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Lecture – 03 

Velocity triangles of pumps, effect of inlet swirl on velocity triangles 

 

So, we will continue our discussion on Principle of Hydraulic Machines and System 

Design ah. 

(Refer Slide Time: 00:35) 

 

Today’s topic is Velocity triangles of pumps effect of inlet swirl on the pump operation 

and pump performance. Today again we will draw rather we will revisit the velocity 

triangles for I mean radial flow pump as well as axial flow pump. 
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We will initially draw again an impeller of a radial flow pump; we will draw the impeller 

of a radial flow pump. So, if I take out this blade and if I draw you know enlarged view 

this is 1, this is 2; 1 is inlet and 2 is outlet. And if I draw the velocity triangles at the inlet, 

we have seen that there are 3 components; one is tangential velocity u 1, another is relative 

velocity w 1 and there will be a resultant velocity according to Lami’s theorem that is we 

call it absolute velocity c 1. 

Now, similarly we will get the velocity triangles at the outlet; that means tangential 

velocity u 2, this is absolute relative velocity w 2 and resultant will be the actual velocity 

c 2. And we have seen that component of absolute velocity and relative velocities in the 

tangential directions are c theta 𝐶𝜃1  and 𝑊𝜃1  at the inlet. Similarly component of you 

know absolute velocity and relative velocity in the tangential direction at the outlet are 𝐶𝜃2  

and 𝑊𝜃2. 

So, this is 𝐶𝜃1 and this is 𝑊𝜃1; 𝐶𝜃1  is sometimes known as the swirl component of velocity. 

Similarly, we are having 𝐶𝜃2  and 𝑊𝜃2  and this is 𝛽2 is a blade angle at the outlet; this is 

𝛼1 this is flow angle this is 𝛼2   and this is 𝛽1. 𝛼1 , 𝛼2     is the relative flow angle; flow 

angles at inlet and outlet where 𝛽1 and 𝛽2  are the blade angles. Similarly, if I draw this is 

essentially for a radial flow pump; this is for radial flow pump. 

Similarly, we can draw the velocity triangle for the axial flow machines or axial flow 

pump; if I draw. So, this is the axis of the impeller, this is impeller we are having blade 

40



this is point 2 this is point 1; 1 is the inlet and 2 is the outlet. Now this is known as suppose 

we are having similar blade at and this is known as hub diameter Dh, this is hub this point 

is known as hub of the impeller and this point is known as tip; tip and this point is known 

as hub. 

So, Dh is the hub diameter similarly you are having tip diameter this is Dt tip diameter. 

So, Dh is the hub diameter and Dt is the tip diameter. So, we are having hub diameter and 

tip diameter; if I draw the velocity triangles at the inlet and outlet. So, I will draw 

separately; so velocity triangle at the inlet is we are having 3 different components again, 

we have relative velocity w1 this is point 1, this is the u1 and the resultant is the absolute 

velocity c1. 

Similarly, this is at inlet and we will have velocity triangles at the outlet is w2, u2 and c2; 

so, that outlet. So, this is a velocity triangle at the inlet and this is at the outlet and we have 

hub diameter and tip diameter.  

Q= 
𝜋

4
 (𝐷ℎ2 −  𝐷𝑡2)* velocity of flow 

So, this is c z 1 we will call it Cz1 and this is Cz2 are flow velocity at the inlet and outlet. 

So, Cz1,Cz2 are the flow velocity at inlet and outlet. So, we can find out flow rate by 

knowing the Cz1 and Cz2; if the flow swirl free the special case is, if the flow is swirl free 

at the inlet if the flow is swirl free at inlet then Cz1 = C1 that is there will be no component 

of swirl at the inlet. 

So, this is all about the velocity triangles at the inlet and outlet of the radial flow pump and 

the axial flow pump. Now we will see that what effect does it have if we make 𝐶𝜃1; that is 

the swirl component of flow velocity at the inlet at outlet 0 and negative on the head 

development characteristics of the pump. 
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Next I will discuss that in the last lecture we have derived the head developed by the pump 

H from Euler equation of turbo machines that is  (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔. So, the head 

developed the pump can be expressed in terms of the blade velocities at the inlet and outlet 

as well as the component of absolute velocity in the tangential direction at the inlet and 

outlet that is swirl component of velocity at the inlet and outlet. 

We have discussed we have also discussed that if the flow is swirl free at the inlet. So, if 

the flow is swirl free at inlet, then 𝐶𝜃1 = 0 and the head developed by the machines will 

be simply 𝑢2 𝐶𝜃2/𝑔. Now we have also discussed that by making 𝐶𝜃1 = 0 we can have is 

𝑢2 𝐶𝜃2/𝑔 , but if 𝐶𝜃1 becomes positive; that means, if the flow at the inlet is swirl I mean 

if there are swirl at the inlet of the flow then probably head developed by the pump will be 

lesser. 

But somehow by making a negative component of swirl velocity we can have higher head 

development by the pump. And we have also discussed that we can make c theta 1 

negative, we can discuss 𝐶𝜃1 negative by you know making you know direction of the a 

pump impeller and the flow in the different direction ok. So, we have also discussed that 

the head developed at the pump that is coming from Euler equation for (Refer Time: 08:53) 

can be you know expressed in a bit different from that for the axial flow machine we have 

last lecture we have discussed that can be simply expressed in terms of the relative 

component of velocity. 
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So, now, I will discuss that for axial flow machines since r1 = r2 that is D1 = D2; then u1 

will be equal to u2. It is simply head developed by the pump will be u*(𝐶𝜃2 − 𝐶𝜃1)/g. But 

in case of a mixed flow pump, but for the mixed flow pump since if you draw the impeller 

again since the diameters r1, r2 are not equal. So, this is point 1 this is point 2 and we have 

like this since r1 not equal to r2. So, head developed by the pump can be written in terms 

of (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔. 

And from the velocity triangles at the inlet outlet using cosine rule we have expressed this 

head development H in terms of 3 different component of flow velocities like 

H = (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔 

H = 
𝑢2

2− 𝑢1
2  

2𝑔
+  

𝑐2
2− 𝑐1

2  

2𝑔
+  

𝑤2
2− 𝑤1

2  

2𝑔
   

So, have seen that the head developed by the pump can be expressed in terms of 3 

components of velocities that is, tangential velocity, axial velocity and the relative velocity 

that is velocity of flow related to the blade ok. 

Now, I will try to express this quantity H for a radial flow pump in a bit different form that 

is in terms of outlet you know parameters at the outlet of the pump; that is the blade angle 

and also the velocity at the outlet of the pump. So, if I draw the; you know again impeller 

of a radial flow pump and this is a radial flow pump, and this is the hub and this is the 

blade. 
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So, suppose pump is rotating in the clockwise direction at an angular velocity omega. And 

if I draw the blade 1 2; then if I take out the blade and if I take this blade out and if I draw 

the velocity triangles at the outlet, that this is 2. So, this is u2 this is c2; similarly we can 

have velocity triangles at the inlet. So, this is w1 this is resultant velocity is absolute 

velocity we call it absolutely c1 and this is u1, this angle is alpha 1 flow angle, this is the 

blade angle at the inlet this is 𝑊𝜃1 and this is 𝐶𝜃1. 

Similarly, we have 𝑊𝜃2 𝐶𝜃2; this is c2, this is alpha 2 this is blade velocity at outlet and 

this is w 2 and this is blade angle beta 2. So, we can have this kind of things this is u 2 and 

this is c 2; this is alpha 2. Now we know that the head developed by the pump is H = 

(𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔; irrespective of what kind of pump it is it is whether it is radial flow 

pump or axial flow pump or mixed flow pump. Now for the radial flow pump and if a 

special case is that flow is radially inlet; I mean purely radial inlet there is no swirl 

component at the inlet. So, if special case if we take a special case that no swirl component 

at the inlet no swirl component at inlet. 

That is 𝐶𝜃1 = 0, then this head developed by the pump will be can be written simply by 

u2 𝐶𝜃2/𝑔. And where u2 𝐶𝜃2 are the blade velocity and component of absolute velocity in 

the tangential direction at the outlet (Refer Time: 13:34); as I said that I would like to now 

express this quantity H in terms of outlet parameters. I mean parameters at the outlet of 
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the pump that is the blade velocity and different other component like 𝐶𝜃2 and all those 

things.  

H= 
𝑢2 𝐶𝜃2

𝑔
 = 

𝑢2

𝑔
 [𝑢2 − 𝑊𝜃2]    { 

𝐶𝑟2

𝑊𝜃2 
= 𝑡𝑎𝑛𝛽2} 

                 = 
𝑢2

𝑔
 [𝑢2 − 𝐶𝑟2 𝑐𝑜𝑡𝛽2]   

So, now question is c r 2 that is velocity of flow at outlet is essentially Q by flow area. So, 

if I know the discharge from the pump because that is the specification how much you 

know quantities will be you know discharged by the pump. And if I know the diameter 

and width of the impeller at the outlet because flow area at the outlet flow area at the outlet.  

Flow area at the outlet = 𝜋 𝐷2 𝑏2  

So, if I draw you know what is b? So, this quantity is this quantity is b2 and this quantity 

is D2. So, this is the impeller diameter at the outlet and b2 is the width at the outlet. So, if 

I know D2 b2 this quantity I can obtain flow at the outlet. So; that means, now the head 

developed by the pump that is  

H = 
𝑢2

𝑔
 [𝑢2 −  

𝑄

𝑓𝑙𝑜𝑤 𝑎𝑟𝑒𝑎
 𝑐𝑜𝑡𝛽2]   

So, now, I have expressed the head developed by the radial flow pump head developed by 

radial flow pump where there is no swirl component of velocity at the inlet in terms of 

components; that is which can be calculated from the outlet I mean outlet parameters right 

velocity of absolute velocity sorry a tangential velocity at the outlet. Discharge if I know 

then I can calculate velocity of flow at the outlet because I know the diameter at the outlet 

and width of the outlet and the blade angle at outlet. 

Now this is very important quantity because from this quantity; I can express that 

deafening upon the magnitude of beta 2 that is the blade angle at the outlet what could be 

the head development characteristics by radial flow pump; that we will discuss now. So, 

we should remember that the head developed by radial flow from where there is no swirl 

component velocity at the inlet can be expressed in terms of quantities; that is at the outlet 

that is velocity tangential velocity or blade velocity at the outlet and the blade angle and 

also the flow area. 
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So, we have seen that for a flow of a radial flow pump if I draw the schematic of a radial 

flow impeller pump of a radial flow impeller. And then we have seen that the head 

developed by the pump which is predicted by Euler’s equation is (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔 . 

So, this is the head predicted Euler’s equation this of course, the ideal head because while 

you are calculating head by this equation; we do not take into account the frictional losses 

and also the recirculation losses in the suction side and the separation losses. And now this 

is I mean, if I draw the blade at a particular blade. 

So, suppose this impeller is rotating at an angular velocity omega and if I take out a 

particular blade 1 2 and if I draw you know enlarged view and if I draw the velocity 

triangles at the inlet and the outlet. So, this component is relative velocity that is velocity 

related to the blade; this is the blade velocity u 1 and the resultant velocity is the absolute 

velocity. And we have seen that the component of you know relative velocity and absolute 

velocity in the tangential directions are 𝑊𝜃1 and 𝐶𝜃1 at the inlet. 

Similarly, if we draw the velocity triangles at the outlet we will get like this is the blade 

velocity at the outlet, this is the relative velocity at the outlet, this is blade angle beta 2 and 

this is the flow angle alpha 2 and this is known as flow velocity Cr2 at the outlet and this 

is the flow velocity at the inlet Cr1. And again, if I take the component of absolute velocity 

and relative velocity in the tangential direction; these are 𝐶𝜃2 and 𝑊𝜃2 at the outlet. So, 

this is inlet flow angle alpha 1 and this is beta 1 inlet blade angle. 
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And the head developed by the Euler’s equation is (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔 and we have see 

that this u1 𝐶𝜃1  is always trying to reduce the head being developed by the pump. So, we 

have discussed a few cases that 𝐶𝜃1 may be 0 which is the best possible case this is a best 

possible case. And we may also have 𝐶𝜃1 is equal to negative that is negative swirl that we 

have discussed that is highly possible when the incoming fluid that is fluid entering to the 

impeller will have a rotation which is in opposite direction of the rotation of the opposite 

to the rotation of the impeller. I mean incoming fluid will have a different direction of 

rotation with respect to the impeller rotation; so, this is negative swirl. 

If we have a negative swirl; we have seen that the head developed by the pump will 

increase, but we have discussed that this negative swirl although we may increase head, 

but it is inviting I mean the negative components swirl maybe; we can develop we can 

have higher head, but at the same time we are inviting another problem of having cavitation 

in the pump and this is not a desirable one. 

So, that is why 𝐶𝜃1 = 0 that is no swirl at the inlet that is purely radial inlet as the is the 

most is the best possible case. So, from these 2 we have seen that by how changing the 

swirl component of velocity at the inlet, we can change the head being developed by the 

pump or a radial flow machines not only radial flow machines by a pump of course, and it 

may be true for the axial flow machines also. 

But now question is that head can be developed by in many ways I mean by changing the 

impeller diameter and so all those things. So now, if I take an example say, if we take a 

purely radial machines; purely radial machine and if I draw the impeller again and if I 

draw the velocity triangles at the inlet and outlet, so, this is again rotating at an angular 

velocity capital omega and blades at the straight. So, if I draw this way this is 1 and this is 

2. So if I draw this blade and if I draw the velocity triangles; so this is purely radial. So, 

this is relative velocity this is the absolute velocity c1 and this is the blade velocity u1. 

Similarly, I we can have; so this is 𝛼1 and this is perpendicular similarly we have beta this 

is w 2 and this is c 2 and this is alpha this is u 2. So, this is c 2 and this is w 2 and this is 

𝛼2 and 𝛽2   again is perpendicular; in that case ah, so pump is rotating at an angular velocity 

omega. In that case head developed by the pump will be equal to (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔. 

Here 𝐶𝜃2 and 𝐶𝜃1 itself are the 𝑊𝜃1 and 𝑊𝜃2 I mean u2 and u1. So,  
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H= 
𝑢2

2− 𝑢1
2 

𝑔
 = 

(𝑟2
2− 𝑟1

2)𝜔 

𝑔
 

This is purely radial machine; so, here head developed the entire head developed by the 

centrifugal force or entire head entire head developed by the centrifugal force.; now 

question is if we now increase r2 of course, we can have higher head developed this is for 

a purely radial machine. On the other hand, if we have seen that if we can if we change the 

swirl at the inlet by changing from positive to 0 and negative we can slowly increase head, 

but negative swirl is not an ideal case because it is always trying to increase head that is 

true, but it will leads to another problem this is not desirable at all that is it will create 

pump cavitation. 

Now we will see how we can develop head by changing another parameter let us say of 

course, from these 2 cases we have seen by changing the diameter of the impeller at the 

outlet we can increase head that is that is always true. But it is not always possible to have 

that a big diameter because it is the difficult if you have big diameter then again we need 

to for at we need to run the pump we have we need to put higher power input and also 

phase is an another important problem. So, we will now see what the effect of you is known 

blade angle to the contribution of net head being developed by the pump. 

So, now we will exercise one another aspect of these pumps. 

(Refer Slide Time: 25:28) 
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Let us say again we are considering a radial flow pump we are considering a radial flow 

impeller of a radial flow pump. So, this is impeller of a radial flow pump and this is rotating 

an at angular velocity 𝜔 and if I draw the pump you know blades. So, these are you know 

this is impeller placed with or equipped with the backward curved vane. So, this is impeller 

of a; radial flow pump radial flow pump with backward curved vane. So, we will write 

what is the backward curved vane. So, we will write what is the backward curved vane 

what is the forward curved vane fine. Now if I again take out a particular blade and if I 

draw the velocity triangles; let us say this is 1 and I am assuming there is no swirl at the 

inlet. So, we have seen that 𝐶𝜃1 = 0 is the best possible case, we are assuming no swirl at 

the inlet at the inlet that is 𝐶𝜃1 = 0. 

If 𝐶𝜃1 = 0; then it flow angle will be 90 degree. So, this is relative velocity w1, this is inlet 

blade angle 𝛽1, this is u1 and this is c1 that is the absolute velocity. So, this angle is 

perpendicular; now this is velocity triangles at the outlet. So, this is blade speed at the 

outlet, this is you know relative velocity at the outlet w2, this is 𝛽2 and this angle is 𝛼2 and 

this is c2 this angle is 𝛼2 ; so, this angle is 𝛼2. So, if I now again write the component of 

relative velocity and absolute velocity in the tangential direction; we obtained 𝑊𝜃2 and 

𝐶𝜃2and this is u 2 and this is the flow velocity at the outlet Cr2 and here flow velocity at 

the inlet is equal to Cr1. 

So, Cr1 = c1 and Cr2 and these are the flow velocities flow velocities. So, if I calculate; 

so now, for this particular case for an inlet swirl is 0 then  

H=  (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔                                                 {𝐶𝜃1 = 0} 

H= (𝑢2 𝐶𝜃2)/𝑔            

H= 
𝑢2 (𝑢2−𝑊𝜃2)

𝑔
                              

So, now I can express 𝑊𝜃2, but actually if I draw the impeller in a 3-dimensional view; so 

maybe impeller looks like this. So, this is the impeller; so maybe it is equipped with a few 

backward curved vanes and this is the width of the impeller. So, this is the width of the 

impeller; so this is b2 and this is D2. So, diameter of the impeller outlet is D2 and width 

is b2. 
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And so this is the flow area through which liquid is going out fluid is going out. So, I can 

express this head developed by the pump, this quantity in a bit different form. Now from 

the outlet triangle I can write 

H= 
𝑢2 (𝑢2−𝐶𝑟2 𝑐𝑜𝑡𝛽2)

𝑔
    

Q = flow velocity * Area 

Q= Cr2* 𝜋 𝐷2 𝑏2    

  H= 
𝑢2 (𝑢2− 

𝑄

𝜋 𝐷2 𝑏2
 𝑐𝑜𝑡𝛽2)

𝑔
                       

 (Refer Slide Time: 30:41) 

 

Now from this expression I can see that by changing the blade angle at the outlet; we also 

can vary the head being developed by the pumps. So, now, we will see a few different 

cases let us say if I consider H versus Q curve Q versus H that is H, then if I plot when 

𝛽2 = 90 degree then it is simplest u2
2/g.  

Now, if 𝛽2 > 90  degree from this expression it is seen that the head developed by the 

pump will increase. So, this will be for 𝛽2 > 90  degree that is true because head developed 

by the pump will increase if we take 𝛽2 > 90   . This is quite obvious because one can 

have a look at this you know one can have a look at the velocity triangle, this expression 
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and can obtain and if 𝛽2 < 90   then head developed will be decreased; so this is for 𝛽2 <

90   . 

So, by changing the blade angle at the inlet keeping blade angle at the by changing the 

blade angle at the outlet keeping you know blade angle at the inlet fixed I can vary the 

head being developed by the pump. So, from this exercise it is you know suggestive of 

having you know blade angle which will be greater than 90 degree. If blade angle is greater 

than 90 degree then what will be? 

Suppose if I draw now 3 different cases; so, whenever 𝛽2 = 90   . So, it is a statement that 

is what is I draw in the last lecture last slide that 𝛽2 = 90    that is suppose this impeller is 

rotating at an angular velocity omega and this is as I said that all the angles are measured 

with the tangential direction. So, you know this is w2; so, 90 degree. So, this is maybe c2 

and this is u2. 

So, this is straight vane straight vane 𝛽2 = 90 if I consider 𝛽2 > 90  So, it means like this 

if we consider an impeller of a radial flow pump and this is; so, beta 2 greater than 90 

degree means blade should be like this. So, since blades angles are measured with a 

tangential direction. So, this is 𝛽2   ; so this is w2 and this will be the absolute velocity and 

this is the relative velocity. So, this will be the absolute velocity and this is the blade 

velocity u2 and this is c2 and this is 𝛽2 > 90   , so here 𝛽2 = 90   . 

Now, this is a case where we can see that head developed by the pump will be higher; note 

that here the vanes are not exactly the backward curved vane we will discuss what is. So, 

this is a called a forward curved vane, so this is called forward curved vanes vane because 

in all the cases rotation of the pump in the clockwise direction that is pump is rotating in 

the clockwise direction at a certain speed at an angular velocity omega. 

Now if 𝛽2 < 90    then head developed the pump will reduce; so, if I draw the again one 

another case. Let us say this is the impeller of a radial flow pump and the pump is rotating 

at the same angular speed, at the same direction and this is now the case where blades are 

having you know backward curved vane. So, here this is the absolute velocity this is the 

blade velocity and this is c2 this is w2 and this angle is 𝛽2. 

So, 𝛽2 < 90    and this is u2; so, this is known as this is a case where it is called backward 

curved vane. So, this is backward curved vane backward curved vane. So, what we can 
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see from this expression that that the backward curved vanes if we have a 𝛽2 < 90    that 

is in all the cases pump is rotating in a clockwise direction at an angular velocity omega, 

but for the backward curved vane head developed by the pump will be less as compared 

to 2 other cases, where 𝛽2 = 90    and 𝛽2 > 90   . 

So, maybe from this analysis it is quite you know cleared that someone should use 

whenever pump is designed a designer should use backward you know forward curved 

vane only to have a higher head rise or head developed by the pump will be higher. But 

this is not the case because efficiency of the backward curved vane is always higher than 

the forward curved vane. So, if we if we have a close look if we have a closer look at these 

3 cases I mean case 1, case 2, case 3; what we can see from these that if it is case 1 and if 

it is case 2 and if it is case 3; then we can see that in case 2 if c 2 is higher. 

So, if this case c 2 is higher much higher than the as compared to 2 different other cases. 

And that is why whenever we are having forward curved vane I mean maybe 𝛽2 > 90    

head rise will be head rise will be high, but the leaving loss which is known as leaving loss 

that is ½ m c2
2 this is high. So, from the velocity triangle itself we can see we can clearly 

see that maybe if we have a forward curved vane when 𝛽2 > 90   ; we may have higher 

head generation that is quite true from the expression whatever I have written above that 

head developed the pump will increase. 

But at the same time the leaving loss from the pump will be high that is ½ m c2
2   will be 

high and there is a very competition maybe head rise will be high at the same time leaving 

loss will be high. But relative to the rise in head the leaving loss the relative loss of you 

know leaving loss and I mean relative rise of head I mean head will increase at the same 

time leaving loss will be high. So, the, but the relatively leaving loss will be higher than 

the rise of the head that is why efficiency of the backward curved vane; efficiency of the 

backward curved vane is always higher than the efficiency of the forward curved vane this 

is true because. So, from this discussion we can conclude that maybe if we use a forward 

curved vane pumps or radial flow pumps or impeller equipped with forward curved vanes; 

where 𝛽2 > 90     head rise will be high. 

So, forward curved vanes will not only give a higher head rise in that case the leaving loss 

will be high, but the relative increment of leaving loss will be higher than the relative rise 

of head as compared to the backward curved vanes and straight vanes; that is why 
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efficiency of the backward curved vane is always preferred than forward curved vanes. 

And in fact, for 𝛽2 = 90     also the leaving loss will be higher than the backward curved 

vane. So, that is why efficiency of the backward curved vanes is always higher than the 

forward curved vanes, but still there are some cases or there are some places where we 

need to have forward curved vanes. 

(Refer Slide Time: 38:06) 

 

So, I will now discuss another important aspect that from you know these discussions, we 

have understood that efficiency of the backward curved vane is always greater than the 

efficiency of the forward curved vane that is true. But sometimes; sometimes forward 

curved vanes sometimes forward curved vanes are preferred over backward curved vane. 

So, we have understood that the efficiency of the forward curved vane will be less than the 

backward curved vane. But still there are a few cases or there are few you know situation 

where you need to have forward curved vane that is we have we will be having impeller; 

that impeller should be equipped with a few forward curved vanes otherwise there will be 

a problem, why? So, now, one reason is that of course, forward curved vane efficiency 

will be higher, but as I said you that the relative increment of you know head raise that 

will lead to that will leads to higher efficiency that is true. 

But the relative increment of efficiency because of the higher head rise will be you know 

less as compared to the leaving loss that is why forward curved vanes are not basically you 

know higher efficient. But there are few cases if I draw an again, one 2 impellers one is 
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equipped with the backward curved vanes and another is equipped with forward curved 

vanes suppose this is impeller and impeller is rotating with an angular velocity omega this 

is backward curved vane; so, this is backward curved vane. 

So, this is backward curved vane why backward curved vanes? Because this; these are 

known as backward curved vane because vanes are vanes or blades are inclined away from 

the direction of you know ah; away from the direction of the rotation of the impeller, away 

from the direction of rotation of the impeller. So, when vanes are inclined away from the 

direction of the rotation of the impeller then we call it backward curved vane that is like 

this case. 

And again, if you draw another impeller which will be having a forward curved vane, so, 

this is an impeller. If we draw the schematic and suppose, this is rotating the clockwise 

direction with the same angular velocity and blades are forward curved ; blades are forward 

curved. So, here this is known as backward curved vane and this is forward curved vane. 

So, what are forward curved vanes? When vanes or blades are inclined in the direction of 

in the direction of rotation of the impeller, then they are called; then they are called forward 

curved; Forward Curved Vane or FCV; then they are called Backward Curved Vanes or 

BCV; BCV. 

So, now forward curved and backward curved vanes are clear because in one case it is 

inclined towards the direction of rotation of the impeller forward curved vanes, but in other 

case backward curved vanes this is not inclined in the direction in the direction of the 

rotation of the impeller. But now question is all the efficiency of the backward curved 

vanes are preferred over forward curved vanes, but sometimes we all the efficiency of the 

backward curved vanes are higher than the forward curved vanes, but still sometimes we 

prefer forward curved vanes in places. 

In particular there are industries like say jute industries and paper industries where there 

is huge amount of dust. So, there is a probability of deposition of dust particle on the top 

surface of the blade on the blade surface. So, in the in that in that case in that case, but if 

the dust particles are depositing in like this. So, in backward curved vanes these particles 

are remain try to stick over there and it will try to have or it will try to start corrosion it 

will try to erode some blade material. 
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On the other hand, because of the geometrical or constructional shape of the forward 

curved vane even you know dust particles are depositing over here like this. Then because 

of the direction of the rotation of the forward curved vanes the dust particle will always 

try to remove or away from they no longer will try to remain attached to the blade itself. 

So, the probability of you know having a corrosion or the blade erosion is not there. 

And that is why that there are situations, there are instances, there are places particularly 

jute industries and paper industries where there is a probability of having deposition of 

dust particle over the blade surface and if dust particles try to you know deposits dust 

particle deposit over the blade surface. In case of a backward curved vane, they will try to 

remain stick over there and they will try to start corrosion and erosion of the blade material. 

But because of the constructional geometrical shape of the blade itself; even though the 

dust particle are depositing on a blade surface for a forward curved vanes, but their shape 

itself will try to allow the dust particle to be removed from the blade and the probability 

of you know corrosion and erosion will be no longer there. 

Now, from this discussion it is clear that why forward curved vanes are preferred over 

backward curved vanes in some cases; although the efficiency of the backward curved 

vanes is higher than the forward curved vane. So, now we work out one example that the 

problem is suppose there is a centrifugal pump and I will one problem. 

(Refer Slide Time: 44:21) 
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This is not a numerical problem, but it is interesting problem that if we consider a radial 

flow pump. Centrifugal pump sometimes we call it I mean for a we sometimes call radial 

flow pump as centrifugal pump because of the presence of centrifugal force. 

As I said in the first lecture that centrifugal pump is (Refer Time: 44:38) because if we 

need to call a radial flow form as centrifugal pump; I mean to be a centrifugal pump 

because of the presence of centrifugal force ah; then in a mixed flow pump to some extent 

centrifugal force is there then again we then we have to call the mixed flow pump as a 

centrifugal pump. 

So, I always prefer to call it a radial flow pump. So, one problem is say assuming no loss 

I am writing the problem assuming no loss of energy  so that increase in piezometric head. 

So, that increase in piezometric head across the impeller of a centrifugal pump, of a 

centrifugal pump. I am writing, but again I am telling I prefer to call it radial flow pump. 

So, I am writing a radial flow pump radial flow pump. So, assuming no loss of energy so 

that increase in piezometric head across the impeller of a centrifugal pump rather radial 

flow pump I will call it; can be expressed as  

𝑃2 − 𝑃1

𝛾
+  𝑍2 − 𝑍1 =  

𝑢2
2 −  𝑢1

2

2𝑔
− 

𝑤2
2 − 𝑤1

2

2𝑔
  

So, I am discussing this problem because if we consider there are no loss of energy can 

you show that the piezometric head rise or piezometric head across the impeller of a radial 

flow pump can be written in terms of the blade velocities and the absolute velocities. We 

cannot; we can express only in terms of these 2 components of velocities. So, we need to 

solve this problem I mean we need to because is a kind of things; we have to check it 

because how can we express this without as you know writing in terms of the absolute 

velocity. 

So, suppose if you consider radial flow pump like this and pump is rotating I will 

schematically I will write. So, pump is rotating like this and pump is discharging water in 

another place two. So, this is let us say 1 and this is 2; so, it is discharging water in some 

other place and drawing water from a some. So, this pump is working between these 2 ah; 

so, this is a radial flow pump which is drawing water from one some and discharging water 

to other place you know and if it is there is a an if there are no losses I mean there is no 

loss of energy; how we can show that the piezometric head across the pump impeller only 
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the impeller of a radial flow pump can be written in terms of absolute blade velocity and 

the radial flow velocity. 

So, if the pump now question is if we solve this problem. So, whenever pump is 

discharging rather pump is you know discharging water in a place; rather pump is drawing 

water from one place and discharging on other place definitely pump is adding some 

energy to the working fluid. So, if the pump energy is added on the fluid definitely now 

question is if the pump energy added on the fluid; that means, in a pump; whenever it is 

drawing water and discharging in some that water in other place. So, it is definitely pump 

is adding some energy on the working fluid because pump we need to run the pump either 

electric motor or diesel engine. 

So, if the pump energy is added on the working fluid then what suppose an whenever it is 

discharging water at some place; then the function of pump is to develop a head. So, can I 

write that 

(
𝑃2

𝛾
+  

𝑐2
2

2𝑔
+ 𝑍2) − (

𝑃1

𝛾
+  

𝑐1
2

2𝑔
+ 𝑍1) = 𝐻 

Because suppose whenever pump is drawing water from (Refer Time: 49:33) and 

discharging at 2 then it has to overcome so, many other losses frictional losses in the 

pipeline, frictional losses in the vanes and also it has to overcome some static head. 

So, considering all those we need to put some energy on the fluid and that is added by the 

pump itself. So, if pump energy is added on the working fluid; then I can write this equation 

because whatever will be the pressure at the point 2 and pressure the point 2, the difference 

that is being calculated that is added by the pump. So, and that is the head developed. 

So, what you can said because a point 2 has to have more energy; point 2 has to have more 

energy otherwise there is no how we can lift water how we can discharge water in some 

other place. So,  

𝑃2−𝑃1

𝛾
+  

𝑐2
2− 𝑐1

2

2𝑔
+ 𝑍2 − 𝑍1 =   𝐻 =  

𝑢2𝐶𝜃2− 𝑢1𝐶𝜃1

𝑔
      

                                                       = 
𝑐2

2− 𝑐1
2

2𝑔
+  

𝑢2
2− 𝑢1

2

2𝑔
+  

𝑤2
2− 𝑤1

2

2𝑔
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Now we can see that the head developed by pump to precise by a radial flow pump can be 

written in terms of 3 component of velocities. And we can have what will be the head 

developed the pump the pump is installed in a place, where we need to develop a head 

which is no determined by these 2 quantities. 

𝑃2 − 𝑃1

𝛾
+  𝑍2 − 𝑍1 =  

𝑢2
2 −  𝑢1

2

2𝑔
− 

𝑤2
2 − 𝑤1

2

2𝑔
  

So, I can express these quantities whatever that is there I mean piezometric head across 

the pump impeller of a radial flow pump when there is no loss of energy can be expressed 

in terms of this. Because whenever we have written equation when you did not consider 

an equation that is on any loss due to fictional, I mean any fiction head loss we have 

considered. 

So, without assuming any loss of energy I can express the piezometric head develop by 

the pump ; in terms of piezometric head across the pump in parallel of a radial flow pump 

in terms of the blade velocity and the relative velocity at the inlet and outlet of the pump 

impeller ok. 

. So, next we will see that that is important that is the; you know effect of swirl at the inlet 

on the pump of operation that is very important ah. So, we will again consider a radial flow 

pump; so, we are considering that a radial flow pump. 
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(Refer Slide Time: 54:48) 

 

We are considering a backward curve vane because we have seen that the backward curve 

vanes are you know more efficient than the forward curve vanes. And if this is point 1 and 

point 2 and if I draw the velocity triangles at the inlet we will discuss; now the effect of 

inlet swirl on the pump operation; effect of inlet swirl pump operation. 

So, we know that the head developed by the pump can be you know head developed by 

the pump can be expressed from Euler equation of (Refer Time: 55:42) machines; that u 

is equal H = (𝑢2 𝐶𝜃2 − 𝑢1 𝐶𝜃1)/𝑔 and we have express this quantity in different other 

form where in terms of only the pure only of the outlet quantities that is outlet velocities 

that is absolute velocities relative velocities and the tangential velocities of at the outlet of 

the pump. 

So now whenever we are what will be effect of inlet swirl on the pump operation. So, I 

will discuss different cases; so, if I discuss first case let say case 1 that is 𝐶𝜃1 is equal to 

positive we have discussed that 𝐶𝜃1 becomes positive when pump impeller and the fluid 

are having are rotating the same directions are having same direction of rotation. Then  𝐶𝜃1 

will be positive and if 𝐶𝜃1 is positive I will; I will discuss that if 𝐶𝜃1 is positive then the 

inlet velocity triangles we will discuss only at the inlet velocity triangles. 

So, what will be the velocity triangles? So, what will be the velocity triangles; so, if I draw 

the velocity triangle at the inlet 𝐶𝜃1 is positive. So, this is u1 this is; this is c1, this is u1, 

this is w1 and this is 𝑊𝜃1, this is 𝐶𝜃1. So, here 𝐶𝜃1 is positive; 𝐶𝜃1 us positive quantity. So, 
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the net head develop by the pump will be always lesser I mean because this quantity will 

be subtracted from this quantity for a given value of u1 and u2. 

So, head develop by the pump will be always lesser ; now if I discuss case 2 that 𝐶𝜃1 = 0 

that is no pre whirl or swirl that is swirl free flow then this is called purely radial inlet, 

purely radial inlet; that is u1 will be same because u1 is the blade velocity at the inlet, it 

depends upon the diameter at the inlet and the speed. 

Since the speed and diameter (Refer Time: 58:47) same. So, the u1 will be same; so, the 

u1 will remain same and if u1 is remaining same to make 𝐶𝜃1 = 0 suppose u1 is remaining 

same and to make 𝐶𝜃1 = 0. So, this will be 𝐶𝜃1 it will be c1 this will be w1 and this will 

be u1. So, mind it here 𝐶𝜃1 = 0 that is this is 90 degree purely radial inlet purely radial 

inlet this is 90 degree, but u1 will remain same for all the cases. 

Because u1 depends essentially on the value of D1 and 𝜔 the pump impeller speed angular 

velocity of the impeller. So, to keep u1 fixed its we need to make c1 perpendicular that is 

no swirl component we must have w1 here. So, here head development will be relatively 

better than the previous case ah, but since w1 becomes higher; it will create another 

problem that will discuss may be in the next case ah. For the no swirl free I mean no pre 

whirl no swirl at the swirl free flow this is fine. 

But again, if we discuss case 3; if we discuss case 3 that is 𝐶𝜃1 is negative. Because a 

negative 𝐶𝜃1 it is very important it is very clear from this expression that if we can make 

𝐶𝜃1 negative, we can have higher head development characteristic. Because for the same 

pump for a rotating at a same velocity we still can have higher head development. 

 If we can make 𝐶𝜃1 negative that is when this is the case, we can obtain when direction 

of the impeller direction of the impeller rotation and fluid are different. So, when direction 

of the pump impeller on the fluid are defined then we can have negative 𝐶𝜃1; if we can 

have negative 𝐶𝜃1 then from this expression we can see that we can have higher head 

development ah; despite the fact that the pump is running at the same speed at impeller we 

are not changing anything. 

But this negative 𝐶𝜃1 will create another problem that we will discuss how can have how 

if we draw the velocity triangle at the inlet that that would be clear. So, if I draw the 

velocity triangle at the inlet suppose negative 𝐶𝜃1. So, if I draw the inlet will all these are 
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inlet velocity triangle. So, this is inlet this is at the inlet; so, if I draw the velocity triangles 

at the inlet. 

Suppose and I said that u1 will remain same because u1 depends on the omega as well as 

the diameter of the inlet see both are remaining same; so, u1 will remain same. Now to 

make 𝐶𝜃1 negative that is ; so, u1 will remain same, this is c1 and to make 𝐶𝜃1 negative. 

So, so this is the negative component of c theta; so, this is negative component of 𝐶𝜃1 So, 

this is the negative component of c theta 1 and this is total is 𝑊𝜃1; this is 𝑊𝜃1 and this is u 

1. 

So, here to keep u1 fixed that is u1 will remain same; if we make 𝐶𝜃1 negative that is when 

direction of the pump impeller and fluid are different, then we will have a relatively higher 

magnitude of relative velocity at the inlet. So, in this case; we will have higher magnitude 

of relative velocity at the inlet; so we will have relatively. 

So, if we make 𝐶𝜃1 negative of course, we can see from the expression that our head 

development will be higher for a given other conditions I mean remaining same because 

ah, but we will have. So, may be by making 𝐶𝜃1 negative we can have higher head 

development, but at the same time you are inviting another problem what is the problem? 

Because in that in this case we will have a relatively higher magnitude of relative velocity 

at inlet; so, if relative velocity at the inlet increases pressure may pressure will fall. And if 

the velocity increases pressure will fall and pressure falls below the vapor pressure at the 

corresponding temperature, then local carbonation might start. 

So; that means, and it will create an undeserved phenomenon that is non cavitation. So, 

may be; so, what I am telling? By creating or by making 𝐶𝜃1  negative we may have a 

relatively higher head development by the same form as compared to 2 different other 

cases; that is 𝐶𝜃1 positive and 0, but we are inviting another problem that is lead it will 

give us a relatively higher magnitude of relative velocity. 

And that will that will create another problem because for a higher relative velocity 

pressure might fall and the pressure falls below the you know vapor pressure at that 

temperature; then local boiling will take place and it will lead to a you know undesirable 

phenomena, which is known as cavitation and this is not desirable at all as far as the pump 

operation is concerned ok. 
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So, we will stop here today, and we will discuss we will continue to next class. 

Thank you. 
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