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Welcome to our class theory of rectangular plates part 1.
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So today is week 3, second lecture. In this lecture I am going to cover extended Kantorovich

method, free vibration and buckling solutions of rectangular plate. In the previous lecture I

have told you that extended Kantorovich method is also an approximate method which can be

used to develop solutions for the plates subjected to the arbitrary supports conditions.
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So  in  this  slide  I  am going  to  explain  that  how  you  are  going  to  apply  this  extended

Kantorovich method like Ridge method I have told you, you have to develop first weak form

of the equation then you substitute that approximation of w in that and that weak form is

converted into a linear  algebraic  equation and which is  solved using the standard matrix

theory or matrix techniques like you can use the Cramer's rules or you may use some Gauss

elimination technique and one can get the solution from different constants.

So for this purpose I am going to tell you that you are aware that when we are developing a

plate solution, the last stage that we just say that del w, del u, del v0 are the arbitrary, so their

coefficient must vanish, so this leads to a partial differential equation just before the partial

differential equation if I am just explaining for bending case, one can go for even using this

u0 v0.

So I am taking only for bending so let us say this one and loading case which is a coefficients

of delta w0. So this is our equation on which we are going to work. Now you substitute using

the plate constitutive relations like in the few lectures we are substituting this using the plate

constitutive relations what will be that. If you substitute that it becomes like this okay. So this

is the weak form of a plate under bending.

Now the EKM approach, extended Kantorovich approach, I am going to explain that you

assume a solution into 2 bivariate functions f which is a solely a function of x, g which is a

solely a function of y or I would like to say the simplest example when you are going to

develop a solution for a simply supported case, there you have assumed sin m pi x/a, which is

the function of x only sin series and similarly sin m pi y/b.

If  you assume a solution  like this  it  serves  the boundary, satisfy the boundary condition

exactly you get a Navier solution. So we will say that let us say this is f and this is g, not

saying in terms of exactly sin series. We want to satisfy any boundary condition. So fx and gx

f is the function of x, g is a function of y. So this is a single term I would like to say that

approximation.

If  you  go  and  see  in  the  literature  you  will  find  90% of  the  work  in  which  extended

Kantorovich method or Kantorovich method is used that single series, single term solution is

used, but recently when we tried for a 3-dimensional case we found that single term solutions



does not provide the accurate solution for 3D case. So we went for a multi term solutions that

f1 g1 + f2 g2 and so on. 

So if  I  am going to  explain  the  basic  technique  that  how you are  going to  solve set  of

equation. So assume fx and gs and let us say in the first step like Kantorovich in book 1958

Higher Engineering Mathematics in that book it is given that let us assume priorly that gy is

known, that  you know that  gy satisfy the boundary conditions  or  whatever  a  function  is

known to you along the y direction that solution initial guess.

Then you are going to solve for x so you will take the arbitrary variation along x in which

that is the unknown part, unknown direction, so it will be the unknown one. So I am going to

repeat it again, y first case known, priorly known, or chosen function whatever then solve for

fx, so we will say that let us say arbitrary variation over the fx.
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So in this equation if you substitute this values fx and ds, so where w0 is the function of

derivative  along x-axis.  So you will  get  fs  derivative  for  g  remains  as  it  is,  here  mixed

derivative, so g double derivative y, fx double derivative y. Similarly, here w derivative y g 4

times of derivative by and del w not will be del f and gy. So here written like this, so you see

del f and gdxdy = 0.

Now we see that since g is known to you, known function so definitely you can also this

integration known, some constant will come, so this D11 and g and multiply with g and Dy is

known to you. So you can treat as a constant. So next step you will see that we can write this



equation C11 of f derivative 4 times, we will say that some constant C12 f double derivative

x, some constant C22 only f and so on.

So what are these C11 is nothing but D11 of g from here and g from here and dy. So 2 times

of g. So this gives you C11. Similarly, C12 two times of D12 and g, yy if g is known it is

derivative is also know. So you can find out that C12 similarly you can find it out C22. Now

we will say that since del f is arbitrary. So its coefficients must vanish, or you can say using

the fundamental  of variational  principle  that  gives  to  an ordinary differential  equation  of

fourth order.

And this you know how to solve, I already explained in the Levy solution that fourth order

differential equation for a static case, the same way you will get the solution of this equation,

that you will have 4 roots on the basis of roots, you can define that my solution will be

harmonic  function  or  some constant  and satisfying the  boundary conditions  along x axis

exactly like levy type you can solve it.

Now in the next  step,  this  till  now this  is  Kantorovich that  y known x all  exactly. Now

extended Kantorovich, Kerr, he proposed that. Let us say we know this after solving this we

get a f solution. Now we assume f is known and g is unknown so for that case del w will be a

f * del of g. By substituting same thing here following the same procedure you will  get

another set of equations like this along the Y direction.

So which is the fourth order differential equation along y direction and along x direction. So

next you repeat it by solving y, again go for x. So in this way around 2, 3 iterations you will

get that boundary conditions or the solution will satisfy exact boundary conditions along x as

well  as along y. So the initial  choice whatever  you choose gy need not to satisfy actual

boundary condition when you go for iteration.

In first step okay, the solution may be slightly inaccurate, but the next step which is the OD in

y  there  it  will  satisfy  the  boundary  condition  exactly.  So  you  will  get  accurate  solution

further. So in this way whatever case you will choose it will satisfy later on, so in this way we

will saying a 2 set of OD. So it is very fast since we are solving OD. So it is accuracy is very

high and convergence rate is very high.



So this method since 1960 onwards has been used to analyse various problems starting from

the bending of a plate to free vibrate, these days it has been extended to even the FGM shells,

you  see  FGM  cells  with  arbitrary  support  conditions,  piezoelectric  shells  with  arbitrary

support conditions. So this, I would like to say that promising future, even these days some of

the very little one or two I would like to say two, three papers has been, researches has tried

that for different geometry basically.

Different  boundary condition  is  proved but  different  geometry  maybe some triangular  or

maybe some hexagonal or something can be tried for that some of the researchers has proved

that this can be done, but it has to be proved further so there is a very promising future for

this method that we can apply to different kind of problems and we can see that whether this

method is able to give the solution or not.

So basically  after  the simply supported people just go for a numerical  solutions,  but this

method is very simple, easy to apply and so one can use instead of a numerical when a plate

is subjected to, simple plate is subjected to any arbitrary boundary conditions. In the next

lecture also I will help you that how to develop a plate model in the abacus. So there will be a

video so you will understand that how to make a composite plate in abacus software and get

the solution for that.

Similarly, some of the students may go for developing some Matlab course. Later on if you

got the idea you may develop some Matlab code or you may just for a simply supported you

may get some solutions and you can check verify whatever the solution you are getting from

the numerical approach and from analytical approach, what is the difference or how much the

computational cost like this.

So the solution  is  given in  basically  A.  Kerr  paper  that  is  in  1968 Acta  Mechanica  and

someone another author and one more I forgot his name, so one can try these solutions.
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Now come to our course topic that buckling of the rectangular plate,  I think most of the

undergraduate  students  are  aware  about  the  buckling  of  beams,  what  is  that  buckling  of

beams. When you are saying buckling, basically buckling of columns not even aware about

the buckling of beams, they are not just when there is a column like this and if you apply a

load axially compressive load and you can get some critical buckling load.

Even for  different  boundary condition  sometime this  hinge and free.  So they have some

standard formulas, analytical formulas out there. Apart from the columns we have beams, we

have plates, we have shells. So they may also have a buckling kind of thing. So if you talk

about a beam. So let us say this is a beam and buckling will be like this, if you apply a

compressive load like this.

What do you call Nxx? now you talk about plate buckling, a plate means when there is a plate

and if you apply a compressive load along the axis, along x-axis as well as along y-axis. So in

the plate you have 2 option, uniaxial buckling when the buckling or I would like to say that

compressive load is applied only in one direction, you may have a biaxial loading, biaxial

buckling when the compressive load in both 2 directions.

Maybe  some  other  case  that  in  one  direction  it  is  compressive  another  direction  it  is

stretching. So we may solve for that cases. So what will be the governing equation for that.

So if you remember or I am just going to give you this was your main governing equation for

the static case I told you I am going to neglect this nonlinear case and this dynamic portion,

the time dependent terms.



For the static I have choose only this thing. Now we are interested in the buckling of the plate

then what are the terms are required we will consider this and m terms. We will not take care

dynamic part of this. Some of the student may ask same time you take the time dependent

terms and buckling terms and loading terms, yes, that can be taken, but the solutions will be

very complex.

So one by one we will solve and we know that it is under the linear case or later on we can

add the solutions if you are interested to that object is subjected to a transverse load as well as

compressive load and time dependent terms are also there, so that results can be combined or

combined effect can be analysed, that will be very complex case.

So for study point of you or explaining that basics that how to solve a buckling equation, how

to solve by bending question, how to solve a free plate under a free vibration case. So I am

going to explain that. So this will be our buckling equation okay. We are going to use this

equation out of that Nxx and this Nxy because it does not call any, we do not consider that

Nxy as a buckling load.

So this term will not contribute, only this term will contribute. Now you see inside that even

we are  considering  only  this  when  you talk  about  nonlinear  analysis  of  your  plate  then

definitely you will consider Nxy, but when will you say that the buckling that compressive

load like this and like this. So we are applying only this now your governing equation will be

this. So what is the next step before going to the next just I would like to explain.

(Refer Slide Time: 18:47)  



Let us say a plate, these are my coordinates along x-axis, this is along y-axis and we have

applied a buckling load along y direction. In first apply buckling or a normal in plane stress

N0 along x direction and along y direction and we say that let us say that along y direction

this is a gamma times of N0. You take any load definitely you can take rest of that whatever

whether it is 2 times or 5 times or < 0.1 times, 0.2 times and in times you can find out the

ratio so that our solution will be slightly easy.

If you take Nx as it is Ny as it is then solution will be slightly difficult, we cannot get the

common terms. So we are saying that along x axis and not along y-axis gamma times of N0.

So what is your Nxx which is the compressive load so –Nx0, what is you Nyy, it will be –

gamma times of N0. Now we are talking about Navier solution. So that satisfy the boundary

conditions on the axis x0 and xa y0 and yb, what will be those.

So deflection definitely along x 0 and a, and along Y 0 and b similarly the movements along

x axis normal movements, and normal movements along y-axis, this has to be satisfied. So

our aim is to choose if w0 such that which satisfies this boundary conditions. So this is our

function that wmn, sin m bar x sin m y if we choose that this will satisfy boundary conditions

as well as displacement boundary conditions and moment boundary conditions.

Next to substitute this into the governing equation if you substitute so double derivative, 4

time derivative of x it will become m bar 4 square then double derivative x, double derivative

y, m bar square, m bar square then 4 derivative y, you see that double derivative will become



- and m0 is -, -, - + then again -, - + and if you take this side so basically m bar square +

gamma, n square n0, put like this, becomes a question = 0.

So one solution is that ywmn is 0, but if you say that if wmn 0 there is nothing, you cannot do

anything so nontrivial solution will be that you put it is coefficients must vanish. When we

say this wmn cannot be 0 so its coefficient must vanish for a nontrivial buckling load.

(Refer Slide Time: 22:17)

So If you are putting equal to 0, n0 becomes D11, this term divided by Mn square + gamma

and bar square. So this is your buckling load, but you do not know whether it is a critical

lowest buckling load or not. So this term that value of mn and the value of D1, D2, D22.

Based on that only if you substitute those values and evaluate for every m and n and you find

which one is the lowest that will be the first critical buckling load that first lowest.

Now we are talking about a square orthotropic plate, so for that case and we say that equal

uniform compressive force gamma is 1, it reduces to like this. For the case of isotropic it

becomes like this. So based on m and n you can find out the value of n0. So basically then

you see when m1, 2, 3, 4 number of infinite kind you can take. So a system or like a plate or a

beam which are continuous system they have infinite sets of loads.

Or they have a infinite sets of if we talked about the frequency also, similarly infinite set of

buckling loads first, second, 3, 4, 5, 6, 7, 8, 9, 10 and so on. So the first we say that lowest

buckling load is known as first critical buckling load. So you can find out for a particular



geometry, for a particular D ratio, it looks very easy for the case of when all edges are simply

supported.
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And the mode shape can be written as, so if you take about n11, so you put n11, n112, instead

of m so you will get the mode shape for that.

(Refer Slide Time: 24:26)

Now you talk about Levy solution which is like you have seen for the case of bending Levy

solution was okay, slightly complicated not much complex like you get ordinary differential

equation of fourth order, now you are solving based on the roots you can get the solution and

applying the boundary condition you can solve that, but here when we say Levy solution 2

opposite edges must be simply supported.



So basically x0 and xa, x is 0 and x is a are simply supported so we can apply only loading

here, y0 and yb can have any support conditions. Some of you may be curious about that why

not I am taking along y direction. So you just give me some time I will explain even if you

take this it becomes equation very complex to solve.

If you want to consider I do not know analytically I think you cannot solve it, there will very

complex case, so we substitute and yy is 0 then the solution will be along x-axis will satisfy

the boundary conditions w and mxx so we can assume a solution sin mx and wy.

(Refer Slide Time: 26:26)

If you substitute in to this equation it becomes, this is just I am telling you, equation like this,

okay, which is fourth order differential equation, ordinary differential equation of fourth order

like this. Now you assume a solution similarly W = C Lambda y so it reduces to a equation

like this. So it will have 4 roots. Sidewise you do not know what is m0, this is also a function

of N0, since you are applying.

But our aim is to find out that minimum load that n0 were interested in the magnitude of that,

we are saying we have applied but that is unknown, we are interested to find out. If you know

that okay, this much has been applied and then you can solve it then it is easy, but if you are

interested to calculate from the system that what is my n0 critical then this equation becomes

difficult. So it is saying this N0 is greater than D11 for that case, you can write the solutions.
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So basically you will have four roots lambda 1 square, lambda 2 square like this. So if that

condition satisfies, so you can write a solution like this based on the roots thus I have already

explained for the bending case, if my roots are complex, real or linearly dependent then we

can write the solutions. So for the case of isotropic D11 is D, D here 2 is D so this lambda 1

square, lambda 2 square reduces to like this.

(Refer Slide Time: 28:21)

So you have returned w solution lambda 1, lambda 2 are written like this, where A, B, C, D

are arbitrary constants, which need to be find out, satisfying the boundary condition along y

edge. So first of all let us say y0 is your simply supported, and yb = free. So for that case w

and myy and for this case myy and vy is to satisfy 0. Where D bar 12 is this, so this is our

solution, if you say that w is 0 when y is 0 if you put cos hyperbolic this becomes 11 and this

becomes 0.



So A + C = 0 similarly if you put in the terms, some terms will come A + C again = 0 so from

that 2 equations A + C = 0 plus some constant A + C = 0, it leads to both A and C are 0. When

you apply that y = b movement is 0 and shear force is 0, that lead to give 2 equations, one is

this, another is this.
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Where B and D are unknown constants. So basically the one trivial solution that B is 0, D is 0

but we are not interested in that, so what is the fun if all constants are 0, so W is 0, so we

have to find out the nontrivial solution.
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Buckling of rectangular plate for Levy type boundary conditions. So we have solved for the

Navier case it looks very easy, but for the case of Levy it is not so easy. So first of all let us



see the geometry, x = 0 and x = a we have assumed that simply supported. For a Levy 2 as

this must be opposite as is first be simply supported, other 2 edges can have any boundary

conditions.

So our  loading  along  x  direction  along  y  directions  we are  taking  0.  So  this  governing

equation becomes like this, so a function which satisfy the 2 opposite edges as the simply

supported we can assume W like this and substitute it to here gives you this equation.

(Refer Slide Time: 31:19)

Which is  an ordinary  differential  equation  of  fourth order?  (())  (31:38)  you know like  a

bending case that you assume W = C times of e raise to the power lambda y and substitute it

here, it gives you a fourth order equation and if you say that lambda square = R so you know

that solution is a quadratic equations lambda 1 and lambda 2.
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So you can find out the roots of this equation lambda 1 and lambda 2 can be like this for a

orthotopic plate. For the case of isotropic plate, the lambda 1 and lambda 2 can be written

like this. Now there is a case when this n0 > D11, so you see that this is the positive term,

only this is the negative one, this is positive one. So if this is > so your under root will have a

positive value.

But if N0/D22 < this and sum is really this value may be some combination of that. so it may

have a minus of under root so you may have a complex root. If this is more than that that

means you may have real root only. If you prove that this is greater than of this so it will be

having a real root for the case of real roots you can say that solutions can be written like this.

Or you need not to say that okay you just assume that my roots are real or equal solution will

be like this, my roots are complex the solution will be some different kind like that you may

write all 4 cases. Now A, B, C, D are unknowns, arbitrary unknowns. Here also your roots are

also known in terms of N0, these are known to you, but N0 is not known to you that we are

going to find it out.

There may be cases that somebody is giving you that load under this load this plate will

buckle or not, then it is easy, just you put that load and check the set of equations, but you are

interested to find out the minimum for a particular geometry, for a particular material you are

interested to find out the minimum critical buckling load, so for that it is unknown kind of

thing.
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So now you are going to solve a plate which may have y = 0 simply supported and y = b2

free.  So  when  simply  supported  boundary  condition  w  must  be  0  and  moment  along  y

direction must be 0. For the free case moment and vy has to be 0. So the solution is written in

this form for a particular case then if you substitute that when y is 0, w is 0 and y is 0 moment

is 0. So from that you will get A and C constants are 0. Now the next one y = 0, my moment

is 0 and shear force is 0.
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Applying those conditions, you will get these 2 set of equations. Now the set of equations the

trivial solution is that B = D =0, B or D both are 0. If A and C is already 0, if you say that this

solution is, one solution is that B and D = 0 then there is no buckling, no load, nothing, no

function. So non trivial solution for such cases before proceeding further you may hear about

that let us say 2 x 2 matrix x1 and x2 and righthand side is 00.



Let us say a11, a12, a21, a22, these are my elements. So trivial solution, x1 = 0 and x2 this is

also 0, nontrivial solution. So non trivial solutions for a such a system is that if a nontrivial

solution exists so this determinant must vanish okay, similarly here we can write in a matrix

form B and D = 00 and you had some constant this sin hyperbolic and this constant and sin

hyperbolic lambda B and so on.

Let us say C1 constant, so determinant of that must vanish. So we will get the determinant,

multiply this minus of this, so you will get this is the form of the determinant where omega 1

and omega 2 is again function of some material property in the roots. Sometimes we called it

as a characteristic equation. Here lambda 1, lambda 2 is there and omega 1, omega 2 is also a

function of lambda 1 and lambda 2.

Now you know that lambda 1 and lambda 2 contains n0, n critical so while solving this, so

how do you solve such kind of equations. So very first technique is the iterative, that you are

assume let us say sum n0, initial and evaluate all the roots and come to this characteristic

equation and equate it to 0. So from there if it satisfies it means this N0 is the root of the

equations and part of this.

Otherwise it is not going to be 0, so that remnant will not be 0 for that particular case. So in

this way one can find out and so that is why it is very complex in the literature or the research

area in the field of mechanics, composite mechanics or in the structural mechanics you will

find only maximum 10 papers related to the Levy type solutions.  Most of the papers are

devoted to Navier type solution, just to check the formation, but Levy type solutions very

rare.

I would like so that in structural mechanics or composite mechanics not more than 20 if you

say, basically 10, basic 10 or 20 not more than that. So the reason is behind that solution

getting the solution and writing the algorithm for that is very trivial. So it is very difficult one

can write, used to write but it is not very easy, not straightforward.
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Next come to the dynamic analysis of a rectangular plate. Now for the dynamic analysis we

are going to consider this equation. When we talk about free vibration then again this term

will vanish further, sometimes this term is known as rotatory inertia. If you say that my plate

is  thin,  so  h  cube becomes  further  thin,  means  order  will  be  further  less,  so  I2  will  be

negligible.

If my plate thickness is 0.01 so this cube will be little contribution. So for the case of thin

plates we neglect this rotatory inertia, but if you are talking about thick plates definitely we

have to consider this. Otherwise there will not get some of the vibration modes or the effects

of these, okay. Then here w is a function of time as well as a function of space. So first of all

this general function is divided into 2 parts.

One, let us assume a function w which is solely a function of a space and another variable e

raise to power i omega t which is a function of time. We are assuming that along time, over

the time my function varies like this. Sometimes just you assume a cos omega t in actual this

is, so this is the real part of basically e raise to the power i omega t. So in general case you

may assume that e raised to the power i omega t, it contains both sin and cos sin terms.

But  most  of  the  cases  if  you take  only  cos  sin  that  also  works,  so  where  omega  is  the

frequency or the natural frequency, fundamental frequency associated with that, t is the time.

So you have assumed and you substituted here. So time derivative will vanish, only space

derivative will remain. So you see this equation like this.



Now you are saying because it is valid for all time, so we can say that this has to be this

coefficient must vanish, so it is = 0. So from there omega 0 can be find it out so this is your

now the governing equation.
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Now the next step Naiver solution are simply supported case, assume w like this, substitute it

here, it leads to this equation, this cannot be 0 or I would say this cannot be 0, so this has to

be 0. So from there one can get omega square S like this for a plate that natural frequency for

an orthotropic plate is this. You may be aware about the fundamental frequency of a beam,

fundamental frequency of a discrete system spring and mass, but what is the fundamental

frequency of a plate, for a simple supported plate all round, this is this.
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The next for the case of isotropic plate without rotatory inertia it leads to like this. If you say

the plate is square, then it reduced to like this. If you say the lowest one m = 1, n =1 then it

gives you next, twice of this. So the first frequency of an isotropic plate is related like this 2

pi square plate a square under root d/rho h. If you remember for the case of a spring mass

system under root K/M.

You used to write so this factor extra for the case of plate plus rho h is basically related to a

mass, D is basically what is bending stiffness, hear K is also stiffness, M is mass because here

for a continuous system it becomes inertia terms. So you can relate with that. So I think with

this you know that what is the first frequency done you can go 22, 12, 33, 44 infinite set of

you will get bending frequency.

Then the more will be accordingly if you talk about 11 modes it will be sin of pi x/a and sin

of pi y/b so first if somebody is interested to plot so it will be the maximum kind of thing. I

will show these things that how it looks in the Abacus or you may also plot two dimensional

plot of that mode shapes along thickness and using all these things that how the plate bends in

the first mode when you talk about second, three and so on.
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Now again for Levy type, so I am discussing this I think third time, first for the bending case,

second time for the buckling case and third for the last is for vibration case. So Levy method

converts a partial differential equation into an ordinary differential equation by assuming it to

just  simply  supported.  In  Kantorovich  you  are  doing  or  assuming  a  solution  in  ny  and

converting a partial differential equation into an ordinary ny.



And  similarly  assuming  ny  you  can  convert  that  partial  differential  equation  ordinary

differential equation along x-axis. Similarly, here again assuming a solutions like this, same

way like your buckling way you have this kind of things equations and finally you write so

fourth order ordinary differential equation assume a solution write down here, you will have

four roots.
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Then again you can write the solution similarly and then you substitute as per the boundary

conditions.
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If you talk about it 3 S simply supported and free y 0 simply supported y0 b free again you

will get A C and 0 and this will be the characteristic of the equation and same it is solved by



iterative way, you assume first omega and whether that the system is satisfied or not and you,

so the solution technique or procedure is finding the roots basically of this equation.

So in the next lecture I will explain some how to model a plate in Abacus and then finally the

3 dimensions solution for a plate which we are going to use for analysing very thick plates.

So I am going to give you just one exposure that okay these kind of solution have just one

can go for that.


