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Lecture – 11
Solution of one group diffusion equation

We are back with the 4th module of our MOOCs course, where we are discussing about

chain reactions in reactors. Of course, we already had 2 lectures on this and from there

hopefully have understood the importance of chain reaction.

(Refer Slide Time: 00:40)

So, just a part of the recap, for whatever we have covered in the earlier 2 lectures, you

have so far understood that whenever there is a fission reaction there generally produces

neutrons. Now, the number of neutrons produced from each fission may vary between 1

to 7, but commonly it is 2 or 3, but just one fission itself is not sufficient rather we need

to have a chain of such fission reactions.

And in this particular context we can connect this particular module with the previous 2

modules  as  well.  Like  in  module  2,  we have  understood while  discussing about  the

artificial  radioactivity, we have learned that  we can  induce  radioactive  decay to  any

nucleus by striking it with a suitably charged particle and the choice for that particle is

generally a neutron.



But, what will be the nature of such kind of neutron nucleus collision, that generally

depends upon both the energy level of the neutron as well as the property of the nucleus

itself and from our third module we have learned that, out of several possible kinds of

interactions fission is just one of them and only very few nucleus like uranium 233 or

235 or plutonium 239 they have some kind of significant fission cross section. So, that

they can undergo fission reaction, when being struck by a thermal neutron, uranium 238

has a small fast fission cross section, when it is subjected to first neutrons, but generally

most of the common nucleus do not have any fission cross section at all.

Now, so we understand a or we identify particle  as a nuclear  fuel only when that  is

having some kind of fission cross section and just  inducing a fission by striking the

nucleus within neutron itself is not sufficient, where are the neutrons which are being by

that fission at least one of them should induce fission to the neighbouring nucleus then

only we can have a chain of reactions.

Such  kind  of  chain  reaction  is  quantified  in  terms  of  the  multiplication  factor  and

reactivity, where this is their relation which we have already learned. A reactor, which is

having a multiplication factor of 1 and reactivity of 0, is called a critical reactor, where

for every fission reaction only 1 neutron that is produced from the fission is allowed to

participate in a subsequent reaction and accordingly the rate of fission reaction remains

constant. So, that the reactor is able to produce a constant amount of power over a long

period of time.

When, more than 1 neutrons are participating in the subsequent fission reaction we call

that a supercritical reactor, here the multiplication factor is greater than 1 and reactivity is

positive, whereas for a subcritical reactor multiplication factor is less than 1. You can

somehow relate this process of chain reaction to the cell division that happens in our

bodies.

Like, in a healthy human body there are always some new cells that are getting produced

because of cell division similarly some cells are also dying because of aging issues or

maybe some other relevant factors. Now, in a healthy fully grown up body generally the

number of such cells produced because of division is balanced by the nominal cells that

are dying and accordingly total number of cells is more or less the same; that you can

relate to a critical reactor.



Whereas, a supercritical reactor is can somehow resemble the situation with a tumour or

with a cancerous tumour there the cell division is uncontrolled, so that the number of

cells in that particular tissue that keeps on increasing at a rapid rate and that is not at all

being  balanced  by the  date  of  the  cells,  accordingly  total  number  of  cells  keeps  on

increasing. Similarly, a supercritical reactor also will show sharp increase in the rate of

fission reaction,  hence a diverging kind of power production rate which we generally

relate to nuclear weapons.

But, the most important factor in controlling this multiplication factor like, commonly in

power reactors,  we would like to  have a  multiplication  factor  of 1.  So,  that  we can

maintain a critical  reactor  and hence a constant power generation rate,  but in certain

situations  we may have to  increase  the  power  production  rates,  so  we can  go for  a

supercritical  situation or sometimes if  we like to shut down the reactor  or lower the

power generation we may go to the subcritical stage.

But controlling this reactivity is very important and the most important factor in that

control is the role of neutrons. Therefore, in previous lectures you have discussed a lot

about different factors associated neutrons, we have discussed about neutron interaction

which is generally given by a relation like this and we the mean free path characterizes

the distance; average distance travelled by a neutron between 2 successive interactions or

which you can be related directly to the corresponding cross sections and then we went

to studying the neutron diffusion theory, the Fick’s law was introduced which governs

the diffusion of neutrons in a particular medium and using that we can get a balance in

the number of neutrons present in a medium, that is the total change in the number of

neutrons  present  in the medium can be related to  the rate  of growth and the rate  of

absorption and also the rate of leakage.

Accordingly, we got this one, this single energy group or single group neutron diffusion

equation. Here, this D is the diffusion coefficient, sigma is the absorption cross section, s

is a source term the source of neutron and v is the velocity of the neutron. So, if we are

dealing with a critical reactor that we can come just after some time, this equation can be

modified to a form like this, where we have these 2 new terms, these which are called

buckling. B g square is called the geometrical buckling as it is generally a function of the

geometry, whereas B m square is called the material buckling as it is rated to the material

properties.



And when the, we are operating with a critical reactor then the neutron flux that is this

phi that remains constant to time. Hence, this term goes to 0 and therefore, for a critical

reactor we have this particular condition satisfied that is B g square is equal to B m

square. So, up to this part that is till the previous lecture, we have discussed about or we

have developed this neutron balance equation and we have discussed about the internal

diffusion theory.

So,  today we shall  be utilizing  this  equation  to  study the  neutron  flux  that  we may

encounter in a particular given kind of reactor in a given geometry and subsequently we

would like to use that in design of different reactors. So, let us take 3 different sample

problems and our objective is to sample geometries I  should say, our objective is to

identify  the  distribution  of  neutron  flux  for  a  critical  reactor  in  each  of  such

configurations.

And I am actually not sure how much time the subsequent slides are going to take place

because here we are having lots of mathematics to consider. Had it been a normal class,

where I am dealing with a chalk and board, it could have taken much more than a single

lecture, but here as everything I am having on the slides it may go through very quickly,

but still let us start this.

The first geometry we have is that of an infinite planar source, like our geometry is that

of a plane, which is acting as a source of neutron and it is having nearly 0 thickness or

extremely small thickness. 



(Refer Slide Time: 08:48)

Look at this diagram, here this by this dark colour we have the plate shown, here we can

take this particular coordinate system x in this direction that is normal to the plane and

these are the other through coordinate systems. Now, here our geometry or our problem

definition is the dimension of the plate in the y and z direction is infinitely large, that is

the length scale that we have in the y and z direction are much, much larger compared to

that in the x direction or we can write, if L x refers to the length scale in the x direction is

much, much smaller than length scale in the y direction and length sale in the z direction.

(Refer Slide Time: 09:18)



And hence, subsequently we can write the gradient in the x direction, gradient for any

quantity that has to be significantly larger compared to the gradient in the y and gradient

in the z direction and hence gradient of any quantity in the y and z direction can be

neglected reducing this to a 1 dimensional problem, where we can safely consider all

variations to be taking place only in the x direction that is perpendicular to this particular

plate.

Here, we have taken our coordinate system to be at the centre or line of this plane and the

thickness as I have already mentioned the thickness of the sources can be considered to

be negligibly small.

(Refer Slide Time: 10:10)

So, this is the standard form of or a for the diffusion equation, which we have already

studied in a previous lecture and also mentioned in the previous slide under steady state

the transient  term goes  to  0 and so we have the 3 terms.  Where,  this  is  the rate  of

absorption, this is the generation related term or I should say, I should not say generation

rather this is the neutron diffusion or leakage,  where we have used the Fick’s law of

diffusion and this s is the generation from some external source or neutrons supplied to

the system from some external source.

Here we are not at all considered any kind of fission reaction, rather you can think about

that this plate or the planar source of neutron that is immersed into an infinite stretch of

diffusing medium, where we do not have any fission reaction happening.



Therefore only thing that the neutron can encounter is diffusion and also absorption by

the medium which is surrounding this plate. So, there is no other source of neutron away

from the plate only source is present that is at the centre of this coordinate system that is

at x equal to 0. That means, at this particular condition, location we have some kind of

neutron source, but which are moving away from the plate there is no neutron source. 

Therefore, a small distance away from this neutron source of this plane we can neglect

this term s and accordingly this equation simplifies to this. Now, sigma a by D as per our

earlier definition is the reciprocal of L square, L will being diffusion length. So, this here

we are using the Cartesian coordinate system as that is the most suitable  one to this

geometry. Accordingly, we have d 2 psi, d x 2 is equal to 1 by L square into phi, which is

a very, very standard second order differential  equation and we know the solution is

going to be of this particular form, that is it is going to be a summation of 2 exponential

terms. A 1, A 2 are 2 constants, whose values we have to identify using the boundary

conditions.

Now, you see that the neutron flux phi is given as a summation of 2 exponential terms

and both of them are functions of x, here L is the diffusion length, here one x, the first

exponential term is a decaying one, where is, the second exponential term is a growing

one. That is as we are moving away from the plate,  while the first term will start to

diminish, the second term will keep on growing, but that is not a very feasible situation

to  have,  because  you  can  always  expect  as  we  are  moving  away  from  the  plate,

corresponding neutron flux that should decrease we takes and that is possible only when

the second term is absent in this and hence this A 2 has to be 0.

So, we are having this single coefficient A 1, that we need to evaluate using the boundary

condition.  Now, what can be the boundary condition,  this is the simple form that we

have, but what can be the boundary condition that we need to use. Here, look at the

centre line or the dotted vertical line, this particular line that is shown in this problem. 

This refers to the, at x equal to 0 we have the source and as we are moving away from

this the effect of source gets negated or rather I should say, the effect of source can be

eliminated, but at the centre line that is at x equal to 0 location, the source is present

which is continuously emitting neutron following some kind of pattern and this neutron



flux, our corresponding neutron current density at this centre x equal to 0 should be equal

to the strength of the source. 

Now, let us consider S double prime as the source strength per unit area of the plate that

is the plate is emitting neutrons at a rate of S double prime neutrons per unit area, per

meter square say for the plate. So, this source strength S double prime or this neutron

emission per unit area should be equal to the neutron current density at the centre line,

that is limit x tends to 0, J x should be equal to S double prime by 2, why this by 2 is

coming into picture, because you have to consider that S double prime is the a strength of

the source, but it is equally emitting in both a positive x and negative x direction and

therefore, the positive x direction, which you are considering here is receiving only S

double prime by 2 or half of that amount.

So, the neutron current density at x equal to 0 location should be equal to S double prime

by 2 and from Fick’s law of diffusion, we know that J x is equal to minus D d phi by d x.

So, here we can put this particular form of phi that is we can differentiate this form of phi

and put it back here. So, we are getting this thing and now putting this limit x tends to 0,

we get A 1 to be equal to this particular form S double prime into L by 2 D. Hence, this is

the final form of this neutron flux distribution in this infinite stretch of diffuse medium

that we are having, which is surrounding this planar source.

Here, we are putting x mod of x because this particular distribution is true on either side

of this plate, that is for both positive x and negative x distribution, this distribution is true

or you can must say that the distribution is on one side of this dotted line is a mirror

image of that on the other side. Corresponding distribution is also shown by the dotted

line, also shown by this is the distribution which is already shown here.

Now, this is the situation of a very simple geometry of an infinite planar source.
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Now, we move to our second problem, where we basically have a point source on, it is a

single point, which is emitting neutrons in all possible directions surrounding this and

similar to the previous problem here this point is also immersed into an infinite stretch

diffusing medium, but there is no fission going on around. This being a point, it can emit

in all possible directions of a sphere around this and particularly when this source is an

isotropic one, then it is intensity of emission in all possible directions should be equal

and here instead of Cartesian coordinate, we have to take the spherical coordinate (Refer

Time: 16:45) solving this. 

So, again at a reasonable distance away from the source, the presence of the source can

be neglected so this is a simple equation, but here while expressing this laplacian you

have to use a cylindrical coordinate system and the sphere being or the source being

isotropic, we can consider this again to be an 1 dimensional problem because whatever

variation  in  the  flux  is  taking  place  that  is  only  in  the  r  direction,  but  the  other  2

directions that is theta and z coordinates are not having any influence or rather neutron

distribution is symmetric with respect to both of them.

Hence, we are having this particular form. Now, this is a slightly complicated equation

compared to the previous one. So, use one substitution, where we define a term psi as the

product of r and phi. So, if we put it back into this original equation then we get this

particular form d 2 psi d r this should be d 2 psi d r 2 minus psi upon L square. So, this



equation again is  very similar  to  the one that  we have got in the previous slide say

homogeneous  equation  having  a  very  standard  solution  like  this,  A 1  upon  r  into

exponential minus r by L plus A 2 upon r into exponential r by L.

Now, what should be the corresponding boundary condition that we must use here, again

as we are moving away from the source we are seeing that the flask phi is a summation

of 2 exponential term, 1 decaying with r and other growing with r, but as we are moving

away from the source, the neutron flux should decay and hence this A 2 should go to 0

leaving  only  this  negative  exponential  term.  So,  we  have  to  identify  only  a  single

coefficient that is A 1 here.

How can we identify that? We have to consider that, the neutron current density at the

centre that is at r equal to 0 multiplied by the area should be equal to the strength of the

source, if the source strength is S, it is not S double prime, it is the strength. That is a

source, that point source is emitting S number of neutrons per unit time, then the neutron

current density J r multiplied by the area of the sphere of radius r, which is equal to pi r

square should be equal to this s because whatever may be the value of this r, but what the

number of neutrons emitted by the source that must pass through the entire surface of

this particular sphere, which is given by this 4 phi r square and multiplying that with the

current density or neutron current density we are getting that to be equal to S, at r equal

to 0. So, we put the Fick’s law of diffusion, where J becomes D d phi d r. This particular

contribution and this phi can be replaced with this particular term.

So, we get A 1 is equal to S upon 4 phi D and this is the distribution of flux in the radial

direction. So, for both this 2 problems of an infinite planet source and for a point source,

we can just following the standard methodology of solving any differential equation or in

differential  equation  you can calculate  the final  form of plug distribution.  It  is  quite

straight forward, it shows that as we r keeps on increasing, this flux density also keeps on

reducing exponentially following this particular trend that is when r tends to infinity this

should be equal to 0. 
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We have a third problem to deal with that is of a line source. Here our source, a neutron

source is like a line, which is having 0 thickness, but it is having certain length maybe

you can consider this lines strength to be infinite. This being a line, it can emit again

neutrons in all possible directions around this and hence the neutrons coming out of this

should pass through a cylindrical surface just like that shown here.

So, following the similar methodology this is the governing equation, but here we should

use the cylindrical coordinate system. So, this is the form this one upon r d d r of r d phi

d r minus phi upon L square is equal to 0 and now we just play around this, that is we

break the first differential and then get a formula and multiply everything with r square

to get a form like this. It is a quite complicated form actually, but actually the kind of

equations that we are having here, that is known as the Bessels equation, which has a

very standard solution. 

I hope most of you are aware about Bessel functions or modified Bessel functions, if you

are not you please go to any standard mathematics book and you will find this form for a

Bessel function or Bessel equation,  which is a form like this,  which also has a very

standard  solution  given  by  Bessel  functions  or  modified  Bessel  functions  and

corresponding solutions will be like this. Here, I naught is the modified Bessel function

of first kind and K naught is a modified Bessel function of a second kind. Both of them



are a periodic functions and they have a very standard form, which I do not want to

repeat here, but the graphical representations are like this. 

Here actually I naught and K naught refers to only the 0th mode, they can have several

modes like shown in the graph on the left. Here, I naught is having a certain kind of form

which you can check from mathematics books, that it keeps on increasing exponentially

with x, whereas K naught keeps on decreasing exponentially with x. Now, we know that

x  or you can say r in this particular coordinate system, now as r keeps on increasing

neutron flux the intensity or the current density should reduce with time and hence this I

naught should not have any contribution or rather this A 2 should go to 0 leaving only 1

term.

And, now to evaluate this particular constant A 1, we have to use a condition similar to

the previous slide where assuming a source strength of S, the neutron current in density

multiplied  by the area of a cylinder  should be equal to  the source strength.  So,  at  a

distance r from the source or assuming a cylinder of radius r and of height small l, this is

the corresponding area of the cylinder is 2 pi r l a surface area multiplied by the current

density should be equal to S.

I  am not  showing the detailed  calculation  you can follow similar  procedure because

again J can be related to the gradient of phi, following the Fick’s law and this K naught

itself is a function of r. So, if you put them you are going to get that A 1 is equal to S

prime by 2 pi D, where this S prime is actually source strength per unit length S by small

l, so final form of the flux is something like this.

Hence,  you can see here that we have always started with the diffusion equation for

neutrons, but we have dealt with 3 different kinds of problems, 3 different geometries

each of them demands a separate kind of coordinate system adoption, but following the

standard procedure we have always, we are always able to get an simplified expression

for the final flux distribution form and this exercise also allows us to get a realistic idea

or a physical interpretation of the diffusion length.
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Let us go back to the second problem, where we had a point source here this red dot

represent  that  point  source,  which  is  emitting  neutrons  isotropically  in  all  possible

directions over a sphere around this. Now, we consider a spherical shell around this, the

inner radius of the shell is r and thickness is d r, then the total number of neutrons that

are getting absorbed per unit time within this shell should be equal to the absorption

cross section of the silver shield material in to the neutron flux at that particular location

into the volume of the shell, here d v refers to the volume of this infinitesimal shell.

And, what is d v? That is 4 pi r square into d r. If d r is extremely small compared to r,

we can always represent d v with 4 pi r square into d r. What about phi? Phi you have

already solved for in the earlier slides, the solution of phi is already available. So, you

can put this directly here and we can now simplify this, that is from these expressions

this r and r square cancels out and 4 pi also goes out, leaving us S into r in the numerator

and D upon sigma a is equal to L square. So, we are having this d n that is change in the

number  of  neutrons  or  neutrons  getting  absorbed  is  equal  to  S  upon  L square  into

exponential of minus r by L into r d r.

And, now if we want to know the probability of neutron absorption in this shell,  the

probability is p r d r has to be is equal to d n upon S, because S is the total number of

neutrons that are getting emitted from the source and d n is the number of neutrons that is

getting absorbed in this. So, it is probability is the number of neutron absorption per unit



for every neutron emitted by the source that is d n upon S and putting the expression for

d n it is r upon L square into exponential minus r by L d r.

So, now we need to calculate the distance travelled by neutron; the straight line distance

travelled by neutron from the source to the point of it is absorption, but I do not know

why. In fact, I have not found a proper explanation in the books also, that is a common

neutron science does not use the distance, rather they use the square of this distance or I

should say the mean square of the distance travelled by the neutron from it is birthplace

to the place of absorption.

And, that capital R refers to this straight line distance and R square is the square of that.

So, the taking the mean of that squared distance that should be equal to integral 0 to

infinity r square p r d r, as r can be of any value from 0 to infinite and here if you put the

expression from this particular expression for p r d r you are going to get this to be equal

to 6 L square. 

That  means,  the  mean  square  of  the  distance  travelled  by a  neutron  can  directly  be

related to the diffusion length or on other words the diffusion length is a representative of

the straight line distance travelled by a neutron; average straight line distance travelled

by neutron from the source to the location where it gets absorbed and hence if we have

some idea about this diffusion length, we can always calculate this distance travelled by

the neutron, but you should not get confused with the earlier defined term mean free

path, mean free path is the total distance travelled by a neutron between 2 successive

interactions, but here this r talks about only the straight line distance. 

Like, generally the movement or passage of neutron in the reactor is quite zigzag, it can

move from somewhat like this, but this r is actually the straight line distance only from it

is source to the strength, that is it will start from this point and finish up at this point and

only comprises straight line between this. So, this distance r is invariably much smaller

than the mean free path, but what we can see is that the diffusion length is typically only

about 0.4 times of the distance travelled by the neutrons from it is birthplace to the point

of absorption on an average.

If we do the same exercise for the infinite planar source, then there you would have got

R square bar is equal to  2 L square.  I  would argue to try this, for just follow the same

procedure on a Cartesian coordinate  system and you should get R square is equal to



twice of L square. So, by knowing the diffusion length, we can get a proper idea about

the distance travelled by the neutron.

(Refer Slide Time: 29:17)

Now, we enter the situation of multiplying environment. Like the 3 problem that we have

discussed so far, there  we have considered  the neighbouring medium or surrounding

medium not to have any kind of fissionable nuclei, but when in a typical nuclear reactor

we may have fissionable nuclei present as well. Like the neutron may get diffuse through

the  moderator,  but  immediately  after  the  moderator  or  sometimes  mixed  with  the

moderate itself we may have well nuclei and whenever there is a fuel nuclei that is being

acted upon by neutron we can have additional fission reaction and those fission reactions

will produce some further neutrons or will add some further neutrons into the system. 

That is what we refer to as a multiplying environment. Corresponding time dependent

conservation equation or time independent I should say conservation equation that is for

a critical  reactor equation is like this. You can see the 3 terms of the same  like  in a

previous  case we have the absorption term,  we have the leakage term related  to  the

Fick’s law of diffusion and we have the source term; external source.

But you also have an additional term in between, which represent the rate of neutron

production because of fission. Here, just as per our previous familiarity mu refers to the

number of neutrons; average number of neutrons produced per fission. Sigma f refers to

the fission cross section and phi is a neutron flux. If the neutron sources absence then this



s goes off and then we can rewrite this equation to a form like this minus 1 by phi d 2 phi

or the laplacian of phi, should be equal to mu sigma f minus sigma a upon d or if you

remember  our  earlier  definition  this  particular  term is  referred to  as  the  geometrical

buckling B g square. So, that comes out to be nu into sigma f minus sigma a by D. That

is  by  knowing  the  properties  of  the  medium,  we  can  get  some  idea  about  this

geometrical; the geometrical buckling as well.

For a critical  reactor we know that B g square is equal to B m square is equal to B

square.  So,  we  now  have  to  apply  this  equation;  diffusion  equation  multiplying

environment to have more realistic neutron distribution in reactors, but before that you

have to remember a few assumptions like reactor material is assumed to be homogeneous

and is having uniform properties in all directions and the reactor is working under steady

state.

That is, it is a critical reactor and total number of neutrons remains constant with time as

are any other parameters and third assumption, all neutrons belong to the same energy

level  remember  what  we are  doing here  is  the  solution  of  a  single  decrease  energy

diffusion  equation,  that  where  all  neutrons  are  assumed  to  have  moderate  the  same

energy level, but the variation in the neutral energy level has been neglected.  So, we

assume all neutrons to belong to the same energy level that is have identical velocities or

identical kinetic energies.

(Refer Slide Time: 32:30)



So, with that let us try to study a few reactor designs. The first reactor that we have is for

an infinite slab. Here, our reactor you can think this to be an extension of that infinite

source problem or infinite plane source that we have discussed shortly back. Here your

source is  also an infinite  slab reactor. Here,  your reactor  is  it  is  an extension of the

previous infinite planner source problem, that is the directories of the shape of an infinite

slab or it is extent is infinity in the y and z direction, but it is having some kind of finite

width in the x direction.

So, the total reactor is having a width of a, that is from the centre line to the edge the

distance is a by 2 on either side of this and again the dimensions in the y and z directions

to be much significantly larger than the dimension in the x direction which is a or a by 2

any variation in the y or z direction can be neglected and we are having variations to

consider only in the x directions.

So, this is the equation that we have just derived in the previous slide d 2 phi d x 2 plus B

square phi is equal  to 0,  where B is  the buckling parameter, which is  for as we are

assuming a critical reactor. So, B g square and B m square are equal and that is given by

this B square and again it is very standard homonymous equation. So, whereas, when a

solution will be A 1 cos B x plus A 2 sine B x. A 1 and A 2 are the 2 constants which we

have to evaluate using the boundary conditions. So, what can be the possible boundary

conditions, at x equal to 0 what can be the boundary condition. 

X equal to 0 refers to a centre line and given the geometry we can easily say that the

geometry is a mirror image or one side of the geometry also a centre line is a mirror

image of the other side, accordingly the centre line can be considered to the plane of

symmetry and hence  d  phi d x has to be equal to 0. Another way of writing the same

boundary condition is phi at plus x should be equal to phi at minus x. Solution point of

view sometimes this is a much better to write in this particular fashion.
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Another boundary condition that we should consider that is at the edge of the reactor,

that is x equal to plus a by 2 or minus a by 2. So, here we take phi equal to 0 because as

the neutrons are going out of the reactor, so we do not expect  any neutrons to exist

outside the reactor.

If we put these 2 boundary conditions, particularly if we put the first one, that is we

differentiate this equation d phi d x and put the limit x equal to 0 and equate that to 0,

then we get this A 2 has to be equal to 0.

(Refer Slide Time: 35:35)



Because the differentiator from what we are going to get by differentiation, d phi d x has

to be equal to B A 1 sine B x minus of that plus B A 2 cos B x. Now, if we put the limit x

equal to 0, of course sine 0 goes to 0, but as per our definition d phi d x is equal to 0 at x

equal to 0, but cos 0 is not 0 and it is possible only if either B or A 2 is equal to 0.  B

being on the buckling parameter it also is a non 0 number and hence A 2 has to be 0 to

get a proper solution.

(Refer Slide Time: 36:22)

Now, we apply the boundary condition at the edge of the reactor and hence putting x

equal to a by 2 plus a by 2, we get A 1 cos B into a by 2 is equal to 0, but in order to

ensure a non trivial solution A 1 cannot be equal to 0 and hence cos B by a 2 has to be

equal to 0 or in a way B a 2 has to be equal to 2 n plus 1 pi by 2, where n is 0 and any

other integer or we can say B n can be equal to 2 n plus 1 into pi upon a, like depending

upon the value of n we can have a different values for this B n.

So, this actually is leading to an infinite solution. That is, we are getting phi x equal to A

n cos  2  n  plus  1  pi  x  upon a,  where  A n  refers  to  the  value  of  this  coefficient  A,

corresponds to the nth mode of this function. Practically speaking all the modes other

than;  when  the  reactor  is  critical  after  certain  period  of  time  you  will  not  find  the

existence of the other modes. 

That is all the other harmonics for corresponding to n equal to 1 2 3 etcetera all will die

down quite quickly and after some small period of time you will only see n equal to 0.



That is the 0th or a Eigen function of the corresponding fundamental Eigen function, that

is existing and the magnitude of the other Eigen functions being negligible and hence for

a critical slab reactor our solution is like this phi x is equal to A naught cos B naught x or

that is equal to A naught into cos pi x upon a. A being the half width of the reactor, but

one important condition that you have to consider here, here you have taken this phi to

be equal to 0 the edge of the reactor, but practically that is not true.

(Refer Slide Time: 38:12)

Just look at  the diagram, practically  we get a profile somewhat like this. That is phi

decreases initially as we are moving away from the centre line phi is decreasing, but

while eta decreases following model is the same gradient as per the diffusion theory it

changes quite sharply in the actual case, but even in constant, once we are crossing at

neutron level or once we are coming out of the reactor, but just think about the following

the diffusion theory at x equal to 0 at this particular location this is not x equal to 0, I

should say x equal to a. at this location there is certain gradient that is being followed by

this neutron flux. 

So, if we just extend that we are reaching somewhere here that is if the neutron flux is

allowed to follow the same trend after coming out of the reactor that would reach 0 at

this particular location. This particular distance is often called the extrapolated length,

which is d and corresponding boundary conditions generally called the vacuum boundary

condition.



So, if for most of the practical reactor problem this extrapolated length is negligible and

hence during calculation it can be neglected and the neutron flux can be assumed to

approach 0 at the edge of the reactor itself,  but if d is not negligible,  then in all the

previous calculations like in the previous slide this a by 2 has to be replaced by a by 2

plus d and solution of 1 group diffusion equation, solution which is beyond this course.

For this kind of situation in a weakly absorbing homogenous medium, we can find that d

is equal to 0.71 into the transport mean free path or it is just 0.7104 into 3 times the

diffusion length, because we know that the transport mean free path is equal to 1 upon 3

D. These are certain values for common moderating materials, like you can clearly see

the diffusion length is generally quite small starting from 0.1422 in common water to

0.84 and 0.916 in graphite.

Correspondingly the value of this small d or this extra volatile length, that also keeps on

increasing. It can be just about 0.3 centimetre in common water, but can be nearly 2

centimetre in graphite, but still even the largest dimension that we are talking about for

diffusion length is only about 2 centimetre and when you talk about the reactor; common

dimensions of the reactors are generally much larger compared to these values and hence

for  most  of  the  practical  cases  this  information  can  be  neglected  and  the  boundary

condition can be considered to be phi equal to 0 at the edge of the reactor.

But  we  also  have  another  task  click,  that  is  we  have  to  calculate  the  value  of  the

coefficients, that we have discussed the coefficient A naught, can be calculated by using

the power produced by the reactor. Practically speaking, if we do not consider or if you

do not impose any other condition we cannot deviate the value of A naught, a rather for

every different values of A naught, we can have a different solution. 

So, total power produced by the reactor can be represented by this, where this E refers to

the energy released by every fission reaction into the absorption cross section into the

neutron flask and this is being integrated from minus a by 2 to plus a by 2, that is from 1

edge of the reactor to the other edge of the reactor and corresponding solution is this. So,

if we proceed further, we can get A naught to be equal to pi P dot by 2 E sigma f a. 

Here, again I repeat sigma f is fission cross section, p dot is the power produced by the

reactor and E is the energy emitted by every fission reaction, which is typically of the

order  of  200 MeV. So,  putting  this  back in  the previous  expression,  we can  get  the



neutron flux distribution in this infinite  slab reactor, but actually infinite  slab is very

much an idealization because practical reactors cannot have infinite stretch, rather they

are having only finite size.

So, in the next lecture or in the last lecture for this 4th module, we shall be discussing

about different reactors of finite stretch where we shall be taking finite  sphere  as the

finite  sphere  and  finite  cylinders  as  the  2  geometries  and  we  shall  be  developing

corresponding  expressions  for  neutron  flux  intensity  and  also  we  shall  be  trying  to

compare different kinds of reactors that are available. So, for today I would like to close

it  here itself,  please revise this lectures  and we shall  be taking it  forward for proper

reactor design in the next 1.

Thank you. 


