit time. Now

look at this, so this meter cube goes of sorry here we have meter square this corresponds

to the A s, so the meter square goes off degree Celsius joule, and also kg goes off leaving

only this second, which is the time constant for this.

And also another thing we can look for if you want to use increase the sensitivity of your

thermometer, what we have to do? Firstly, we have to choose an instrument, which is

sorry choose a fluid which is having high beta, and we also have to design it such that

this ratio V b upon A c ok, V b upon A c will come not into picture. 

We have to ensure that the volume of the bulb is high, and the cross section area of the

capillary is very small. Similarly, if we think about time constant, if you want high time

constant rho C should be high rho C product, again V b should be high, and surface area

should be low, whereas heat transfer coefficient again it should be as low as possible. 



So, a high value of V b gives us high value of K, and also high value of tau.  High

sensitive is always desirable, but for time constant we do not know yet. Let us check it

with  respect  to  one  standard  input.  In  certain  situations,  however  the  effect  or  the

parameters tau with effect K, and tau they may be contrary to each other. So, you may

have to go for certain kind of optimization to identify both high sensitivity and favorable

time constant. 
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So, first you check the step response, we know this is the step response. So, how to do it?

We know for a first-order system, this is the way this is the standard form here K is the

static sensitivity, and A is the input that you are giving for any value of tau or sorry any

value of time greater than 0. So, we have to solve it.

Any ordinary differential equation of this kind where we can find the solution in two

parts one is called a complementary function, other is a particular integral. So, if I am

just  directly  giving  to  the  solution,  if  you  solve  it  for  in  this  particular  case  the

complimentary function for y will be some constant C into e to the power minus T upon

tau, whereas the particular integral in this case will be the right hand side itself the KA.

So, the actual solution for y will be a summation of this two C into e to the power minus

t upon tau plus KA, but C is an arbitrary constant.
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So,  we  have  to  get  the  value  from our  boundary  conditions  or  I  should  say  initial

conditions, what condition we know. We know that t equal to 0 your y is equal to 0. So, if

you put this value 0 will give you C into e to the power 0 plus KA leaving to us C is

equal to minus of KA. 

So, we put it together final expression for y t comes to be equal to KA 1 minus e to the

power  minus  t  upon tau,  which  is  this  where  K and  tau  are  the  properties  of  your

measurement system, A is the amplitude of the step input that you have provided, and t is

the time variable which changes from 0 and can go to infinity. 



(Refer Slide Time: 58:25)

You can clearly see, there are two parts of this solution. One is this 1 which is a constant

value, and other is this particular quantity. We can explain it bit more, if you represent

the solution in this form. Here we are dividing the output by K into A thereby making it

non-dimensional. Look at this here one this term is 1 which represent the constant, and

what about this  term this  is an exponential  term which an exponential  term negative

exponential term. 

So, when t equal to 0, this term goes to one giving leading y equal to or I should not say

y giving the left hand side that is y upon k into a to be equal to 0. But, when t tends to

infinity, then what happens then this exponential term goes to 0 leaving this to be equal

to 1 that means, this actually is a measure of the error that can be present in the system.

As we move with time, this exponential term this error that keeps on reducing, and for a

very  long  duration  of  time  this  goes  to  0,  thereby  giving  ideal  response  from your

measurement system. This is one example where we have taken K to be equal to 1, and

tau equal 0.5 second. 

Just see here the blue line is the input your step input, the red one is the output that you

are  getting.  You  can  see  like  in  zeroth-order  system,  we  are  getting  an  immediate

response which we are not getting here. Of course, the system start to respond from this

point that itself, but it will take some time to reach the actual signal. 



Theoretically, it will require infinite amount of time to reach the actual signal, and so it is

rise  time.  I  hope  you  remember  the  rise  time,  rise  time  refers  to  the  time  the

measurement system reaches to match the input value. For this y upon KA quantity the

time it requires to reach this value of 1, theoretical it is infinite. 

But, practically instead of rise time we use the settling time. Setting time means, the time

the measurement system requires for this output signal to reach within certain band say

within 5 percent or 10 percent of this value; like if we take a band of say 90 percent, then

we are taking about this y upon KA value to be greater than 0.9. Once this y upon KA

value becomes greater than 0.9, we can see that the output has reach with in a within 10

percent of your desirable value. 
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Let us see this is the time if this is the range, then we can see this is the point where your

system enters that band. So, this particular period can be referred as your settling time.

But,  let  us  now check what  can  be  the  effect  of  your  time  constant.  Here  we have

compared three different time constant. The continuous red line is the same, when this

particular line refers to tau equal to 0.25, and this particular line refers to tau equal to 1,

what we can see there. 

As the time constant is increasing, system requires more time to reach the actual output

or the settling time keeps on increasing that is why, it is always better to have system

with smaller time constant that is logical also because, time constant gives you the speed



of system response. Smaller the value of time constant higher is the speed of system

response, so we always prefer system to have been having a smaller time constant. 

Now, if you just refer back to the example of earlier we have used, there we have seen

that when the V b increases, sensitivity increases, but time constant that also increases.

Therefore, we may have to go for some kind of trade off, because higher volume of this

bulb will give you higher sensitivity, but at the expense of so lesser time constant. And

time constant is very precious, because we cannot wait infinite amount of time to get

your output from the system. 
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The measurement error is often referred as the input minus this y upon K quantity. So, in

this case it will be A into e t upon tau. And if we plot that with time, you can see that

initially your measurement error is 1 which is referring to this particular point. And as

the time goes on the error keeps on reducing.

So, again if we are sticking to a 9 percent sorry 90 percent band, then we can allow a

maximum  of  10  percent  error  measurement.  Then  something  here  somewhere  sorry

somewhere if 0.1 value is here, where the system enters that band. And so from this point

onwards, we can take the reading. 

Like the just think about how is the clinical thermometer, we take it and put it in contact

with our body, but we do not take the reading immediately, rather we wait for some time.



And we take the reading after say one and half minutes or two minutes, because it has a

certain time constant it requires certain time to enter the available error limit or for this

error to become smaller than the available value and then only we take the limit. Higher

time  constant  is  not  desirable,  we always  prefer  an  instrument  with  is  smaller  time

constant. 
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We shall be checking other response today that is the ramp response we know this is the

form of the ramp. So, we this is the corresponding function of functional form. And if

you solve this on following again the complementary function and particular integral, we

are going to get a solution of this particular form where we again have two parts. Both

cases the tau is involved.

And take out the measurement error then, we having a form like this now look carefully.

Here in the error in the previous case, we had only one part which is an exponential term

A e to the power minus t upon tau with step input, but here we are having 1 minus that.

This term of course as time goes on this 1 goes to 0, but what you are left with.

When this  tau sorry when your time t tends to infinity, your measurement  error will

become A upon tau that means, it attains a constant value that means, in case of ramp

response your system will always have some constant error, which is often referred as a

steady state error. And it will never be able to reach the actual input value. As the input



keeps on increasing, the output will keep on following that, but with a constant gap just

just follow this. 

Here again the blue line is the input, the red one continuous one is the output. So, in the

initial period over some period somewhat like this the nature of the output also keeps on

changing,  but once it  reaches this,  you can see here there is  a consistent  gap that  is

maintained between input and output, which is this a tau quantity this steady state error. 

The system will never be able to recover this error, rather you will always have as long

as the input keeps on increasing, output will keep on falling it, but with this amount of

error. The dotted line is a something with a different time constant, again a different time

constant higher that smaller the time constant value lesser is the amount of error in this

case. 
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So, this is the corresponding error, you can see the error initially is 0 here. And then it

keeps on increasing, and then becomes constant beyond a certain time for this. So, this is

a step and ramp response, we shall be talking a bit more on them in the next lecture, and

we shall also be checking out the response of a first-order system in terms of impulse and

frequency response. 
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And then we shall be moving onto the second-order system. So, just to sum up what we

have  learned  today.  We have  talked  about  the  generalized  representation,  we  have

developed generalized mathematical model, then transfer functions was introduced, and

we have also seen how we can combine transfer function. 

And  then  we  have  talked  about  different  standard  inputs  step,  ramp,  impulse,  and

frequency input or periodic input. Then we have talked about the zeroth-order sensitivity,

which gives the concept of static sensitivity zeroth-order system which gives the static

sensitivity of the cauterizing parameter. Then the first-order system introduced the time

constant. And then we have discussed about the step and ramp response of first-order

system. 

So, in the next lecture which I am expecting to be the last in this week, we shall be

discussing  a  few more  example  of  first-order  system,  response  of  first-order  system

against impulse and periodic inputs, may be solving a few numerals, and then we shall be

talking about second-order system. Generally, we do not have to go beyond second-order

system, because all common measurement system can be classified either as zero, first or

second order system. 

So, that is it for the day. Thanks for your attention. We shall be back soon with the next

lecture of this module.



Thank you.


