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Today we will be studying another kind of free vibration in which we will be considering 

the dissipation of the energy when this particular dynamic system is vibrating. So, this is 

called damped free vibration in which case we will be having decay of the vibration if 

we are talking about the free vibration or the vibration will decay after sometime or due 

to the damping effect. This damping may be in the system; it can come from various 

sources. One is the material damping itself in which may be the friction at the entire 

molecular level can take place, and because of that the energy is dissipated from the 

system in the form of heat or there can be some fluid and solid interaction is there. 

And because of that the heat is getting dissipated from solid to the fluid like a solid 

member is vibrating in a fluid, and the fluid is damping, or it is taking the energy of the 

solid. And after some time it is trying to decay the vibration of the solid structure or 

machine. Another form of the damping which is there in the system is may be aero 

dynamical forces which is especially in the turbines you will find that we are injecting 

the steam and to the turbine blades, and because of these interactions there can be 

damping in the system or sometime we have two solids which are in contact. 

So, some kind of friction damping between two solids can also lead to the dissipation of 

the energy. So, how to model this particular damping is your question, and it is very 

difficult to model damping as compared to the stiffness or mass, because whatever the 

models are available that leads to very complicated analysis of the damped free 

vibration. So, that is why in most of the analysis when we obtain the natural frequency of 

the system, we neglect the damping effect. And we will see from the present study 

especially on the natural frequency, the effect of damping is very less. 

But especially they are very important when the system is going under resonance 

condition. Some simple model of the damping people have developed especially when 



the force is proportional to the velocity of the vibrating body. Like in stiffness, the 

stiffness in the spring force is in that we know it is proportional to the displacement. 

Similarly, in this particular model the damping force is proportional to velocity. If we 

want to model a damping force, which is proportional to the displacement, then what will 

be the effect that we will try to see whether we will get some damping effect or not, 

through some illustration I will try to explain that. 

But let us see what is the effect of damping if you are talking about a force versus 

displacement relationship. So, obviously, if there is a damping in the system, this 

particular plot in a particular cycle, they should enclose some area, and that is the energy 

dissipation per cycle of the system. And let us see through figure how the linear damping 

force which is proportional to velocity or a damping force which is proportional to the 

displacement they are different and what is the characteristic of that. 
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So, let us first take a damping force model which is proportional to the velocity. So, in 

this we expect that when we start the system, it will go like this and during the oscillation 

it will come take this. And during this process it encloses one area, and this area is the 

energy dissipation over one cycle of the motion. And if we have one model in which 

damping force is proportional to displacement; this particular diagram how it will look 

like, because it is linear. So, it has to go in the straight line. Then while it is returning 

from here, again it will follow the exactly same path, and it will go other side. 



And then while returning it will follow exactly same path like this, and it will keep 

oscillating along this line. And if you see carefully what is the area enclosed by this? 

That will be zero; area enclosed by this curves will be zero; that means per cycle there is 

no dissipation of the energy. So, this particular model in which the damping is 

proportional to displacement, it is not dissipating any energy. So, that is why we have to 

have some other relationship between the damping force and the displacement. So, the 

most simple model which gives simpler mathematical expression when analyzing the 

most simple model of the damping is this which gives simpler mathematical expressions. 

In practical application in two wheelers there is a shock absorbers are present in the front 

wheel and the back wheel. You must have seen near all the wheels, we have two rods, 

and they have coils; that is the springs. And inside there is a piston and a cylinder is there 

in which liquid is filled. So, during motion of the vehicle when duration of the route is 

there, the vehicle starts oscillating it, but after some time that oscillation dies out. Why it 

happens? Because of the damping effect, whatever the dampers are there in this system it 

dies out the vibrations. So, let us see what is the principle how the working principle 

behind the dampers.  
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So, in those dampers there will be one cylinder, and there is piston which is attached 

through a rod. Now during motion of the vehicle which is having to and fro motion up 

and down motion, this particular piston will also go up and down. This particular 



cylinder is filled with fluid, and in this piston there are small holes or if you see the top 

view of this there will be small holes on this piston. So, yes, this piston is going up and 

down. These fluids if it is going downward, these fluids, which are getting compressed 

here, they will try to go through these holes towards the upper cylinder. 

And during this process they will be having friction, because it will be injecting with 

very high velocity through these holes there will be dissipation of the energy. And when 

this piston is going upward, then these fluids will again come back from these holes to 

the lower portion of the cylinder. So, by that way again they will be losing the energy of 

the vibrating system. So, this is the basic principle of the shock absorbers. So, here what 

I have shown in which the dampers are there which is dissipating the energy. Apart from 

this around this there are coils also, springs are also there; they give the to and fro 

motion. 

So, that if there is sudden jerk, then we do not feel those jerks directly, but that will be 

taken care by the springs. So, now with this background of the dampers, let us try to 

model mathematically this system, and try to analyze them analytically that how this 

motion take place, how the damping effects the motion of the particular system and the 

natural frequency of the system. 
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So, for this let us take a simple model in which we have one spring and mass, and apart 

from this. Now we are attaching one damper also. So, damper we represent like this in 



which this represent some kind of piston. This is cylinder and ceases the damping 

coefficient. K is the stiffness of the spring and mass m, and here let us say this is again 

static equilibrium position of the mass. So, when we are taking the reference as the static 

equilibrium position, the gravity effect will not come. 

Now when we disturb the system through x, then we will be having the free body 

diagram of this particular mass in which we will be showing all the external forces. So, 

stiffness force will be upward, because the spring is getting extended. So, it will apply 

force upward on to the mass, because it is moving; it will be having velocity also, 

acceleration also. So, in this particular case we are considering the viscous damping that 

is proportional to the velocity of the motion of the body and cease the damping 

coefficient. 

Apart from this, we can have some external forces but since we are dealing with free 

vibration. So, let us not consider any other external force, and apart from this there will 

be inertia force. So, this is the free body diagram of the mass. Now we can apply the 

Newton’s second law of motion. So, that says that some of the external forces. So, k x is 

one of the external force minus, because this is acting opposite to the displacement 

direction which is downward, but this force is upward. Similarly, the damping force 

these are the two external forces should be equal to acceleration of the body. 

So, these equations we can able to write in more standard form like this. So, you can see 

that this equation is similar to the previous one; only extra term is upper damping is 

coming .This particular equation, because it is homogenous because the right hand side is 

zero. So, we can have the general solution of this.  
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So, let us take the general solution of this as or in the previous case when we did not 

consider the damping, then we saw that this particular equation of motion in the 

acceleration was proportional to displacement. And because of that we assure that the 

motion was simple harmonic, but now another term damping has come into the equation. 

So, we will not be having the simple harmonic motion of the motion. So, that is why now 

we are looking for the general solution of this particular equation. So, once we assume 

this solution where S is a constant, because the equation of motion contain derivative of 

this displacement and velocity. So, the velocity can be written as like this, and 

acceleration can be obtained as S square e s t. 

Now if we substitute this in the equation of motion, we will get m S square plus c S plus 

k, and this term is common is equal to 0. So, this quantity cannot be 0. So obviously, the 

terms within the bracket has to be zero. So, that whatever the assumed solution is the 

solution of the differential equation. So, we are getting a condition if we are able to 

satisfy this condition that this quantity is 0, then this particular expression is the solution 

of the original equation. So, let us equate this to zero. So, there is a quadratic equation in 

terms of S. So, we can able to solve this equation. Better we can write this as in this 

form; the solution of this because this is a quadratic in S.  
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It can be written as it will be having two roots S 1 and 2. So, it can be written as this. So, 

plus and minus gives two roots; so we have S 1 and S 2 two constants we have got. So, 

we have two solutions, and those two solutions can be combined to get the general 

solution. So, S 1 t is one of the solution, A is a constant and B S 2 t. So, this is a general 

solution where A and B are constants, and these constants we have to obtain using the 

initial condition of the system. Initial conditions how much displacements we are giving 

to the mass or how much velocity we are giving to the mass from there we can able to 

obtain these. 

So, we need two initial conditions to get the two unknown constants, and if we substitute 

the S 1 and S 2 from here, we can able to write this as x. I am taking some of the 

common terms. So, this particular term I am taking common after substituting here A, 

then square root of c by 2 m square minus k by m, then second term which is negative of 

this square root. So, it is the general solution of the differential equation for damped 

vibration. 

Now here you can see that this particular quantity within the square bracket, if within the 

bracket whatever the quantity is there if this is positive, then we will be having these 

terms and these terms as non-oscillatory terms. Because all are decaying or exponential 

terms will be there, but if this quantity within the square bracket is negative, then we will 

get the complex quantity in the exponent of e, and that quantity we can able to express in 



terms of the sin and cosine function. Like if we have j theta, then it can be written as in 

terms of the sin and cosine. Then will be having some harmonic component in the 

response. So, oscillations will be possible, and there is another condition in which this 

term is Zero. There is a very critical case. So, we will see these three cases separately, 

and we will analyze them.  
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So, first case when within this square bracket this term, or I should say this quantity is 

greater than k by m. So, that means within the square root we will be having positive 

quantity. 
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So, all the equations here, they will not be have any oscillatory terms. 
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So, no oscillation will be possible, and this is called over damped system. What is 

happening in this system? We are disturbing the system, and it is gradually coming to the 

steady position without any oscillation about the mean position. Second case is c by 2 m 

it is less than k by m. So, in this case within the square root whatever the term is there 

that will be negative. So, we will be having this kind of terms; imaginary quantity will be 

coming outside because negative is inside. So, I have written in the form of imaginary 



terms. So, you can see because of this we will be having cos and sin terms, and we will 

be having oscillations in the motion, and this is called under damped system. 
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Third case when these two quantities are equal; that means k by m, then we call this 

damping as critical damping, and we represent Cc is critical damping. So, critical 

damping is defined like this. So, we can able to see that it will be k by m, or it can be 

simplified as because this we know we write as omega n; that is omega n I am calling 

now as undamped natural frequency, because root k by m is the natural frequency of the 

system when there is no damping. So, that is why this undamped natural frequency term 

is coming. This even we can able to simplify as k by m. 

And this is the definition of the critical damping, and we define another term that is a 

non-dimensional term that is called damping ratio which is zeta, and it is defined as the 

damping coefficient divided by the critical damping, and this is non-dimensional 

quantity. So, it is having lot of advantage you. We will see how the expressions get 

simplified because of this particular term.  
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So, let us write the equation of motion again and we will try to simplify the equation of 

motion in terms of these non-dimensional terms. So, this was the equation of motion for 

damped system, and now we are gradually introducing the non-dimensional terms. So, c 

we are writing as zeta Cc; zeta is the damping ratio, this is a critical damping x dot plus 

this we can write as natural frequency. There is undamped natural frequency. And then 

we can simplify this as, because this critical damping can be written as plus omega n 

square into x and again it can able to simplify this further that will be 2 zeta omega n, 

because m will get canceled x dot plus omega n equal to 0. 

So, this is a very important form of the equation of motion. It is useful for especially 

when we will be dealing with the multi degree of freedom system and when we will be 

trying to find the damping and the natural frequency of the system through experiment. 

So, this equation of motions will be very useful in that case. Now we will obtain the 

similar quadratic equation as we obtained earlier for one assumed solution general form 

of solution to this. 
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From that we will be getting S square plus 2 zeta omega n S plus omega square n S. 

Basically, this equation is in mathematics is called characteristic equation, and in 

vibration we call it as frequency equation. And because this is quadratic we can get the 

roots of these two. We will be getting two roots of this, and this will be of this form; zeta 

is nothing but damping ratio. So, this is the two roots of this characteristic equation. Now 

from here you can see that when zeta is greater than 1, then this quantity becomes 

positive always. 

So, both the roots of these equations are positive. So, will not be having any oscillatory 

terms in the solution because exponential terms are all real; so there is no oscillation. So, 

this is called over damped system as we defined earlier. If this zeta is less than 1, this 

quantity within this square bracket will be negative and we will get an imaginary 

quantity here. And when we will substitute this root in the solution, we will get some 

oscillatory terms. So, that is why it is called under damped system in which we will be 

having some oscillations may be decaying kind of thing. Then another case is zeta is 

equal to 1; in this case this quantity will be 0. 

So, you can see that we will be having; this we already defined, because zeta was C by 

Cc, and the damping itself is Cc. So, that is why it is coming 1. So, that is why it is called 

critical damped system. And there is another case in which zeta is 0, and this is very 



obvious that when zeta is 0, then it is undamped system means that is without damping, 

and there is no damping in the system. 
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Let us again write the roots of these two equations here, because we want to plot these 

roots in a complex plane to have better understanding of these roots. So, let us say we 

have a complex plane in which it is a real axis, and this is the imaginary axis. Now for 

zeta is equal to 0, what we get from this expression when zeta is 0? We get S 1 2 as plus 

minus j. J is nothing but minus of the under root. So, these two quantity both are same, 

because in this case magnitude of S 1 2 is nothing but 1, and this is complex; this a 

imaginary number. 

So, on this plane we can see that this two points which is corresponding to 1 and minus 1 

on imaginary axis, they represent these two points. So, the undamped system is 

represented by these two points. Let us say they are A and B, and when we have that zeta 

between 0 and 1, then we will be having this roots S minus zeta plus minus j 1 minus 

zeta square. And this can be represented by circle. So, at any position on the circle, or 

this represent zeta; that is real part, this is a negative direction, okay. 

And this quantity represent 1 minus zeta square which is a complex quantity, this 

quantity, and basically this represent the equation of a circle, and the magnitude of this is 

again 1, because if you take the magnitude of this two quantity that is one as 1 2 will be 

zeta. This will be zeta square this first term and then plus 1 minus zeta square. So, that 



gives us 1. So, from A to let us say this point is E; from A to E and from B to E is 

representing the under damped system. 

Now if we have the zeta greater than 1, then you will see that here two roots will be 

there. One will be always increasing toward negative direction this direction, and another 

will be going toward the positive direction this direction; at the limit it will become 0. 

So, these are the over damped system over damped case. So, now you can see that how 

we have drawn the roots of this equation in the complex domain and various cases of the 

damping we have illustrated. So, once we have obtained the roots of the characteristic 

equation and we have interpreted them also for various kinds of motions like under 

damped system, over damped system, critical damped system or undamped system. 

Now let us obtain the explicit expressions of this kind of response, and through 

illustration we will show how these response look like. Once we give different kind of 

damping in the system. So, first let us take the under damped system in which the zeta is 

less than 1, so how the response takes the mathematical form. 
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So, in this case the zeta is 1; that is we will be calling as oscillatory motion, and if you 

substitute those two roots in the equation of motion, they can be written in this form. 

Small a is a constant, then this is negative of this, and this particular terms we can able to 

write in the cos and sin terms using a regular relations. And if we do this we can able to 



express this a plus b cos of 1 minus zeta square omega n t, and similarly, j a minus b here 

you can write sin 1 minus zeta square omega n t. 

Now you can see that the response it contains harmonic terms also this term which is 

decaying in nature. So, you can see that it or it is having negative here. So, once the 

motion will start it will try to decay the motion because of this term and which is due to 

the damping in the system. This particular equation we can able to simplify in another 

form. If we write this particular quantity let us say is A, this is including the imaginary 

part is B. If we say A is equal to X sin phi and B is equal to X cos phi, then we have the 

relationship between the X and A and B like this or this phi as tan inverse A by B.  
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Now if you substitute this quantity here and here we can able to write another form of the 

expression that is amplitude and this is the decaying function and sin term with some 

phase; phi is the phase, and x is the amplitude; this is the phase. Here either amplitude or 

phase their arbitrary constant and these we have to obtain through the initial condition as 

we know that the differential equation of the motion is of the second order. So, we need 

to obtain these using the initial condition this or the terms like A or B; they are all 

arbitrary constant. So, these constants how we can able to obtain; let us say we have 

displacement at time t is equal to x naught and velocity at time t is equal to v naught. 
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Then we can apply these boundary conditions in the let us say this particular form of the 

equation. So, will we need to differentiate this once to get the x dot term. 
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So, that x dot terms will be of this form. 
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Velocity term will be minus zeta omega n zeta omega n t, then the rest of the terms as it 

is plus B sin 1 minus zeta square omega n t, and then there will be another term. So, we 

are differentiating with respect to time, and we are getting these expressions 1 minus zeta 

square omega n t 1 minus zeta square omega n; this is within this bracket. And then 

another term is there. It is a big equation omega n t 1 minus zeta square omega n. So, this 

is the velocity term. 
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So, both the initial condition these two initial conditions we need to substitute in first. 
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In this expression which is given as here. 
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And in the velocity equation which is given as here, and we will be having two linear 

equations to solve for A and B, and you can see that A and B will be given as… 
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 X naught and B will be given as v naught plus zeta omega n x naught divided by omega 

n 1 minus zeta square. So, these are the integral constants for a particular initial condition 

of displacement and velocity. 
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And if you see carefully the previous equation especially for that displacement or 

velocity, we can see that there are harmonic terms and in which terms like 1 minus zeta 

square omega n is there. 
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Let us write them in a separately omega n. So, this term we call it as omega d; that is the 

damped natural frequency. So, you can see that when zeta is 0, the damped and 

undamped natural frequencies are same, because this is the undamped natural frequency. 

And here you can able to see the effect of damping on to the damped natural frequency 

when damping is there because this is a square quantity. So, either positive or negative 

value of the zeta, always it will be decreasing the damping, because this term within the 

square bracket will be less than 1. So, this particular case as we are doing for the zeta 0 

to 1, so in this range you can see that always omega d will be less than the omega n. 

So, damped natural frequency is always less than the omega n, but if you will see 

through illustration when damping value. If you put especially in the structural members, 

the zeta value will be around 0.1 for that the effect of the change in the natural frequency 

to the damping will be very less. 
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Now I will be showing how this particular vibration or the signal or the response changes 

with the various kind of damping like here I will be showing through simulation. So, at 

present I am giving zeta value as 0.1 as you can see here, and now I am giving the start 

thing. So, you can see that how the signal is decaying when we give the zeta is equal to 

0.1. Now I am giving another value of the zeta and I am drawing this plot on the same 

graph, so that you can compare how it changes. We can see that when we increase the 

damping, the vibration is getting dampened quiet quickly 

But if you see carefully always both the graphs they are having peak at the same time 

also the minimum, the mean at the same time or the minimum also the same time at 

every place. So, that represent that their frequency is not changing as they are going 

along this, but only the amplitude is getting changed. This will be more clear, if we take 

another set of damping. You can see that this is very fronted graph, but at this point all 

three are meeting at this position; all three are maximum, similarly, as they are going 

along this direction. 

So, this is the example of the under damped system in which we have given the zeta 

value from 0.1 up to 0.3. The 0.3 is quiet high value; from here itself we can able to see 

that how quickly this vibration decays, but most of the structures they have lot of 

oscillations before they get into stationary position. So, we are seeing through animation 

for different damping ratio how the cause gets decay with respect to time. Let us see that 



plot more carefully and in this particular plot, which we cross through animation we have 

shown. 
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This is the displacement; this is the time. Then this is the particular damped vibration 

signal. And this particular displacement is the initial condition which we are giving to the 

particular dynamic system that is spring that mass this much displacement initially we 

are giving it, and we are allowing it to oscillate like this. So, it is decaying gradually and 

this decay if we join these amplitudes. So, this is nothing but the exponential decay 

which is there in our response term at outside the bracket, and because of this only it is 

decaying. 

Within the bracket we had the oscillatory terms, and because of that it is oscillating like 

this. And in this case from here to here this is the damped time period, which is related 

with the damped natural frequency like this. So, time period remains same always as you 

progress here always it will be same, because damped frequency is same, but amplitude 

is decreasing gradually. Now we will consider non-oscillatory motion in which that is 

over damped system and in this particular case we already observed that the two roots of 

the characteristic equation, the one becomes negative, and another becomes positive, but 

both are real. 



One becomes toward the zero; that is I will repeat this one. The two roots both decreases 

and we have both of them as real. And let us see how the expression of the response take 

place in this particular case how they have the exact form. 
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So, for non-oscillatory motion in which we are considering zeta greater than 1, the 

response we will be writing as exponential minus zeta plus 1 minus zeta square, or this 

will be because zeta is greater than 1. So, it is better to write in this form, then the second 

term; for the second root that is negative. So, this is the displacement expression for the 

oscillatory motion. As we did in the previous case, we can get the velocity by 

differentiating this, and this expression will be again lot of terms will be there; just for 

completeness I am writing them here. 

So, this is the differentiation of the first term and this term as it is within bracket omega n 

t. This is coming from the first term, then from the second term we have this quantity. 

And so these are the displacement and velocity. Again we have two initial condition at x 

is equal to 0 x naught and at this velocity at time t is equal to 0 v naught. We will 

substitute in this two equation, and we will solve for A and B which are integral 

constants. 
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And they will take this form that is A naught; A will be nu naught plus zeta square minus 

1 omega n x naught by 2 omega n zeta square minus 1. And similarly B will be minus nu 

v naught that is the initial velocity of the mass square omega n x naught divided by same 

denominator. So, these are the integral constant in the explicit form. In this particular 

case the response will be because we set this non-oscillatory there is no oscillatory term 

because all roots are same. So, we may have the oscillation like this. 

So, it will not cross this particular line below other side; that means if you are giving 

some initial condition here x naught and v naught, it will come to the static equilibrium 

position with respect to after some time, but it will not go other side of the static 

equilibrium position. So, if we have the spring mass system with damper if this is the 

static equilibrium position, if we disturb this to the downward direction, gradually it will 

come to its original position, but it will not go up. So, that is the over damped system.  
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So, through simulation I would like to show how the over damped system response can 

be simulated. So, I am giving zeta 1.1 which is more than 1. So, you can see that how it 

decays quickly. So, this is no oscillation, directly it decays and in previous case now I 

would like to show with under damped system how it was. So, you can see that with over 

damped system how quickly the system undergoes to its static equilibrium position. 

So, today we have seen the damped free vibration analysis. We initially saw that how the 

damping comes into the dynamic system and then how we can able to mathematically 

model them. For the present case, we have taken the viscous damping in which the force 

of the damping is proportional to the velocity. And it gives mathematical expression for 

analyzing the damped vibration that is linear, and they can be solved easily. And we have 

seen that various kind of damping, the various level of damping may give different kind 

of response like we can have under damped system or we can have over damped system 

or critical damped system or even the negative damping is there, the system may go into 

instability zone. 

In the next lecture, we will extend this method especially for finding this damping ratio 

and natural frequency, how we can able to obtain experimentally, and we will be taking 

some examples related to that. Also we will explore other form of the damping which is 

there in the mathematical models of the various kind of damping. 


