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So, in the last 2 lecture, we are studying about this approximate method, to find the 

natural frequency of discrete and distributed mass systems. So, we have already studied 

about this Rayleigh method and matrix iteration method. 
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So, in Rayleigh principle tells in a conservative system the frequency of vibration has a 

stationary value in the neighborhood of the natural mode. So, in case of Rayleigh method 

we determine the Rayleigh quotient. So, which is given by this expression here Z is the 

approximate function we are taking or approximate mode. We are taking in case of 

discrete system, K is the stiffness matrix and M is the mass matrix of the system by 

taking this Rayleigh quotient. So, we can find the omega square or the frequency square 

of the frequency and we can find the frequency. Also we can equate the maximum 

kinetic energy to the maximum potential energy to find the fundamental frequency. 
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And in the matrix iteration method, so this method is particularly useful for discrete 

system. So, let us consider a n degrees of freedom system, the equation motion of the 

system can be written by M x double dot plus K x equal to 0 or by taking the dynamic 

matrix M inverse K. I can write this expression in this way that is AX equal to lambda X. 

where lambda is equal to omega square lambda equal to omega square is the Eigen value 

of the system and X is the mode shapes or Eigen vector of this system. So, from this any 

normal mode, when for this you can observe that any normal mode, so let X is the 

normal mode. 

So, any normal mode when multiplied with this dynamics matrix you can see that it 

repeat itself. So, this is basic principle of this matrix iteration method. So, by taking any 

approximate mode, so when we are multiplying this with this dynamic matrix we will get 

another vector. So, if you, will normalize that thing and check with the previous vector 

or assumed vector. So, if it is not same we can continue that iteration and we can find the 

mode or normal mode. So, after finding the normal mode we can obtain the natural 

frequency of the system or we can obtain the value of lambda. 
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So, to obtain the higher mode, so we should apply the orthogonality principle because in 

case of the free vibration response what we are taking it contains the first mode first 

mode or first modal frequency. So, if you eliminate this first mode then only we can find 

or the assumed solution will lead to the second mode. So, in this case let we take this free 

vibration response or mode shape as X. So, this X can be written as a linear combination 

of other modes. So, it can be written as c 1 X 1 plus C 2 X 2 plus C 3 X 3 and c n X n. 

So, in this way I can write this X equal to this is the assumed mode. So, this assumed 

mode X can be written in this form. X 1 bar X 2 bars X 3 bar for a 3 degrees for freedom 

system. I have written this thing. 

So, this X equal to X 1 bar X 2 bar X 3 bar transpose and this Xi these are normal modes. 

So, these X 1 X 2 X 3 transpose. So, the normal mode this X 1 X 2 X 3 can be written 

for a 3 degrees of freedom system like this and this is assumed mode. So, now applying 

the orthogonality principle, so I can pre-multiply X transpose M in this equation. So, in 

the first equation when pre-multiplying these X transpose M I have X transpose M x 

equal to c 1 into X 1 transpose MX 1 plus c 2 into X 1 transpose M x 2 and plus c 3 into 

X 1 transpose M x 3. And similarly, you can find this is equal to plus c n X 1 transpose 

M x n. So, from the orthogonality principle you know that Xi transpose M x j. So, this is 

equal to 0 when I not equal j. 



 

So, when I not equal to j from orthogonality principle we know that Xi transpose M X j 

equal to 0. So, this c 2, so this X 1 dashed X 1 transpose MX 2 equal to 0. So, this part 

equal to part to 0 and other times all other terms except this X 1 transpose MX 1 equal to 

0. So, this X 1 transpose MX 1 equal to. So, if I am taking this X 1 as a normalized 

vector then it will be equal to 1. So, or it can be written as c 1 X 1 transpose MX 1. So, 

these term will remain and other terms will be 0. So, this X 1 transpose MX will be equal 

to c 1 X 1 transpose MX 1. So, now to eliminate the first mode we should put the c 1 

equal to 0. So, putting c 1 equal to 0 the left hand side of this equation becomes 0. 
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So, the left hand side of this equation that is equal to X 1 dash MX equal to 0. Now, for 

the 3 degrees freedom system I can substitute these in this way. So, X 1 dash equal X 1 

X 2 X 3 and this is mass matrix and this is these assumed mode. So, assumed I have 

taken as X 1 bar X 2 bar X 3 bar. So, by multiplying this thing you can get this equation 

that is M 1 X 1 X 1 bar plus M 2 X 2 X 2 bar plus M 3 X 3 X 3 bar equal to 0. So, in this 

case I can express these X 1 bar in terms of X 2 bar and X 3 bar. So, X 1 bar I have 

written equal to minus M 2 by M 1 X 2 by X 1 into X 2 bar minus M 3 by M 1 into X 3 

by X 1 into X 3 bar, and I can write other 2 expression that is X 2 bar equal to X 2 bar 

identity. So, these are identity equation. So, this is X 3 bar equal to X 3 bar. So, I can 

write these 3 expression in a matrix form. 
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So, that matrix will be equal to X 1 bar X 2 bar X 3 bar equal to. So, 0 minus M 2 by M 

1 X 2 by X 1 minus M 3 by M 1 X 3 by X 1 then 0 1 0 0 0 0. So, you can note that the 

first column of this matrix equal to 0. So, this first column equal to 0. So, as the first 

column equal to 0, if you multiply this matrix or if you take this matrix. So, it will sweep 

out the first mode from the assumed vibration. So, this matrix is known as the sweeping 

matrix S. So, this matrix is known as the sweeping matrix. So, using the sweeping 

matrix, so we can find or we can eliminate the first mode from the resulting vibration. 

Similarly, to eliminate the second mode we can put c 2 equal to 0 and for third mode c 3 

equal to 0. So, when you are eliminating first 2 modes we should put c 1 and c 2 equal to 

0 and applying this orthogonality principle, we can find the sweeping matrix 

corresponding to the second mode third mode or higher modes. So, by eliminating these 

modes from the assumed vibration, then our iteration process will converse to the higher 

modes. 
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So, let us take 1 example to study this thing. So, let this is a beam or this is a rod with 3 

masses and this is vibrating in this transverse direction. So, the vibration is taking place 

in this transverse direction. So, this mass is 3 M and this mass is 2 M and this mass is M. 

So, the you can think of a tall building with mass 3 M concentrated here, 2 M 

concentrated here and M concentrated here these are the mass of the roof and these are 

the stiffness of the walls. So, these stiffness the first part it is 4 k second part I have taken 

it equal to 2 k and the third part it is equal to k. So, due to this wind motion, so it may 

vibrate in this transfer direction. So, we have to study or we have to find the first 3 

natural frequency of the system due to this vibration to find this. So, first we have to find 

the stiffness matrix, mass matrix. 

So, mass matrix is simple and mass matrix you can write in this way. So, the max matrix 

will be equal to. So, this is X 1 I am taking this vibration X 1 this is X 2 and this is X 3. 

So, this is the first mass I am taking this is the second mass and this is the third mass. So, 

in this case, so I can write this 3 M 0 0 0 2 M 0 and 0 0 0 0 0 M. So, this is the mass 

matrix and to find this stiffness matrix, or we can proceed in the other way that is we can 

find the flexibility matrix. And by finding the flexibility matrix also we can find the 

equation motion, and from that equation motion we can proceed. So, to find the 

displacement, so a 1 1 that is influence coefficient let us first find the influence 

coefficient. The influence coefficient a 1 1, that is displacement at 1 due to unit force at 1 

while the forces at other places are 0. 



 

So, as there is no force acting at these 2 places and only force acting at this place is equal 

unity force. So, these part will give resistance to its motion, as this part has a stiffness of 

4 k. So, the displacement will be 1 by 4 k. So, a 1 1 equal to 1 by 4 k, so as there is no 

force acting at this 2 and 3. So, a 1 a 2 1 that is displacement at 2 due to a unit force at 1 

will be same as the displacement of this position. That means, the beam will bend from 

this position and it will be straight at these 2 position. So, the displacement here it will be 

1 by 4 k and also the displacement here will be 1 by 4 k and the displacement here will 

be 1 by 4 k, so this displacement. So, this influence coefficient are written like this a 1 1 

equal to a 2 1 equal to a 3 1 equal to 1 by 4 k. Similarly, let us find. 

So, we can find this a 2 2. So, applying a force at 2 unit force at 2 and no force at 3 and 1 

we can find this influence coefficient a 2 2. So, a 2 2, so while finding a 2 2. So, these 

stiffness and these stiffness will be coming into picture. So, these 2 are in series. So, the 

resulting or equivalent stiffness will be 1 by 4 k plus 1 by 2 k. So, this is 1 by 4 k plus 1 

by 2 k that is equal to 3 by 4 k. So, the displacement will be equal to 3 by 4 k, so a 2 2 

equal to 3 by 4 k. So, when it is displaced to this position let it is coming to this position 

due to the unit force here. So, the upper portion also will have the same motion as there 

is no force acting at 3. So, this a 3 2 also will be same as that of a 2 2 and applying the 

reciprocity theorem also you know a I j equal to a j I that is a displacement at I. Due to a 

unit force at j equal to a displacement at j due to a unit force at I that is the reciprocity 

theorem. 

So, applying that theorem you can write a 2 2 equal to a 2 3 equal to a 3 2 equal to 3 by 4 

k. Similarly, here a 1 1 already you know that this a 1 1 equal to a 2 1 equal to a 3 1. So, 

by applying reciprocity theorem a 2 1 equal to a 1 2 similarly a 3 1 equal to a 1 3, so this 

is equal to 1 by 4 k. Now, to obtain this a 3 3, so we can apply a unit force at 3 and no 

force at 2 1 1. So, when we are applying a unit force here at 3. So, this part this part these 

3 parts will give resistance to its motion. So, these 3 stiffnesses are in series, so the net 

stiffness or net equivalent stiffness will be equal to 1 by 1 by k will be equal to 1 by 4 k 

plus 1 by 2 k plus 1 by 2 k plus 1 by k. So, 1 by k equivalent will be equal to 1 by 4 k 1 

by 2 k plus 1 by k. So, the net or the deflection of this 3 will be equal to 1 by 4 k plus 1 

by 2 k plus 1 by k that is equal to 7 by 4 k, so a 3 3 equal to 7 by 4 k. 
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So, the flexibility matrix I can write it in this form. So, a will be equal to 1 by 4 k 1 1 1 1 

3 3 and 3 3 7 and the mass matrix already I have written. So, that is equal to 3 0 0 0 2 0 

and 0 0 1 into m. So, the hence the displacement at these position now actually at these 

positions this inertia forces are acting. So, the displacement at these position due to this 

actual forces that is here it will be 3 m into omega square with a negative sign, here 2 m 

into omega square and here m into omega square with negative sign So, as inertia force 

act in the opposite direction to the displacement. We have this negative sign in 3 places, 

and the displacement here will be equal to displacement at position 1. 

So, the displacement at position 1 will be equal to a 1 1 into the force at 1 similarly a 1 2 

into the force at 2 and a 1 3 into the force at 3. So, as a I j equal to displacement at I due 

to unit force at j. So, due to these inertia forces at these positions, so you can find the net 

displacement at position 1 equal to a 1 1 into 3 into m x 1 double dot plus a 1 2 into 2 

into m x 2 double dot a 1 3 into m x 3 double dot. So, due to inertia forces it acts 

opposite to the direction of displacement that is why the negative sign is given here. 

Similarly, x 2 will be equal to a 2 1 into the force acting at 1 that is 3 m x double dot and 

a 2 2 into force acting at 2 that is equal to 2 m that this is mass and acceleration is x 2 

double dot and a 2 3 into m into x 3 double dot. 

Similarly, x 3 will be equal to minus a 3 1 4. So, this is equal to 3 3 m x 1 double dot 

plus a 3 2 2 into m x 2 double dot and a 3 3 into m x 2 double dot. So, these are the 



 

inertia forces and multiply it with this mass this is the x 3 double dot or x 1 double dot x 

2 double as acceleration multiplied by the mass of the that location will give the inertia 

force and the inertia force acts in a direction opposite to the direction of displacements. 

So, in this way you can find the displacement x 1 x 2 x 3. 
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So, the displacement x 1 x 2 x 3 after substituting this xi double dot equal to minus 

omega square xi and we can write this x 1 x 2 x 3 equal to m omega square by 4 k 3 2 1 3 

6 3 12 6 7 and x 1 x 2 x 3. So, this is the equation iterative equation, which we will use to 

find the frequency of the system. So, let us take some value of x 1 x 2 x 3 and see what is 

happening or what we are getting. So, I will show you the simulation now. So, let me 

show the simulation by using this matlab. 
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So, I can write this matrix let me take this matrix at c matrix. So, this c matrix equal to I 

can write this. So, this is equal to 3 2 1. So, this is 3 this is 2 and 1 3 2 1 then 3 3 6 3 2 1 

3 6 3 3 then 6 then 3 and 3 6 7 3 6 and 7. 
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So, this matrix you can see will be equal to. So, this is the matrix I have taken that is 3 2 

1 3 6 3 and 3 6 7. Now, in this matrix, so I have to multiply I have to multiply 1 assumed 

mode. So, let me take the assumed mode let us take any arbitrary assumed mode. So, let 

me take it equal to 1 2 3. So, the trial function let me take this trial function t equal to. 



 

So, the trail function I can take equal to. So, this is equal to 1 2 3 I will take. So, this is 1 

2 and 3. So, I will take the transpose of this. So, this is the trail function. 

(Refer Slide Time: 19:52) 

 

So, this trial function equal to 1 2 3. So, I have to multiply these trial function with the 

previous function that is c. So, let me find let I am writing e equal to c multiplied by this. 
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So, I can write e equal to c. 
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So, by multiplying the c into t, so we are getting this vector that is 10 24 and 36. Now, I 

can normalize this vector that is this 10 had 24 and 36. So, I can normalize it by dividing 

this 36 in this, so by to divide this thing by 36. So, let me write this t. So, this thing will 

be my x or the next x for next iteration. So, x will be equal to t by this e or t by 36 let me 

directly write, so t by 36. 
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So, t by 36 gives me. So, this is equal to 0.0278. 
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So, this value you can see. 
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So, this is equal to 10 24 and 36. So, x will be equal to. So, this is the function e. So, by e 

I have to divide this 36 to get this normal mode. 
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So, this will be. So, I can write x equal to e by. So, this is e by 36 not t by 36. 
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So, e by 36 will give me 0.2778, 0.6667 and 1. So, this is the normalized value, I will 

take for next iteration. So, you can note that this value is not equal to the value we have 

assumed that is we have assumed a value equal to. So, we have assumed this value 1 2 3 

and by putting that thing in this equation we are getting a value equal to 0.2778, 0.6667 

and 1. So, now for next iteration I will take this value and multiply this with the c value., 



 

so c. So, next iteration I can write c into. So, I can write let s equal to or e equal to e 

equal to c into c into this x. So, I will multiply this thing. 
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And I am a getting a value this e equal to this and normalize this thing I can use this e by. 

So, I will half this trail function again will be equal to c divided by this 11 that is e 3. So, 

I can write e in bracket 3 also I can write or I can write this is equal to 11.833. 
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So, by dividing this thing I will get the value. So, I have to. So, this is the value of e I 

obtain, so in this e. So, trail value I have to normalize this. So, I have to divide this e by 



 

11 this thing. So, it will be. So, this t will be equal to t will be equal to e by. So, it will be 

equal to e by 11. So, you can see this thing. So, this is equal to 11.8333. So, 8333. 
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So, dividing this thing, so we are normalizing these under normalized value is now 

0.2676 and 0.6620 and 1. 

(Refer Slide Time: 24:21) 

 

So, you have taken a trial function that is equal to. So, the trial function what we have 

taken. So, this is equal to 0.2778, 0.6667 and 1 and you are getting the function equal to 

0.2676, 0.6620 and 1. So, in this way you can take this as the, for next iteration, you can 



 

take this function this mode you can take and you can proceed and finally, you will find 

the value for which both side will be same. So, let me take the final value. So, what I 

obtained. So, t trial function if you take t equal to. So, let me take this trial function equal 

to t equal to 1 2.4895 and then 3.7738. So, taking these as the trial function, so let this is 

taken as the trial function. 

(Refer Slide Time: 25:31) 

 

So, this is the trial function we have taken that is equal to 1 2.4895 and this. So, let me 

multiply this with c. So, let x I am writing x equal to c multiplied by. So, c multiplied by 

this t. 
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So, c multiplied by t will give me this is the value I am getting. So, by normalizing this 

thing, so by normalizing this thing I can write I will get this answer by dividing this x by. 

So, I am normalizing with respect to this first 1 in this case because in the first 1 I have 

put it equal to 1. So, I put this is equal to 11.7528. So, this will give the value 1 2.4895, 

3.7739. So, you just note the trial function taken was 1 2.4895, 3.7738 and you are 

getting the value also same 1 2.4895, 3.7739. So, this, so up to third decimal you are 

getting the value accurately. So, in this way you can do the iteration to get. So, this is the 

first mode. So, in this way you can get this first mode value that is equal to 1 2.4895 and 

3.7739. 
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So, we got the first mode equal to 1 2.4895, 3.7738. So, when I multiply it. So, I can 

write this equal to 1 2.4893, 3.7735 equal to 11.7521 m omega square by 4 k equal to 

same. So, you can note this left hand side and right hand side. So, this is the assumed 

mode we have taken, and this is the mode we obtained that is equal to x 1. So, in both the 

sides you can note that you are getting up to third decimal accurate thing. So, when this 

is equal to this then this part will be equal to 1. So, this is the first mode value and you 

can get this equal to 1. 
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So, 11.7521 m omega square by 4 k. So, we equate to 1. So, in that way you can get the 

first mode frequency that is equal to omega 1 square. So, this is equal to 0.3404 k by m 

or omega 1 you can find root over of this and to find the second mode we can proceed 

we have to find the sweeping matrix. Already we have found the sweeping matrix for the 

first mode. So, we have to make c 1 equal to 0 in this assumed mode. to make c 1 equal 

to 0. So, we have to write the sweeping matrix. 
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So, in this sweeping matrix already we got these x 2 x 1. So, this is the x 1 this is x 2 and 

x 3 for the first mode. So, substituting this x 1 x 2 x 3 for the first mode equal to these,, 

so we can write the sweeping matrix in this form. So, after getting the sweeping matrix, 

so I can substitute it in this expression that is x equal to m omega square by 4 k into this 

matrix into the sweeping matrix into x. So, this is the sweeping matrix and this is this is 

the a matrix that is flexibility matrix into these mass matrix. This matrix is flexibility 

matrix into mass matrix this is the sweeping matrix. So, this equation reduces to this. 
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So, x 1 x 2 x 3 equal to m omega square by 4 k into this matrix into x 1 x 2 x 3. So, you 

can note that in the first column all the terms are 0. So, now any assumed value of x 1 x 2 

x 3 will not go to the first mode and you will get the next higher mode that is the second 

mode. So, let us start with any arbitrary value. So, proceed in the same way as I have 

shown in this iteration before. So, by proceeding in the same way you can find the value 

to be this. So, this will. So, this is the x you can when you are assuming x equal to 

1.8367 minus 1.8996. So, you are getting a value that is equal to 1.8361 minus 1.899 

8988. So, up to the second decimal you can see both are matching. So, you can take this 

value and now. So, this will be equal to 1. 
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So, equating this middle part equal to 1 or the coefficient of this x equal to 1 you can find 

this second mode frequency that is lambda 2 equal to 1.4411 k by m. So, omega 2 will be 

equal to 1.2 root over per k by m. So, in this way you can get the second mode and this is 

the second mode this is the second mode shape. So, x 2 is the modal matrix for the 

second mode and omega 2 is the frequency of the second mode that is 1.2 into root over 

k by m. 
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So, to obtained the third mode. So, we should set the c 1 and c 2 both equal to 0. So, to 

set c 1 equal to 0 already we have derived this expression that is summation mi xi xi bar 

equal to 0. So, for the 3 mode you can write this is equal to m 1 x 1 x 1 bar equal to m 1 

x 1 x 1 bar plus m 2 x 2 x 2 bar plus m 3 x 3 x 3 bar equal to 0. Similarly, for c 2 equal to 

0 I can write m 1 x 2. So, these x, so this is nothing but the x 2 we obtained just now and 

this is the x 1 we obtained before. So, this is the x 1 of the first mode that is modal matrix 

of the first mode this is the modal matrix of the second mode. So, substituting these 

value. So, we can write the c 1 equal to this that is 3 x 1 bar plus 4.979 x 2 bar plus this 

and c 2 equal to this. 
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So, after getting these 2 expression I can write x 1 bar in terms x 3 and x 2 bar also in 

terms of x 3. So, you can write this x 1 bar x 2 bar x 3 bars equal to 0 0 1.5896, 0 0 

minus 1.7157 and 0 0 1 x 1 bar x 2 bar x 3 bar. So, you can note that in this matrix the 

first 2 columns are 0. So, if you multiply this matrix or you take this matrix and insert in 

the original equation. So, the any vibration or any mode you supply that will eliminate 

the first 2 modes. So, this matrix is known as the sweeping matrix for the second mode. 

So, using the sweeping matrix, we can eliminate these first 2 modes now. 
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So, now substituting this in this equation, so this is your a into m matrix and this is the 

sweeping matrix just now we have developed that is S 2. So, I can write m omega square 

by 4 k into these into this S 2 into this. So, in the left hand side you just see this is x 1 x 2 

x 3 equal to m by omega square by 4 k into this matrix into x 1 x 2 x 3. So, in the left 

hand side, so by taking any assumed value x 1 x 2 x 3 we will determine this x 1 x 2 x 3 

the iteration process we will continue till we are not getting the same value in the left 

hand side and right hand side for x 1 x 2 x 3. So, but for this case immediately you can 

see that this third column third column will be the x 3. 
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So, if you substitute this third column in this expression you can check and normalize 

that thing. You can find that the value x 3 equal to 1.5896 minus 1.7157 and 1. So, 

substituting this x 3 value you can find this 1.4746 m omega square by 4 k. So, this part 

is not there. So, this is equal to 1. So, 1.47, so you can get 1.4 1.4746 m omega square by 

4 k equal to 1. 
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So, from this you can get this omega square. So, that correspond to the third mode 

frequency. So, in this way you can obtain the third mode frequency of the system. So, by 

using this matrix iteration method in this way you can determine the mode shapes of 

different modes, and the Eigen values or the frequency of the system. 
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So, let us now. So, same thing you can verify by writing the equation motion. The 

equation motion can be written this is the mass matrix, and inverse of the flexibility 

matrix will give the stiffness matrix and this is equal to 0. So, now you can find the 

dynamic matrix that is m inverse k. So, this is the dynamic matrix by using the Eigen 

value of this you can find the values are coming to be this. So, you can check that these 

values and the values you obtained are same. 
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So, let us now see some other methods that is 1 methods is Dunkerley method. In 

Dunkerley method you can find the natural frequency of a system when several masses 

are acting on the system. So, let this is the, this is a simply supported beam. So, on this 

beam let n number of loads are acting. So, these are the n number of loads acting on this 

beam. So, due to this let this is the static deflection. So, we can find let this is equal to y 

1 this y 2 and similarly this is equal to y n. So, let these are the deflection due to the load 

acting at these positions. So, Dunkerley method give an approximate method or give an 

approximation to find the fundamental frequency of the system. 

So, in this case the frequency of the system that is equal to omega n you can find by 

finding the natural frequency due to each load. So, first we have to find the natural 

frequency due to each load and after getting the natural frequency from each for each 

case, we can use this formula to find the natural frequency of the whole system. So, here 

1 by omega n square, so omega n is the natural frequency of the system. So, omega n is 

the natural omega n is the frequency of the system when only this load is acting on the 

system. Similarly, omega n 2 is the frequency when only this frequency or only this load 

is acting on the system. 

Similarly, omega n 5 will be when this fifth load is acting only if you find the frequency 

of the system, then that will be omega n and omega S the last 1 is the omega S. So, 

omega S is the natural frequency of the system when no load is acting on the system, but 

the mass of the system is considered that is a uniformly distributed load of this beam is 

considered. So, the total, so 1 by omega n square equal to 1 by omega n a square plus 1 

by omega n 1 square plus 1 omega n 2 square. And similarly, you can add till the last 

mass is considered, so by taking all the frequencies. So, you can use this formula to find 

the natural frequency of the, of a complex system. 
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So, let us take 1 example. So, let this is a simply supported beam. So, in this simply 

supported beam we have taken 3 masses. So, this middle mass we have taken equal to 2 

m and this side mass equal to m 1 and this mass equal to m. So, this is m 1. So, we have 

taken this and first mass and last mass same and the second mass we have taken equal to 

twice of the first mass. So, in this case we have to find the natural frequency of the 

system we have not considered the mass of the beam, so without considering the mass of 

the beam. So, we here we can find the natural frequency or the frequency due to this 

mass frequency due to this mass and frequency due to this mass individually. 

And then we can use this formula 1 by omega m square equal to 1 omega 1 square plus 1 

by omega 2 square and plus 1 by omega 3 square and we can find the natural frequency. 

So, to find that thing let us first find the flexibility influence coefficient that is the 

displacement at these points. After getting these displacement, we can find the natural 

frequency as omega n will be equal to root over g by delta. So, first we can find these 

displacement due to these mass at this position. So, a 1 1 is the displacement at 1 due to a 

unit force at 1. So, when unit force is applied at these position. So, we can find the 

displacement will be equal to 3 l cube by 2 56 EI. Similarly, we can find when only this 

mass is present. So, if you put a unit a unit force here the displacement will be l cube by 

48 EI. So, you know for a simply supported beam at the. 



 

So, when it is loaded at the middle the displacement equal to w l cube by 3 I. So, now by 

putting this weight equal to. So, at the middle when it is loaded at the middle the 

displacement equal to w it w l cube by 48 EI. So, now by putting w equal to 1. So, you 

are getting this is equal to l cube by forty-eight EI. Similarly, a 3 1 you can find. So, a 1 

1 a 2 2 a 3 3 that is displacement at 1 due to unit displacement at 1 due to unit force at 1 

displacement at 2 due to unit force at 2 and displacement at 3 due to unit force at 3. So, 

in this way you can obtain. 
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So, after obtaining this thing, so you can write 1 by omega 1 square will be equal to. So, 

root over g by delta omega. So, 1 by omega 1 square will be equal to 3 ml cube by 256 

EI. So, you can divide these things, so g by this. So, you can find the terms like this. So, 

2 ml cube by this and this is equal to 1 by omega square equal to 2 ml cube by 48 EI and 

1 by omega 3 square equal to 3 w l cube by 256 EI. So, this is equal to g by. So, we have 

put only these. So, in this case we have just divided by g as this weight 1 Newton was 

taken. So, this is equal to mass of 1 into g. 

So, this will be mg for a load of m. So, the displacement will be equal to a load of w the 

displacement will be equal to w into l cube by 256 EI. So, by dividing this by g as this 

omega n equal to or omega n square equal to g by delta you can find. So, this will give g 

by delta. So, delta equal to here 3 w l cube by 256 EI. So, g by delta will give w equal to 

mg. So, substituting w equal to mg you can find this expression. So, now 1 by E omega n 



 

square will be equal to, so by adding this 1 by omega square. So, adding this term and 

this and this. So, you can find this 1 by omega n square equal to this. 
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And then omega n equal to 3.9191 root over EI by ml cube. So, in this way you can find 

the frequency of the system by using Dunkerley method. So, in Dunkerley method you 

are getting this omega n square equal to 15.36 EI by ml cube and in the exact method 

you can find the, it equal to 16.199 EI by this. 
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So, using this Rayleigh method, so already you studied this Rayleigh method. So, in this 

Rayleigh if you apply this system to this Rayleigh method we can find all the influence 

coefficients. So, a 1 1 a 1 2 a 1 3 a 3 3 a 2 2 and a 2 2 you can find and applying this 

reciprocity theorem we can find the other influence coefficients. 

(Refer Slide Time: 43:09) 

 

So, by the using this influence coefficient displacement at this 3 position we can find 

displacement at 1 equal to force at 1 into a 1 1 displacement at 2 into a 1 2 force at 2 into 

a 1 2. And force at 3 into a 1 3 in this way we can find displacement at 1 and 2 and 3. 
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And these displacements can be written equal to x 1 will be equal to 38 ml cube by g 768 

EI x 2 similarly equal to 54 ml cube 768 EI and x 3 equal to 38 ml cube by ml cube g by 

this. So, by using this Rayleigh methods, so in case of Rayleigh method this omega n 

square equal to g into summation mi Xi by summation mi Xi square. So, this part upper 

part is the potential energy and lower part is the kinetic energy. So, this division gives 

omega n square equal to this. So, by using Rayleigh method you are getting this value 

equal to this 15 16.2055. So, slightly higher than the exact value, exact value equal to 

16.199 and here you are getting a value equal to 16.2055 and in case of Dunkerly method 

you are getting a value 15.36. So, Dunkerly method gives a lower approximation than the 

exact value and the Rayleigh method gives a value which is slightly higher than the exact 

value. 
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Now, let us see the Rayleigh-Ritz method, so in case of Rayleigh-Ritz method. So, this is 

an extension of the Rayleigh method. So, in Rayleigh method we are taking 1 

approximate function. So, in Rayleigh-Ritz method we will take several approximate 

method and superpose these approximate functions. So, let us take this approximation 

approximate function as w x. So, w x will be equal to c 1 w 1 x plus c 2 w 2 x plus c n w 

n x. So, where w 1 w 2 w n are the assumed function we have taken. So, the resulting 

function w equal to c 1 w 1 plus c 2 w 2 plus c 3 w 3 then we can find the Rayleigh 

quotient. And as you know the Rayleigh quotient has a stationary value near the normal 

modes. So, we can differentiate these Rayleigh quotient with respect to these coefficient 



 

c 1 c 2 and c n to get a set of equations algebraic equations and by solving these 

equations, we can find the frequencies of the system. 
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So, let us take 1 example, so with this help of this example. I will explain you how to 

find the frequency of this system. So, here we have taken I have taken 3 function. So, 2 

functions let I have taken. So, w 1 x, so this is a. So, I have to find the frequency of this 

tapered beam. So, in this tapered beam this is a tapered cantilever beam. So, the left end 

is fixed left end has a height of h and right end this is 0 and the length is l and let me take 

this width b equal to 1. So, when I am taking this width b equal to 1. So, I will have these 

area Ax equal to h x by l, so at any section. So, the area will be equal to. So, this height 

will be equal to. So, as for this total height this is l and this is h. So, at any section the 

height will be h by l into x. So, the area will be h by l into x into 1. So, that is equal to h 

x by l. Similarly, this ix that is the moment of inertia will be equal to 1 by 12 h x by l 

cube. So, taking this area and this moment of inertia and taking these 2 function. So, I 

have to find the natural frequency or fundamental frequency or the frequencies of these 

tapered beam. So, first let me take only 1 function and apply the Rayleigh method. 
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So, by taking this first only 1 function and applying this Rayleigh function that is 

Rayleigh method is. So, this is the potential energy and this is the kinetic energy of the 

system. So, by divided these potential energy by this kinetic energy. So, you are getting 

this is equal to 2.5 Eh square by rho one-fourth or this omega 1 equal to 1.5811 into Eh 

square by rho one-fourth to the power half you can note that the exact value equal to 

1.5343. So, you just see that the Rayleigh method gives 3 percent higher value than this 

exact value. 
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Now, to apply this Rayleigh-Ritz method we will take that is 2 function that is w 1 and w 

2 and we can find this Rayleigh quotient. So, in this case the approximate function I am 

taking it equal to c 1 into w 1 plus c 2 into w 2. So, by taking this approximate function 

like this, so I can find this Rayleigh quotient R equal to omega square equal to 

integration this is the potential energy term EI del d square w by d x square whole square 

d x and integration rho a. So, this is mass into w x whole square d x. So, this is this term 

is coming from the kinetic energy and this term is coming from the strain energy. So, the 

Rayleigh quotient I can write in this way. 

So, the upper part let me write equal to x and lower part equal to y. So, if I will substitute 

these function and, I will find this x equal to Eh cube by 3 l square into c 1 square by 4 

plus c 2 square by ten plus c 1 c 2 by 5 and this y equal to rho a rho hl into c 1 square by 

thirty plus c 2 square by E plus 2 c 1 c 2 by 1 0 5. So, in this way I can obtain this x and 

y. So, you just note that this x and y are function of c 1 and c 2 which are not known to 

us till now. So, now as you know this Rayleigh quotient has a stationary value near the 

normal modes. So, I can differentiate these R with respect to c 1 and c 2 and get the get 

some expressions. 
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So, by differentiating with respect to c 1 I can write the equal to. So, as I have written 

these equal to x by y. So, this can be written as y into del x by del c 1 minus x into del y 

by del c 1 by y square. So, I have to set it equal to 0. Similarly, as it is stationary at that 



 

point. So, this is this value differentiation equal to 0 similarly del y del R by del c 2. So, 

this is del R by del c 2. So, this is del R by del c 1. So, this is equal to y into del x by del 

c 2 minus x into del y by del c 2 by y square I have to set it equal to 0. 
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By setting these equal to 0. So, I have this expression. So, I can write this. So, the first 1 

yield, so by if you do this first 1. So, you you are getting this half minus 1 by 15 lambda. 

So, where lambda equal to 3 omega square rho one-forth by Eh square, so 1 half minus 1 

by 15 lambda c 1 plus 1 by 5 minus 2 by 1 0 5 lambda into c 2 equal to 0. So, this is the 

first expression and the second expression comes to be 1 by 5 minus 2 by 1 0 5 lambda 

into c 1 plus 1 by 5 minus 1 by 40 lambda c 2 equal to 0. So, in this way you can find 

this and now as c 1 c 2 are not equal to 0 both c 1 and c 2 are not equal to 0. So, you can 

find this determinant and make it equal to 0 to find this value of lambda. 
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So, this lambda is a function of omega square. So, you can find. So, this expression you 

are getting. So, 1 by 8820 lambda square minus 13 by 1400 lambda plus 3 by 50 equal to 

0. So, by solving this equation you can get the value true value of lambda as this is a 

quadratic equation. So, by solving this, so you are getting this omega 1 equal to 1.5367 

Eh square by rho one-fourth to the power half, and omega 2 equal to 1omega 2 equal to 

4.5936 Eh square by rho one-fourth. So, in this case you just check that this value is 

closer to the exact value. So, by taking these 2 modes instead of the 1 as in case of 

Rayleigh method you are getting 2 modes or you are getting true frequency and also you 

are getting a closer approximation to the exact value. 
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In case of Galerkin method, we can take a similar shape functions or mode shape and in 

this case we have to find the residue and by equating this residue to 0 we can find the 

frequencies of the system. So, to find the residue we can take the governing equation of 

the system led for the transfer vibration of the beam. So, you know the governing 

equation is the Euler-Bernoulli equation. So, in that Euler-Bernoulli equation if I will I 

will write this W equal to. 
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So, this Euler-Bernoulli equation you know it can be written in this form that is del 

fourth w by del x fourth into EI plus. So, this is m del square w by del x square sorry. So, 

this is del t square. So, del square w by del t square m plus EI del fourth w by del x 

fourth equal to 0. So, this is the expression for the Euler-Bernoulli beam, so in this the 

expression for the Euler-Bernoulli beam. So, if you substitute this w equal to phi x and 

qt. So, you can find the expression in terms of only x. So, that expression you can take as 

the governing equation for this Galerkin method. 

So, this is the differential equation you can take which will satisfy the boundary 

conditions all boundary conditions to get the Eigen function of the system. So, in this 

case this Lx, I am writing this as the function. So, this Lx equal to del 4 phi x by del x 4 

minus m omega square by EI phi x equal to 0. So, this phi when it is Eigen function of 

the system that is when it satisfy both the boundary conditions and the governing 

equation governing differential equation. So, that function is known as the Eigen 

function. So, when you are substituting this Eigen function the right hand side will be 

equal to 0, but instead of taking this Eigen function if you take some other function then 

it may not be equal to 0. 
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There are 2 other different types of functions available. So, 1 function is the Eigen 

function. So, this Eigen function. So, Eigen function satisfy both differential equation 

and all boundary conditions. So, you know all boundary condition include. So, you have 



 

2 different types of boundary condition, 1 is natural boundary condition and other is the 

geometric boundary condition. So, in case of geometric boundary condition it satisfies 

the satisfy the deflection and slope boundary conditions and in case of natural boundary 

condition or the force boundary condition, it satisfies the force boundary condition of the 

system. So, when the function what you are taking satisfy both geometric and natural 

boundary condition of the system that is all the boundary conditions of the system and 

also the differential equation. So, that function is known as the Eigen function. 

Now, you can take another set of function which will not satisfy the differential equation, 

but it will satisfy all the boundary conditions. So, that function you can tell as 

comparable function. So, comparable function, so this comparable function does not 

satisfy the differential equation or governing equation of the system, but it satisfy all the 

boundary conditions of the system. So, it satisfy both geometric and natural boundary 

conditions of the system. And the third set of function, which you can take, which satisfy 

only the geometric boundary condition of the system. Because getting a function which 

will satisfy the geometric and natural boundary condition or force boundary condition is 

very difficult. But you can always get a function which will satisfy the geometric 

boundary condition of the system. 

So, the function which satisfy only geometric boundary condition of the system is known 

as the admissible function, so admissible function. So, in case of Galerkin method you 

can take this admissible function or in case of Rayleigh’s method also you can take this 

admissible functions. So, by taking these admissible function now you can substitute in 

the expression and if you substitute it in this expression than the right hand side will not 

be equal to 0, so as it not equal to 0. So, there will be some residue in that expression. So, 

the residue over whole of the domain can be found by integrating that thing. So, residue 

due to the first function can be written as Lx phi x d x integration 0 2 L. 
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Similarly, for case of the torsional vibration of rod, longitudinal vibration rod and lateral 

vibration of taut string you know the governing equation is the wave equation and from 

that equation. You can write this Lx equal to del square phi x by del x square plus omega 

by c square psi x equal to 0. So, the residue in the I th mode you can find by integrating 

this Lx into psi x d x. So, in this way by applying this approximate method you can find 

the frequencies for discrete and distributed mass systems. 


