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Hello friends, we are back with our; the fourth module of our MOOCs course on the

topic of fundamentals of nuclear power generation. We already had three lectures on the

topic of chain reaction in reactors and today we are going to finish up this particular

module by getting some more mathematical analysis about the neutron distribution inside

the core and then some idea about how to design a reactor.

Just as a brief recap, I would like to go back primarily to the third lecture here we are

discussing or we started discussing in this module about the chain reactions where you

are introduced to the topic of neutron life cycle and multiplication factor and. So, now,

you have clear idea what is the requirement of having a chain reaction and accordingly

how can we control this multiplication factor by controlling several of its components, so

that we can ensure a critical reactor critical means, where for every fission reactions only

one of the product nucleus is allowed to participate in a subsequent fission.

(Refer Slide Time: 01:28)



In the previous that is in the third lecture we have discussed in detail about the neutron

diffusion theory, where this particular diffusion equation where developed I think it is in

the  second lecture  only  were  we developed  this  particular  equation,  which  basically

states the balance of neutron inside the reactor or in a particular location. So, right hand

side here represent the rate of change of neutron density with this small  v being the

velocity of the neutron, and on the left hand side we have three terms where this first

term is a diffusion of neutron, which is also related to the leakage of neutrons and we

generally get this form by rating the current density of neutron with the gradient, where

the Ficks law of diffusion then we have the rate of absorption and finally, some source

term where source can be of two types it can be an external source of an neutron or it can

be neutron production because of the fission commonly thermal fission.

In the last lecture we focused on this particular equation or I should say the steady state

version  of  this  equation,  because  our  discussion  was  limited  mostly  to  the  critical

reactors,  reactor  critical  means  the  neutron  density  is  constant  and it  is  producing a

constant amount of power. So, the right hand side goes to 0 for a critical reactor and then

we  solved  this  particular  equation  under  steady  state  for  three  different  kind  of

geometries.

We took three ideal configuration the first one is that of an infinite plate, which is having

infinite the dimensions in two coordinate directions, and almost 0 in the third coordinate

direction or you can think this one to be an a plate with infinite area, but near 0 thickness

and this is a source of neutron, which is immersed into an infinite extent of medium

where there is no fission nuclei present. So, the only mechanism a neutron can have are

the  diffusion  and  absorptions  and  accordingly  we  got  this  particular  dissolution  of

neutron here is double prime represents the neutron emitted by the source per unit area, d

is a diffusion coefficient and l is the diffusion length.  If you remember l square was

related to d and sigma a.

Then we went to second consequent emission where we had a point source of neutron,

this being point source it is capable of emitting neutrons in all possible directions over a

sphere. So, we use a spherical coordinate system and got this particular distribution of

neutron flask here is represents the source strength that is number of neutrons emitted per

unit time by this point source. And the final configuration was again of inline which is

infinite in terms of its length and. So, it can emit radiation in all possible directions of



having  a  cylinder  and  using  cylindrical  coordinate  system  accordingly  we  got  this

expression, where is prime represents the source strength per unit length of the source

and k not comes from the Bessel functions or it is the modified Bessel function or second

kind.

So, for all this three distribution one thing is common that, at the which is quite logical as

well near the source the strength of neutron flux is the highest, and as we are moving

away from this that exponentially decreases. But all this three conditions all being ideal

geometry that was done in non-multiplying media; that means, the neutron source was

resumed to be inverse into a media, where there was no source of neutron present or no

fission going on only mechanism is diffusion or only mechanisms are the diffusion, and

absorption,  and presence of source was recognised only very close it  is  close to the

centre of the coordinate system or it physically why it is located which provides one of

the boundary conditions in calculating these expressions.

But practically in a reactor we can have different kinds of a multiplying media present or

I should say it is a not only non-multiplying media rather fuel itself also will be present.

So, that the neutrons can participate in fission reaction, and accordingly produce some

new neutrons. So, we can have additional sources of neutrons anywhere in the reactor,

which accordingly we discussed about the neutron diffusion multiplying medium and we

got this expression, where we have only one additional term this is only for a critical

reactor.

So, we are taking 0 on the right hand side and we are having this additional term here

which represents the generation of neutron because fission here mu is the number of

neutrons average number of neutrons produced per fission, sigma f is the macroscopic

fission  cross  section  and phi  of  course,  is  distribution  of  a  neutron  on neutron  flux

distribution.

Now, and finally, we have discussed about this concept of extrapolate length of course,

we solved this diffusion in multiplying media for one consideration of infinite slab, and

the condition of extrapolate length was consider a mentioned while we are considering

the neutron flux to go to 0, at the edge of the geometry, practical cases generally it does

not becomes 0 there rather it can continue to proceed in the downs stream medium. So,

by considering extrapolate length refers to if the medium is allow to continue then, where



the neutron flux approaches 0. So, for most of the cases extra volatile length can be quite

small, but when that is a significant portion then we must add like a if we talk about say.

If we talk about any particular of this reactions, always which we shall be discussing

shortly also where this extra volatile length should provide some kind of connection to

the physical length scale to consider. But one point I would like to mention before we

move any further why we are having so much discussion about this neutron flask. Just

think about how can you calculate the amount of energy produced in a reactor because a

fission of course, if a e represents the amount of energy released from a single fission

reaction,  then total  amount of energy produced in a reactor should be equal to this e

multiply by the number of interactions.

Now how can we get the number of interactions? Number of interactions as per the

definition has to be equal to the macroscopic fission cross section into the phi. So, this

should be the number of interaction happening per unit volume, because phi represents

the neutron flux or it is a number of neutrons per unit area, and sigma f is a microscopic

cross section. So, this two together has a dimension of per unit volume, and now we need

to multiply this one with the volume of the reactor itself or we may integrate this one

over the entire volume of the reactor.

So, that should give you the power produced by the reactor or amount of energy released

by the reactor. Now look at this expression here this the first term that this e this e is the

amount  of energy released  from a single fission reaction.  Do you remember  how to

calculate this; we have discussed this one in the second module itself. Once we know the

details of the reaction then we can always calculate this very easily.

Because we just need to know the atomic mass of the parent nucleus and also the mass of

the fission products, and then we can calculate a mass balance to identify the value of

mass defect, and we know that one a m e of mass defect is equivalent to 931 MeV of

energy. So, accordingly the mass defect is directly going to give you the value of this e

that is the amount of energy released or amount of mass that got converted to energy

through the fission reaction. For uranium or plutonium fission this e is the commonly

around two hundred MeV or maybe just slightly higher like quite often a value of 212

MeV is considered.



Next the next term is this after we are able to calculate the value of E next term of sigma

f. Now sigma f is something that is quite standard means sigma f as for the definition

capital sigma or sigma f is equal to the nuclei density into I am sorry I should write

correctly the nuclei density into I am repeatedly writing wrong thing sorry. So, it can be

as the nuclei density multiplied by the microscopic cross section, now for most of the

most of the material which used in a common nuclear reactor, the value of this mu is

microscopic  cross section microscopic fission cross section or any other microscopic

cross section is quite standard. So, we can calculate the value of this macroscopic cross

section quite easily once we have idea about this nuclei density. If you think about any

reactor  later  on  in  one  of  the  later  module  we  should  be  discussing  in  details,  but

commonly reactors can be of two types one is homogeneous other is heterogeneous.

In  a  homogenous  reactor  we  generally  find  a  homogenous  mixture  of  whatever

component that you would like to put. Just you can think about one of the numerical

problem we solved in a previous module, say your fuel is something like a compound of

uranium like urinary sulphate or urinary carbonate kind of thing, which is dissolved into

water, and we put this  mixture inside the reactor. Now the uranium 235 that  can be

present inside the compound acts as the fuel, other components remains as it is and the

water that act as a moderator.

So, everywhere as there is this homogenous composition, the value of this cross sections

also remains the same and in that kind of situations we know how to calculate the cross

section like there the macroscopic cross section or say the average microscopic cross

section.
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For the entire mixture will be the not microscopic, I should say the average macroscopic

cross section for this should be equal to the N sigma f product for all divided by total N

or I should say the N sigma I product you have to calculate for all components and then

sum may have to get the numerator and then divided by the total number of nuclei that is

present inside the reactor that instant of time.

Now, once we have calculated this e n sigma f then we are left with only phi. So, the

calculation procedure of both E and sigma f are quite standard in that case the entire

evolution of this power that reduces to this phi only, and depending upon the distribution

of phi we can have different values of this P in different parts of the reactor, and hence it

is at most importance to get a perfect idea about the distribution of this neutron flux.
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So, now we go back to the problem that we have solved during the previous lecture only.

Here geometries of an infinite slab or reactor is of the geometry of an infinite slab, which

is having a thickness of a and the coordinate direction was taken to the centre line. So,

we have solved this and we got this particular form where A naught is the coefficient,

and which can be calculated from the power rating furnace. Here one thing I should

mention while P dot I am using here this one I am talking about this P dot refers as power

because this is the common symbol that is used, but actually it is more like an energy

flux.

Because this P dot has an is I unit of energy released per unit area of the reactor watt or

kilo watt whatever. So, this while the symbol P dot it represents or it looks like energy or

power I should say, but actually it is energy released per unit area of the slab.
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So, we can have already done this calculation and here the buckling parameter that can

be calculated as this pi by a whole square, because B was a found to be phi by a. So, this

up to the part we have already done in the previous lecture, let us now calculate a few

more things from here.

(Refer Slide Time: 14:15)

If we this of course, is a cosine distribution and hence we can expect it to vary along the

length of the slab reactor and hence to identify the maxima is a quite straight forward



procedure we have to get d phi d x and equate that to 0 and then we get this particular

form and finally, get x bar equal to 0, where x bar represents the location of this maxima.

So, we can clearly see that the maxima in this neutron flux is located at the centre line

itself and hence the phi max by putting x equal to 0 in this particular equation cos 0

becomes equal to 1 and hence we get phi max equal to A naught or whatever expanded

form that we have for A naught and therefore, their distribution phi can be written as phi

max into cos pi x by a because the entire coefficient is equal to the maximum value of

this flask.

But quite this is the distribution that we can have; it is mirror image with respect to the

centre line with a maxima at the centre line and gradually decreasing to 0 at the edge.

Now this  is  the  edge,  but  in  this  drawing it  actually  is  non 0 at  the  edge and it  is

expanded to become 0 at somewhere here. So, this particular portion is the extrapolated

length  that  I  talked  about  earlier.  Whenever  we  have  this  extrapolated  length  to  be

significant then this a needs to be corrected or this a net should be replaced by a plus d

where d is the this extrapolated length or the thickness of the corresponding layer also

along with the maxima quite often an average neutron flux is an important information.

As we can clearly see from this picture that the flask is maximum at the centre line, and

sharply reduces to become l is 0 at the edge.

(Refer Slide Time: 16:09)



Now, average flask can be defined something like this, which where the this phi average

should be such a value that it is able to maintain the same power rating of the reactor.

Now the this particular one is the total amount of power produced during the reactor

which we have already used earlier  and this should be equal to E sigma f a into phi

average,  where E is the amount of energy released again sigma f is the macroscopic

fission cross section and a is  the thickness  of this  slab rector  half  width of the slab

reactor. And hence we finally, get this particular expression this average phi value can be

calculated as 1 by a into integral of phi x d x over the entire reactor that is minus a by

two to plus a by two it comes out to be 2 by pi f into phi max.

So, quite often to understand the non-uniformity that can be present inside the reactor in

terms of neutron flux, we define a peaking factor. This peaking factor is defined as the

ratio of the maximum flux and the average flux and this case it is clear the maximum

flux is about 1.57 times greater than the average flux. So, that is a strong indicator of the

asymmetry that can be present inside the reactor in such configuration of infinite slab.

(Refer Slide Time: 17:34)

Now, it, but infinite slab reactor is only an idealization because nothing can be infinite in

terms of length.

And hence we can we need to go to a more is finite geometry well there are quite a few

final geometries, but we have selected the spherical rector as for our consideration. The

governing equation remains the same that is Laplacian of phi plus B square phi is equal



to 0 the B being the parameter the buckling parameter for critical reactor we know that B

g square and B n square as to be equal and which is given by B square. So, this  is

spherical reactor and hence we have to use a spherical coordinate system, which gives

like this if we assume the entire phenomena to the isotropic in nature, then only variation

that remains is in the radial direction.

So, according this is the equation that you are having, and after solving this again a very

standard ODE. So, after solving we have A 1 by r into sin b r plus A 2 by r into cos B r.

Now we have to find the value of these two coefficients A 1 and A 2 for which we need

to know the boundary conditions what can be the common boundary conditions? One

boundary condition can be the value of this flux at the edge of the reactor that is at r

equal to (Refer Time: 19:02) and other condition.

Suppose if we put in this equation r equal to 0 means we are talking about the centre line,

centre line r equal to 0 would lead to the if you focus on this term, this gives to a 0 by 0

kind of form in that situation which is completely impracticable and hence only if only if

realistic solution that we can get from this state of equation is when this A 2 goes to 0, A

2 has to goes to 0 otherwise the neutral flux becomes infinite at the centre line.

So, we now left with only a single coefficient which is A 1 which we have to finalize

shortly. Now this is the other boundary condition that is at the edge of the cylinder not

cylinder edge of the spherical reactor is r equal to capital R, we have the condition of phi

equal to 0. If we are having some kind of extrapolated length like shown in the diagram

this portion is extrapolated length in the diagram this r equal to capital R condition, that

we have to impose on the same equation and we can find that at phi equal to 0 or phi

equal to 0 r equal to R we have A 1 by R into sin BR and hence as A 1 and R both are

non 0 numbers sin 0 has to come out sin 0 we know that that is equal to possible only

when the it is equal to n pi. So, accordingly b r equals n pi at n is any integer and hence

B n is equal to n pi upon r, n can be any integer from 0 1 2 etcetera 

Now, as we have used in a previous exercise also here well they are theoretically several

modes of operation, but nothing beyond the two or three that works. So, B n equal to n pi

by r where n is equal to any integer starting from 0 going to 1 2 etcetera, but as we have

seen in the previous exercise also, here well there are several possible modes, but all the



modes for which n is greater than 1, they subsides quite quickly and leaving the final

profile to resemble only the profile corresponding to n equal to 1.

Of course n equal to 0 is not possible because if you put n equal to 0 and that you give

phi equal to 0 and hence your n equal to 1 is the most realistic solution that we can have

of this particular form A 1 by r into sin pi small r by capital R and total power produced

in order to get the value of A 1 we have to use the total power produced by the reactor,

which is again given by a form like this here E is the amount of energy produced by each

fission reaction sigma f is the fission cross section phi is the neutron flux which we have

just derived and d v is the volume change it is the volume over which we are doing this

entire integration of volume of the reactor. Basically we are doing this integration over

the entire volume.

So, it will (Refer Time: 22:14) to a form like this and finally, we get the form of phi as

something like this a sinusoidal profile, which is having its maximum at the centre line

and it is 0 at the edge that is when small r becomes equal to capital R it is equal to 0, but

the following the same pattern we can also calculate the maxima of this flux, and its

location and also the average value of this flux.

(Refer Slide Time: 22:41)

And for any other geometry also you can keep on repeating the same exercise.



But that will be too much cumbersome thing to do, and hence I have summarised this

results of quite a few other geometries in this particular table. For the infinite slab and for

the finite  cylinder  we have already developed is  the infinite  slab for which we have

developed. For finite cylinder we have or not finite cylinder actually for the spherical

reactor we have just not asked upon.

And we can have all the geometries like a cylindrical reactor, we can have a rectangular

parallel  piped  type  reactor  for  each  of  them we  can  repeat  the  same  procedure  by

following  the  proper  coordinate  system like  if  you  are  dealing  with  the  rectangular

parallelepiped, then variation is there in all three possible directions and hence we need

to adopt a three d method or three dimensional approach to identify the flux profile there

same for a infinite cylinder or even a finite cylinder if we know the values of r and H still

we need to put the assumption of axis symmetricity and then only we shall be able to

analyse this finite cylinder following A 2 dimensional cylindrical coordinate.

But the most interesting factor here is the last column, which is the peaking power. Here

we can clearly see all these values are much greater than 1, I am just going back to the

previous slide here we can clearly see or in case of infinite slab also that was true the

neutron flux is very high at the centre line, and then diminishing very very shortly and

approaching  0  close  to  the  edge.  That  is  because  of  a  large  difference  between  the

maximum and average value of this neutron flux. 

1.57 was a value for infinite slab which we have derived already but the same number for

the finite sphere comes to be greater than 3 and for other several geometries as well.

Now this is not at all desirable, because inside the reactor we would always like to have a

flat profile of the neutron. So, that the rate of reaction remains more or less the same in

every part of the reactor. If the neutron flux is high only at the centre line and very low or

0 at the wall then the fluid which is getting energy close to the central line will become

super heat very very quickly whereas, the fluid which is closer to the centre may not get

that much of energy or rather the power production they are remains 0.

So, the while the coolant goes out of the reactor channel, there will be a large amount of

axial variation in temperature and that is that can cause lots of several other issues hence

we must ensure that the neutron flux profile remains more of the flat while the infinite

slab 1.57 is quite increase in number, but it is still concept only. So, we must ensure that



the neutron flux remains flat and so that, we can have a uniform distribution of energy

received by the coolant over the entire cross section and one way of achieving that is by

the use of reflectors. If you can remember earlier that the reflector we have mentioned in

one of the early and discussions that the reflectors are commonly used, to reduce the

neutron leakage from the reactor.

Now, neutron going out of the reactor is never desirable, rather because that reduces the

neutron density inside the reactor and thereby effects the power generation inside the

reactor, but use of reflectors can reflects reflectors are materials which are having higher

scattering cross section and. So, they can reflect or diffuse some medium back into the

rector and hence they it can provide a reduction in the total mass or the critical mass of

the reactor.

(Refer Slide Time: 26:55)

But it was mentioned earlier it can also provide a more uniform neutron distribution, and

here we can see how that can be done. So, typical reflectors can have both kinds of

designs, it  can have actual reflectors or radial  reflectors. This is axial reflector where

reflectors are used only at the inlet  and outlet  section of the channel whereas, this is

radial reflector or reflector is there all around. Both of them have their own pros and

cons, but generally the radial one is found to be more convenient or so much easier to

design and therefore, thus radial refractors more commonly used. Particularly in common

pressurized water reactor or boiling water reactor the reflector radial kind of reflector is



preferred. It is also very common to have the entire cool of a boiling water reactor to get

immerse into pool of water because water is a good reflector.

Now, we assume a slab type reactor of width a and is surrounded on both side by a non-

multiplying reactor slab of thickness b. Like the geometry of slab which we are taking

earlier this is the slab type reactor where thickness is a or you can say at each of the side

it is a by 2, but this is the additional part now we are having this reflector of thickness b

on both sides of this slab. So, we have to analyse this thing and while the analysis for a

such geometry we have already done for infinite slab, but the reflector was not there.

(Refer Slide Time: 28:39)

So, for the reactor core we can write the conservation equation to be like this.

Just the same form the diffusion part, the absorption part and the generation part because

of fission, but this equation is applicable for x equal to 0 to a by 2, where the mod x is

written because diffusion can be equal in both positive and negative coordinate directions

and. So, we are taking mod of x. Here the subscript c that has been used that refers to the

core. So, phi c refers to the distribution of neutron flux inside the core and. So, this

equation being a standard you get this solution. One of the coefficient as was mentioned

earlier in order to keep the neutron flux finite at the centre line, one the sinusoidal term

goes out we are having only the cos term that is remaining.



Now, for  the  reflector  that  is  from a by  2 to  a  by 2  plus  b,  within  that  this  is  the

corresponding cross section equation here phi r is the neutron flux inside the reflector,

there is no multiplication or no fission going on. So, we do not have a third term, but we

definitely have the other two term that is a diffusion of neutron inside the reflector and

also the absorption on neutron.

Now, if we solve this one we are going to get this particular form of solution for phi r

again boundary condition has been applied and one of the coefficient goes of living only

one coefficient. So, this A 1 and A 2 are the two coefficients that we need to solve using

the power rating of the reactor and any such information. Now what should we should

use as the boundary condition to get this values of this to get a coupling between this two

of course, the reflector you have to understand the reflector.

If I draw the diagram again this is the centre line is the edge of the core and this is the

reflector. N ow in the reflector there is no source of neutron because there is no fission

going on then from where it can get the neutrons. So, that can that is only possible by

diffusion from the core itself, and as there is a diffusion going on as there is a strong

transfer of moment newton or neutron is going on from the fuel to the reflector this

particular interface is of very important large importance, this is corresponding condition

is called interface boundary condition.

Interface  boundary  condition  ensures  that  flux  phi  does  not  have  any  kind  of

discontinuity or jump at the interface, rather the value of flux neutron flux distribution in

the core and the same for the core distribution at inside the reflector, they should be equal

at this particular interfacial surface. If and they only we can avoid any kind of jump in

the value of the neutron flux and we have a second boundary condition. The equality of

flux alone is not sufficient rather we also have to consider the gradient of the flux of

neutron current  density  that  also  should  be  equal  for  both core  and reflector  at  that

interface.

So, here j represents the neutron flux density and different current density and by using a

Ficks  law of  diffusion  we arrived at  this  J  being  d of  d  phi  d  x.  So,  we get  a  this

particular equations. So, accordingly we have two expressions where we are taking the

equality of neutron flux between reactor and core and this is another one where we have

the gradient of velocity at reactor and also at the reactor core and also at the reflector.
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If we combine these two boundary conditions, then this is a solution that we are going to

get. Now if combining this two this is the final form of the equation that we are getting. I

have skip the intermediate skills just to save some time, here B g c refers to the buckling

parameter  for  the  core D C and D R are the  diffusion coefficients  for  the  core and

reflectors respectively and L R refers to the diffusion length inside a reactor inside the

reflector as well. This for this reactor to be critical this above question must be satisfied

now this is actually a transcendental equation.

And.  So,  we cannot  solve  it  directly  rather  it  requires  iterative  solutions,  with  some

possible starting guess. This can be used to calculate either this buckling parameter B e

or  any other  parameter  is  a  dimension a,  that  depends on what  information  is  made

available to you we can decide which one to calculate from here. Like if your objective is

to identify the dimension of this reactor, then you definitely try to solve this for a with a

knowledge  of  this  buckling  parameter.  Similarly  if  the  objective  is  to  identify  the

buckling parameter then we need to know the information about the a. So, this is a kind

of profile that we are going to get the first one that is this one is un reflected, there is no

reflector there we can see the rapid decline in the neutron flux distribution, but once we

put the reflector in look at what we are having.

Now, this is the corresponding flux distribution and they are definitely much flatter and

reaching 0 only at  the edge of the moderator. So, use of reflector  definitely helps in



flattening out the neutron flux distribution and hence it can lead to a higher rate of fission

reaction  and  neutron  flux  distribution  and  there  by  allow  a  smooth  distribution  of

temperature. Next if we do the same exercise it was done for an infinite slab reactor

which is bit of idealization.

If you do it for a cylindrical reactor, then we are going to get this kind of reaction another

transcendental equation here r refers to the diameter of the cylinder for the radius of the

cylinder and for the special case when both the moderator or the reflector and the core

are  having  identical  values  of  the  diffusion  coefficient  or  basically  when  the  same

medium is used at the moderator and the in the reflector in the reactor, then this ratio of

D C by D R by D C that goes to 1 and it reduces to a even simpler form.

And now this does not seem to be a transcendental anymore, because not special  for

simplified we get this particular simplified form B g c equal to cot of RB g c equal to one

by L R this is not transcendental because if for the value of B g c is given, this can be

used to calculate the radius of a cylinder the magnitude of the coefficients I have already

mentioned this two coefficients A 1 and a to can be calculated from the power rating of

the reactor and finally, we have the two group approach to talk about. So, far whatever

analysis we have done there we have considered a single group of neutrons, because we

are dealing with one group fission equation or one group newton diffusion equation.

But during the nuclear reactor neutron goes through different levels of energy.

(Refer Slide Time: 36:08)



Like initially the neutrons when they appear because of fission, they are first in nature

then they passed to the moderator and becomes intermediate temperature level and when

we at the intermediate  temperature zone, it  can get eaten up or the resonance (Refer

Time: 36:25) that happens and. So, it is able to reach the thermal neutron level.

Accordingly we can have a very wide spectrum of neutrons present in the reactor, this is

one of the representative diagrams here that this purple colour line represent thermal

reactors or thermal neutrons produce because of thermal fission, the red one represents

that for fast fission and you can clearly see there is a wide spectrum of energy with

which the neutron can appear.

So, it is more logical instead of using a single group assumption, it is more logical to

lump the neutrons into several energy groups during analysis. There are several ways

they are clumped sometimes people prefer three groups like the fast neutron group the

intermediate  neutron group and also the thermal neutron group, but here we shall  be

speaking out cells to the two groups to show an example, where are fast neutron and

thermal neutrons. So, once that is in the level of fast neutrons that is kinetic energy is of

the order of one MeV, then we shall be taking that into the fast neutron group or we shall

be considering that in the fast neutron group and whenever the energy is less than that,

we shall be considering that in the thermal neutron group.

And the properties of each group are averaged over the concerned range of energy like

these are the these are some numbers which are generally considered for the thermal

group  neutrons,  and they  also  depends  upon the  moderator.  So,  the  first  one  is  the

absorption cross section second one is the reciprocal of that which is the absorption mean

free path, then we have the diffusion coefficient and finally, the diffusion length l, l is

again d y sigma s. So, from there also it can be calculated l square is d by sigma s from

there l can be calculated.

So, these are the more most common four moderators, and you can clearly see the H 2 O

is having a quite small diffusion coefficient, but there are other mediums accordingly

they are like D 2 O. D 2 has a much larger diffusion coefficient quite close to graphite

and is diffusion length is also much larger and these are corresponding numbers for fast

neutron groups again here the graphite or carbon is the one that is showing very large

values of these diffusion length.



Now, we have to present a brief analysis. So, we are assuming that the neutrons appear in

the fast  group as a  result  of thermal  fission only, that  is  when the thermal  neutrons

participate in fission reaction the products of those are the one that comprises this or

contributes  this  fast  group,  but  the  only source of  thermal  neutron  is  when this  fast

neutrons passes through the resonance absorption zone and because of a scattering it

becomes thermalized.

(Refer Slide Time: 39:28)

So,  for  a  critical  reactor  we can  write  two different  equations  two different  balance

equation this is for the fast group of reactor, which you can think about the fast reactor

group here we have the first term is the diffusion of fast reactors then absorption of fast

reactor because of with the number of neutrons will decrease and third is the production

of fast reactors. Of course, k infinity gives you the total multiplication factor the infinite

multiplication factor, once you are dividing that with the resonance escape probability

this is and the rate we are going to get.

Similarly, for the second group this is the equation, where along with the leakage and

absorption term we have this, it represents the amount of neutrons that is the source of

neutrons which is the neutrons which are passing through the resonance absorption zone

and hence p is the resonance escape probability. So, sigma A 1 multiplied by this p is the

amount of neutrons that are able to thermalize, and hence be part of this thermal neutron

group.



Now, both kinds of fluxes generally show the same kind of spatial dependence and hence

there have an identical geometrical buckling. Accordingly the first (Refer Time: 40:46)

takes  this  particular  form here  we have only represents  that  Laplacian  of  phi  as  the

buckling into phi or minus of that rather or you can also write this as this plus this is

equal to 0, and equation which we have repeatedly used. So, with that substitutions we

get a form like this and we can do a similar procedure for the second one.

(Refer Slide Time: 41:16)

This is the corresponding equations. So, we are having actually two algebraic equations

which are coupled with each other, and the solution of non 0 or nontrivial solution for

this is possible only one that this particular determine or the coefficients is equal to zero.

So, from there we get this as the final solution. tThis equation has to be satisfied for a

reactor to be critical a reactor with reflector to be critical, here the denominator can also

be viewed in this way like 1 by L 1 square B g square can be thought about the fast

neutron non leakage probability whereas the second term of the reciprocal of 1 plus L 2

square B g square can be viewed as a thermal neutron non leakage probability.

So, instead of P 1 we can also write this as P f and we can also write this as P t h. These

are the two non-leakage probabilities because that includes the diffusion length as well

diffusion length for the zone 1 and diffusion length for zone 2. So, this way we can

analyse this two different groups of neutrons, there can be situations where you have to

deal with more than two number of groups and just by putting this equations writing



corresponding equations for each of them and applying suitable boundary conditions and

also coupling situations you can always solve this kind of systems.
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So, that takes us towards the end of this fourth module, where we have discussed in

detail about the chain reaction have understood that is absolutely essential for sustained

power  generation  in  nuclear  reactors,  then  a  critical  reactor  is  characterized  by  a

multiplication factor  value of one and reactivity  of 0. The diffusion of neutrons in a

medium is roughly governed by the Ficks law, using the Ficks law and also neutrons

valency I have written the single (Refer Time: 43:19) diffusion equation, which includes

the diffusion term the neutron production because of fission or external source term and

we can also the absorption term. Then following from there onwards we have identified

that  the  critical  reactor  must  ensure  identical  magnitudes  of  both  geometrical  and

material  buckling parameters  because that is the mandatory condition or we can also

write mathematically B g square is equal to B n square.

The distance travelled by their neutron inside a reactor can be related to the diffusion

length. There we have also distinguish between the diffusion length and the mean free

path mean free path is a total distance travelled by a neutron between two successive

interactions where the diffusion length is a straight line distance from the point of its

birth till the point where it gets absorbed.



Then we have done the mathematical analysis of the bare reactor, we have seen that a

beer reactor shows large deviation in the value of the neutron flux distribution with the

maximum at the centre line and the this induce 0 at the edges or in some cases if the

extrapolated length is considered is 0 at the extrapolated length.

(Refer Slide Time: 44:36)

And then we have analysed with the reflectors and it was find that use of reflectors lead

to more significant flux distribution and hence a offers a lower critical mass. 

So, this is the fourth module where we have discussed about chain reaction and now you

have  much  clearer  idea  about  the  possible  neutron  flux  distribution,  that  we  may

encounter  in  a  particular  reactor  and  once  we  know or  once  we have  the  complete

inversion about this flux distribution, how to utilise this in calculating the power rating of

the reactor.

So, this is the end of actually I forgot about mentioning the last one, which is the two

group approach which provide a more realistic estimate and, but I did computational or

mathematical complexities course. So, we now know how to calculate the total energy

that can be produced from a reactor, and in the next module we shall be discussing about

how we can harness that energy and transfer that to the coolant, because we shall be

talking about the nuclear thermal hydraulics. So, just wait for that and for the moment.

Thank you and bye. 


