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Last class we have studied about the continuous system, where we have derived the 

equation motion of string, and longitudinal vibration of rod, and torsional vibration of 

rod. And we have found that those equations can be written in the form of wave 

equations unlike, the distributed mass system here in continuous system. So, the equation 

motions can be written in terms of partial differential equation. In case of discrete 

systems the equations are written in terms of ordinary differential equation. Also in case 

of discrete or lumped mass system. It does not depend on the boundary conditions, but 

we have seen in case of continuous or discrete mass systems, it depends on the boundary 

conditions. So, I told you there are 2 different types of boundary conditions. 
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So, geometric type boundary conditions and second one is the natural boundary 

condition. So, this geometric boundary conditions are also known as the essential or 

imposed boundary conditions, geometric or essential or imposed boundary condition. 



And this natural boundary conditions are also known as dynamic or additional boundary 

conditions. This natural boundary conditions are known as additional or dynamic 

boundary conditions. So, in case of geometric boundary condition or essential, or 

imposed boundary conditions, the boundary conditions are of the type displacement or 

slope. And in case of natural boundary condition or additional and dynamic boundary 

conditions the dynamic the boundary conditions we are consider are force or moment in 

nature. So, in case of a string or in case of a rod fixed. 
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At one end, and fixed at one end, can be the boundary condition can be. So, if the fixing 

end the boundary condition will be the geometric type where it is the displacement equal 

to 0 and slope equal to 0. So, if the boundary condition is free type. So, let this side is 

free, so when it is free in case of the longitudinal vibration of a rod or if you consider the 

transverse vibration of a rod, transverse vibration of a beam which we are going to study 

now. So, in that case the boundary conditions will be shear force and bending moment 

will be 0 at this free end. So, at this free end the boundary condition is of natural 

boundary condition or additional boundary condition or dynamic boundary condition. 

So, in this case of a cantilever beam in transverse vibration the left side the left side 

boundary condition. It will be slope equal to 0 and displacement equal to 0. So, this is 

geometric boundary condition and in the right side this is natural boundary condition. So, 

this is natural boundary conditions and here, it is geometric boundary condition. In some 



cases you can find both the boundary conditions are also present for example, in case of 

simply supported beam. 
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In case of simply supported beam, the boundary conditions are the displacement will be 

0 and the bending moment also will be 0 as displacement equal to 0. So, it gives rise to 

this geometric boundary condition and when the bending moment equal to 0 that is the 

natural boundary condition. So, in this case you have a mixed boundary condition. So, in 

this case you have mixed boundary conditions in case of. So, this is the case of a simply 

supported beam. So, you have mixed boundary conditions, and in case of this fixed-fixed 

beam you have seen the boundary conditions are force. So, boundary conditions are 

geometric in nature. So, in this case both the side the boundary conditions are. So, this 

left side the displacement and slope is 0 slopes are 0 and here displacement and slopes 

are also 0. In case of free-free. 

So, let you take a free-free beam or rod. So, free-free beam of rod. So, the physical 

application is the space craft or a ship sailing on the sea that time. So, it can be 

considered as a free-free beam or free free rod. So, in that case the boundary conditions 

are in case of a fixed free-free beam the boundary conditions are shear force and bending 

moment will be 0 at both the ends. So, this is natural boundary conditions. So, in both 

the, so in this case you have a natural boundary condition, in this case you have a purely 

geometric boundary condition, and in this case you have both geometric and natural 



boundary conditions. So, this is a mixed boundary conditions. So, already we have 

derived the equation of motion for transverse vibration of a string, longitudinal vibration 

of rod and torsional vibration of rod. So, in these cases we have found the equation 

motion to be of the form. That is known as wave equation. So, in that case we have 

written the equation in this form. So, we have written. 
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Del square u by del t square equal to C square del square u by del x square. So, where u 

is the displacement in displacement or in case of torsional vibration it is the rotation and 

this t is the time and C depends on the systems what you are considering in case of a 

string? So, it is equal to T by rho or T by m, where m is mass per unit length T is the 

tension. So, this is a string. So, in case of a string subjected to constant tension in both 

the sides we have derived that the equation of motion is in this form and we have seen 

this T equal C square equal to T by m or C equal to root over T by m, and in case of 

longitudinal vibration of a beam or rod. So, this is the beam subjected to longitudinal 

vibration. So, in this case we have seen the C equal to root over E by. So, this is equal to 

E by rho and in case of. 
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So, this is a rod subjected to torsion. So, it is subjected to torsion T. So, we have seen 

that in this case C square or C will be equal to this rigidity modulus by J, J is the polar 

moment of inertia and G is the rigidity modulus. Today, we will derive some of these 

equations and also the equation for Euler-Bernoulli beam by using Hamilton principle. 

So, using the Hamilton principle or extended Hamilton principle, we can derive the 

equation motion. So, extended Hamilton principle, so this principle tells that the 

expression for this principle can be written in this form. 

So, t 1 to t 2 del of del L plus del W n c d t equal to 0. And delta r i at t 1 equal to delta r i 

at t 2 equal to 0. So, in this expression L is the Lagrangian of the system. Where 

Lagrangian can be can be written as T minus u T is the kinetic energy of the system. U is 

the potential energy of the system delta W n c this W n c delta W n c is the virtual work 

down by the non conservative forces and t is the time and delta r i are the physical 

coordinate of the system. Or I can write in terms of the generalized coordinate delta q i 

delta q i at t 1 equal to delta q i at t 2 equal to 0. So, this delta q is the variation in this 

parameter variation in the generalized coordinate at time t 1 and t 2. 
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So, if we consider a system let it is moving from 1 position to other position. So, if i 

consider this as the inertia frame. So, let it is moving from this position to this position. 

So, I can write this as r i. So, if this is the true path I can take some other path, which are 

the varied path. So, there may be n number of path between this point to this point let 

point A to point B. So, there may be infinity number of paths from point A to B, so if A 

to B. So, this path the paths 1, if this path is the actual path other paths can be considered 

as the virtual or varied path. So, this delta r i this thing can be written as a r i is the 

virtual displacement as we are considering this is the varied path. So, this delta r i is the 

virtual displacement at any time t. 

So, we can assume those paths for which at time t 1 and t 2 this varied path equal to this 

actual path. We can consider those paths in this Hamilton principle or extended Hamilton 

principle. That means at t 1 delta r i equal to 0 and at t 2 also delta r i equal to 0 or here ri 

is the physical coordinate. Similarly, if one take the generalized coordinate q i we can 

write this delta q i at t 1 equal to delta q i at t 2 equal to 0. That means there is no 

variation at time t 1 and t 2 and that variation equal to 0. So, by using this Hamilton 

principle or extended Hamilton principle we can derive the equation motion generally 

this Hamilton principle is used for the conservative system.  
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So, in that case this delta W n c equal to 0 and the Hamilton principle will be integral t 1 

to t 2 integral T 1 to t 2 delta L d t equal to 0, where delta q k t 1 equal to delta q k 2 

equal to 0. In case of non conservative force applied to the system we have to use this 

extended Hamilton principle. So, here L is the Lagrangian that is equal to T minus U. So, 

if you know the kinetic energy and potential energy of the system which are scalar 

parameters we can derive the equation motion. The drawback of Newton’s method is that 

it is a vectorial approach method. So, when the number of systems goes on increasing 

that time application of this Newton’s law will be very difficult. So, we know when we 

are using Newton’s second law or D’Alembert principle we have to draw the free body 

diagram for each particle. So, when the number of particle goes on increasing. So, 

developing this free body diagram and finding the equation motion is very difficult. 

That is why one can use this Lagrange principle or Hamilton principle for multi degree 

of freedom system and continuous systems. So, as you can see that this for continuous 

system. The equations involve this kinetic energy and potential energy equation involve 

integral and differential terms. So, application of Lagrange equation will be slightly 

difficult. So, once we would go for this Hamilton principle to derive the equation motion. 

So, only for simple cases one may find the equation motion by using this Newton’s 

approach. Newton second law, but for complicated cases 1 can go for this Hamilton 

principle or extended Hamilton principle to find the equation motion. That is why in 



today class the application of Hamilton principle initially for the simpler cases will be 

discussed and later it will be extended to some complicated systems.  
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So, let us find or use this Hamilton principle to derive the equation motion for 

Longitudinal vibration of the rod, already we have found this longitudinal vibration by 

using Newton’s law now let us find it by using this Hamilton principle. So, in this case., 

so the vibration takes place along the longitudinal direction that is along the length of the 

beam. So, I can write first the let me take a small element at a distance x. So, from the 

fixed end let me take at a distance x a small element of length d x. So, if m is the mass 

per unit length of this rod then I can write the mass of this element equal to m dx. So, m 

is the mass per unit length mass per unit length. So, mass of this small element equal to 

mdx, so the kinetic energy of that small element can written as half into mass of the that 

small element into velocity square of that small element. Let u is the displacement of that 

element at the section x. So, the velocity will be u dot. So, the kinetic energy will be half 

mass into. So, it will be half mass that is equal to m d x into u dot square. Now, we have 

to derive. 

So, this is the kinetic energy for that small element. So, the kinetic energy for the total 

beam will be integration of this from 0 to l for the total length of the beam. Let l is the 

length of that beam, so total kinetic energy equal to half integration 0 to l m u dot square 

d x, so where u dot is the velocity at this section which is at a distance x from the fixed 



end. So, now to derive the potential energy, so potential energy is the strain energy 

stored in this rod. So, the strain energy is can be found from this expression strain energy 

equal to half. So, it is equal to half stress into strain stress let sigma is the stress and 

epsilon is the strain. So, half stress into strain into dv, so half stress into strain into dv dv 

is the volume or elemental volume of the small element what we have taken. So, in this 

case I can write the sigma or stress by strain equal to Young’s modulus E. So, this 

epsilon can be replaced. 
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Already we know the epsilon epsilon equal to if U is the displacement then epsilon the 

strain will be equal to del u by del x. So, epsilon equal to del u by del x. So, this potential 

energy U can be written as half integration sigma into epsilon into dv equal to half. So, 

for epsilon I can write this is equal to del u by del x and sigma sigma is the stress. So, at 

stress by strain equal to E, so one can write the stress equal to E into epsilon, so as one 

can write it is equal to E into epsilon. So, this becomes E into for epsilon I can put this is 

equal to del u by del x again and this dv. So, dv can be written as A into dx. So, A is the 

area of cross section and dx the small element what we have taken. So, the potential 

energy can be written as half E into A then del u by del x whole square into dx. 

So, we have found the kinetic energy of this small element initially that is equal to m into 

dx into u dot square. And the total kinetic energy of the system becomes half 0 to l m u 

dot square dx. And now, we have got the potential energy equal to half EA del u by del x 



square dx. So, the Lagrangian of the system will be equal to L equal to T minus U. So, 

this will be written as half. So, this is integral 0 to l. So, half 0 to l m del u. So, u dot 

equal to del u by del t del u by del t square into dx. So, this is equal to m u dot square 

that is del u by del t square into dx, you may note that U is a function of both space that 

is x and t that is why one can use this partial derivative in this case. So, this L equal to T 

minus U that is equal to half 0 to l m del u by del t square into dx as we are assuming 

only the free vibration in this case or we are considering the free vibration. So, we are 

not considering the force. So, the work done by the non conservative force equal to 0.  

(Refer Slide Time: 20:14) 

 

So, the Hamilton principle becomes del of t 1 to t 2 t 1 to t 2 del L dt equal to 0. So, in 

this case I can write this is t 1 to t 2 del of, so 0 to l. So, I can write this 0 to l half I will 

take common. So, this becomes m u dot or del u by del t square dx minus 0 to l. So, for 

this potential energy i can write. So, this l becomes T minus U. So, this is the term for T 

and for U 1 can write this is equal to 0 to l EA del u by del x whole square dx. So, this 

term I will write there. So, minus half, so this becomes minus half EA del u by del x 

whole square dx. So, this is the total term and this would be equal to 0. So, let us take, so 

it contains this expression contain 2 terms. 

So, let us take this as the first term and this as the second term and do this integration by 

parts. So, by taking this first integral, so the first integral, so the first term I can write this 

equal to integration t 1 to t 2 del of. So, half I can take it out. So, del of 0 to l m del u by 



del t whole square dx. So, outside dt is there. So, dt will be. So, this is the first term. So, I 

can take this del operator inside. So, before taking this del operator inside. I can 

interchange between this this integral and this integral term. So, I can write this equal to 

half 0 to l del of or I will take this inside this del. So, t 1 to t 2 t 1 to t 2 m, so this by 

applying this del operator I can write this equal to 2 into del u by del t into del of del u by 

del t dt and dx.  
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So, this becomes this is equal to half Integral 0 to l t 1 to t 2. So, t 1 to t 2, so this 2 2 

cancel. So, m into del u by del t m into del u by del t into. So, this del, so I can 

interchange between this del and del by del t operator. So, that time I can write this equal 

to. So, I will write it del by del t into del u into del u dt dx dt into dx. So, now I can 

integrate this by part. So, I can take this as the first function and this as the second 

function. So, by taking this as the first function, so I can that write this expression as 

integration 0 to l. So, this integration I can write as m. So, the first function remain as it 

is then integration of the second. So, the second term is del by del t of del u. 

So, integration of del by del t of del u dt is nothing, but this del u because it is integration 

of del of del u. So, that is equal to del u. So, I can write m del u by del t into this. So, this 

is from t 1 to t 2 then minus integration put the bracket here, so minus t 1 to t 2 m. So, 

derivative of this or differentiation of this into this term, so it becomes m del square u by 

del t square into del u into dt and whole into dx. So, this term becomes m del u by del t 



del u t one to t 2 minus t 1 to t 2 m del square u by del t square del u dt dx and already I 

told you that del q or generalized generalized coordinate variation of the generalized 

coordinate at t 1 and t 2 equal to 0. So, in this case del u at t 1 and t 2. So, this becomes 

0. So, del u at t 2 it will become 0 and del u at t one becomes 0. So, this first term, so 

these becomes 0. So, now, this first term equal to… 
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So, the first term I can write equal to minus. So, this is minus integration 0 to l. So, this 

half term was not there. So, already this half and half canceled. So, the half term was not 

there here. So, this becomes minus integral 0 to l then t 1 to t 2 m del square u by del t 

square into del u dt and dx. So, I can interchange now and I can write it this way t 1 to t 2 

minus 0 to l m del square u by del t square into del u dx dt. So, this is the obtained after 

the integration by parts of the first term. So, now taking this second term the second term 

is this is the first term I have taken and this is the second term and the second term you 

just note that there is a negative sign. So, I can write this second term as minus. So, l will 

take the second term. 
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And write this as minus integral t 1 to t 2 half. So, this is 0 to l EA del square. So, this is 

del u by del x del u by del x whole square. So, I have to operate this del operator here on 

this. So, into dx dt. So, this is the second term. So, now, applying this del operator I can 

write this as this is half t 1 to t 2 0 to l EA. So, this term can be written as 2 del u by del x 

into this del operator on this del u by del x into. So, this is dx and finally, it is dt. So, this 

thing can be written as minus half. So, this term, so this 2 2 cancel. So, this half term is 

not there. So, minus integration t 1 to t 2 0 to l EA del u by del x into like the previous 

case here also we can interchange between this operator and this operator. So, I can write 

this as del by del x of del u dx dt. 

Like the previous case here also I can apply the integration by parts. So, taking this as the 

first function and this as the second function I can write this equal to minus t 1 to 2 0 t 1 

to t 2 into EA del u by del x first function remain as it is. So, it is from t 1 to t 2 it is from 

0 to l this integration is taking place from 0 to l. So, it is from 0 to l minus, so minus 

minus plus, so plus integration 0 to l 0 to l EA. So, differentiation of this, so the 

differentiation of this becomes del by del x of del u by del x. So, if I am assuming this 

EA to be constant then I can write this as EA del square u by del x square. And 

integration of this equal to already proceeding in the previous way we have seen that del 

u by del by del x of del u integration of this term equal to equal to del u. So, I can write it 

again. 
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So, I have to integrate it by parts. So, this is the first function and this is the second 

function. So, while I am doing integration by parts. So, this is the first function remain as 

it is then integration of the second. So, the integration of the second as previously you 

have seen. So, this integration is nothing but del u. So, this is from 0 to l then minus 

integration 0 to l. Differentiation of the first function that is EA del square u by del x 

square if you are assuming EA to be constant then it will be this otherwise it will be del 

by del x of EA del del u by del x into del u into dx into dt.  
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So, this term can be written as minus integration t 1 to t 2. So, t 1 to t 2 EA EA del u by 

del x into into this. So, with boundary condition 0 to l then minus minus plus I can put. 

So, this is equal to t 1 to t 2 0 to l EA del square u by del x square del u dx dt. So, now, I 

have got this equation 4 and this is the for the third part second part and equation 3 for 

the first part. So, applying this Hamilton principle, so I can add this part 3 and 4 adding. 

So, adding part 3 and 4 I can write, so t 1 to t 2 0 to l t 1 to t 2 0 to l minus. So, in this 

case you can see this term equal to minus m del square u by del t square. So, I can write 

this as minus m del square u by del t square plus EA del square u by del x square into del 

u dx dt minus t 1 to t 2 EA del u by del x into 0 to l equal to 0. 

So, applying Hamilton principle we have found the expression or the equation to be 

reducing to this form. So, in this equation you can note that the first part. So, as this plus 

this part first part plus the second part becomes equal to 0. So, individually they will be 

equal to 0. So, this part you can note it this is the boundary condition it gives the 

boundary condition and if you note this part the first part. So, as del u is arbitrary. So, 

this is arbitrary it can take any value as this is the virtual displacement it can take any 

value. So, as this part is arbitrary. So, the integral will be equal to 0 if and only if this 

part equal to 0.  
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So, this part equal to 0 equating this part equal to 0 that means minus m minus m del 

square u by del t square plus EA del square u by del x square equal to 0. We can write 



this a del square u by del t square equal to EA by m del square u by del x square. So, this 

m is mass per unit length. So, I can write this equal to rho into A, so mass per unit 

length. So, this can be written as E into A and this mass per unit length will be density 

into area. So, if rho is the density of that rod. So, it will be density into area into del 

square u by del x square or I can write this as del square u by del t square equal to E by 

rho del square u by del x square. So, previously we have seen or we have derived this 

expression and we have written this E by rho equal to C square. So, E by rho equal to C 

square previously we have written. So, I can write this equation. 
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In this form del square u by del t square equal to C square del square u by del x square. 

So, in this way by applying the Hamilton principle you can derive the equation motion of 

the longitudinal vibration of a rod. So, when we are applying the Hamilton principle first 

derive the kinetic energy expression for the kinetic energy expression for the potential 

energy and work work function. So, after finding all these 3 parameters you can apply 

the Hamilton principle by writing t 1 to t 2 or finding this t 1 to t 2 this del of del l plus 

del W nc dt equal to 0. So, where del qk at t 1 equal to del qk that is virtual virtual 

displacement at t 1 and virtual displacement at t 2 equal to 0. So, by applying this rule 

you can derive the equation motion of the system also in this in this case you can find 

along with the equation motion you are finding the boundary conditions of the system. 



So, this term the second term in this. So, when you are adding this part 3 and 4 the 

second term that is t minus t 1 to t 2 EA del u by del x into del x 0 to l equal to 0 will 

give the boundary condition of the system. So, in this case you can note that either this 

EA del u by del x equal to 0 or this. So,. So, you have a del u term here. So, or this del u 

equal to 0 for both are 0 at this l or 0 to satisfy this equation. So, to satisfy this condition 

this EA del u by del x will be equal to 0. That is or del u by del x will be equal to 0; that 

means, the slope equal to 0 or the displacement equal to 0. So, in case of longitudinal 

vibration of the rod, so either the slope will be 0 or the displacement will be 0 or both 

slope and displacement will be 0 at the ends. So, if you do not know the boundary 

conditions by applying this Hamilton principle, you can find the equation motion along 

with the boundary conditions of the system 

So, the actual boundary conditions will depends on the the system you are taking. So, as 

we have taken a very general system that is why we are getting all the boundary 

conditions which is written in this form. So, all the boundary conditions are either at L 

del u by del x will be equal to 0; that means, the slope will be equal to 0 or del u that is 

the virtual displacement that will be equal to 0. Similarly, at x equal to l that is at the left 

end the slope will be equal to 0 or the displacement equal to 0. Last class we have seen 

all the boundary conditions or all possible boundary conditions for the longitudinal 

vibration of rod, torsional vibration of the shaft and transverse vibration of the string. So, 

now let us derive the equation for beam subjected to pure bending. 
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So, when a beam is subjected to pure bending. So, beam is known as Euler-Bernoulli 

beam, the Euler-Bernoulli beam the beam subjected to pure bending is known as the 

Euler-Bernoulli beam. So, we have to derive the equation for a vibration free vibration 

equation for the Euler-Bernoulli beam. So, in this case by taking a small element of the 

beam we can derive the equation motion by applying the Newton’s second law, but now 

we are going to derived this equation from the Hamilton principle. So, to apply the 

Hamilton principle. 
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In case of this beam subjected to bending. So, when this beam is subjected to bending we 

can write the kinetic energy of the system we can write the potential energy of the 

system and then we have to find the equation motion. So, by taking a small element 

similar to the previous case let the small element of length dx. So, for the small element 

the kinetic energy will be equal to half m into let u is the displacement at this end. So, it 

will be equal to u dot half m dx m dx is the mass of that small element into u dot square 

that is the velocity square. So, the kinetic energy of that small element equal to half m dx 

u dot square. So, the kinetic energy for the whole beam it will be equal to integral of this 

half m dx u dot square from 0 to l. 

So, I can write this T equal to T equal to integral 0 to l. So, half I can take it out. So, this 

becomes m into u dot square dx now, to derive the potential energy. So, potential energy 

is same as the strain energy. So, the strain energy I can derive it similar to the previous 



case. So, this is equal to half. So, this is equal to half stress into strain into dv. So, where 

v is the dv is the elemental volume I have considered sigma is the stress and epsilon is 

the strain of that element. Already we know this the relation between stress and strain. 

So, stress and strain can be written as stress by strain equal to E. So, I can write this 

expression equal to. So, this this will be equal to for the strain I can substituted by sigma 

by E. So, this becomes sigma square by E dv. So, this volume elemental volume, so 

during bending. 
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So, I can draw the section cross section of the beam during bending. So, this is the cross 

section of the beam. So, this is the neutral axis if I am considering a small element here 

that is at a distance y from the neutral axis let me consider this is dy. So, this width b you 

can assume this width b is constant. So, this dv will becomes d into dy into dx. So, I can 

write this U equal to. So, integral, so I can write this U equal to integral half sigma 

square. So, this is sigma square. So, I can write equal to half sigma square by E into. So, 

for this dv I can replace it by. So, dv as I am writing dv equal to b dx dy. So, I can put 

another integral. So, this will be equal to I can I can write the integral here. So, this will 

be equal to b into dx dy. 

Now, the sigma for pure bending we know the relation between this stress and moment. 

So, sigma this sigma by I, so this I zz, so sigma by I will be equal to M by I. So, sigma 

by Y equal to. So, we know this expression sigma by Y equal to M by I or I can write the 



sigma will be equal to sigma will be equal to MY by I. So, I can substitute this in this 

expression. So, this becomes half sigma square for sigma square I can write this equal to 

M square Y square by I into b dx dy. I can write this b dy equal to da and this expression 

can be written. So, there is E term is also there. So, M square by Y M square Y square by 

EI this. So, I can write this expression equal to Half. 
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So, this is equal to M square by EI I can take it out M square EI integral. So, this 

becomes y square dA into dx, but this. So, this is M square. So,. So, for sigma I can 

substitute this is equal to MY by I, so MY by I. So, this becomes square of this will 

become M square Y square by EI square, so in this case M square by EI square. So, this 

integral of y square dA is nothing but the moment of inertial that itself. So, I can write 

this equal to. So, M square by EI square into i dx or this is equal to half M square by EI 

dx, but already we know this M by i equal to or M by Y sigma by Y equal to M by i 

equal E by R. So, this is the bending equation well known bending equation you have 

studied in case of strength of material. So, this for this M I can substitute this is equal to 

EI by R. So, this M equal to EI by R, but this 1 by R, that the curvature can be written 

equal to.  
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So, this M can be written as EI del square u by del x square. So, for M I can substitute 

this is equal to EI del square u by del x square. So, this U potential energy or strain 

energy of that section can be written as half for M square i can substitute it equal to M 

square by EI. So, I can write this is equal to half E square i square del u by del x whole 

square by EI. So, this becomes half integral 0 to l I can substitute EI del u by del square u 

by del x square whole square del square u by del x square whole square dx. So, in this 

way you can find the expression the potential energy of the beam in bending. So, this 

becomes U equal to half 0 to l EI del square u by del x square whole square dx.  
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So, now the Lagrangian of the system becomes L equal to integral 0 to l. So, that is half. 

So, mass this m is mass per unit length m into del u by del t u dot equal to del u by del t 

square into. So, I can write this into dx. So, this is the t that is the kinetic energy of the 

system minus the potential energy of the system can be written as 0 to l. So, this is equal 

to EI del square u by. So, this is EI del square u by del t square whole square into dx. So, 

this is the Lagrangian of the system. So, now by taking this Lagrangian of the system 

when you are studying the free vibration we can take this work done or virtual work 

done equal to 0. So, the Hamilton principle can be written as this t 1 to t 2 del L dt equal 

to 0. 

So, I will apply this del operator to this L and I can write this expression as t 1 to t 2 del 

of. So, I can take this half out. So, del of in bracket I can write. So, this is 0 to l m del u 

by del t whole square dx minus half 0 to l EI del square u by del t square whole square dx 

into dt. So, you may note that this already you have done this part in case of the 

longitudinal vibration of the rod. This part is similar to that in in case of longitudinal 

vibration of rod, but only this part is different. So, let me derive only the second part the 

first part can be written as. So, if you write the first part. So, this is the first part and this 

is the second part. So, the first part you can note it from this which is written in 

expression number 3. So, the first part can be written like this. 

(Refer Slide Time: 48:39) 

 



First part equal to minus t 1 to t 2 0 to l m del square u by del t square del u dx dt. So, I 

can write the first part in the similar way. So, the first part is written as minus half t. 
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So, that is no half. So, t 1 to t 2 0 to l m del square u by del t square into del u dx dt. So, 

this is the first part now I can write. So, this is let me put this equation number 5. So, this 

is equation number 6. So, the second part of the equation number 5. I have to derive. So, 

this becomes half of. So, I have taken this half out. So, there is no half here. So, this 

becomes minus integral t 1 to t 2 0 to l EI del square u by del x square whole square dx 

dt and I have to apply this del operator here. So, there is a half term here. So, this 

becomes minus half. So, i will use this del operator inside. So, this becomes minus half t 

1 to t 2 0 to l then EI. So, applying this del operator inside. So, this becomes 2 into del 

square u by del x square into. So, this part I can write del of del square u by del x square 

into dx into. So, outside I can write dt. So, this 2 2 cancel. So, this becomes minus half. 
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So, half is at there, so integral t 1 to t 2 now I will use this as the first function and this as 

the second function. So, in this case I can interchange between this and I can write this 

del del square u by del x square as del by del x of del of del u by del x. So, by writing 

this way and applying this integral integration by parts I can write this expression equal 

to half t 1 to t 2. So, this is half t one to this becomes half t 1 to t 2 and this term becomes 

EI. So, first term remain as it is. So, EI del square u by del x square into. So, you can 

note that integration of the second term del by del x of del of del u by del x. 

So, this becomes. So, del of del u by del x del of del u by del x at the boundary 0 to l 

minus, so this minus minus plus t 1 to. So, this is dt minus t 1 to t 2 0 to l. So, I can write 

this differentiation of this. So, that is EI del cube u by del x cube into del of del u by del 

x into dx dt. Now, again you can take this term as the first function and this as the second 

function and you can interchange between this del and the separator. So, this del of del u 

by del x you can write this as del by del x of del u. So, in that case this is the first 

function and this is the second function. So, this integration becomes I am writing only 

this part.  
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So, this integration or the, this integration I can write equal to T 1 to t 2 t 1 to t 2 EI del 

cube u EI del cube u by del x cube into this integration will becomes del u into del u 0 to 

l minus t 1 to t 2 0 to l. So, this is dt is there. So, 0 to l I can write this expression below. 

So, this is minus t 1 to t 2 0 to l. So, differentiation of the first term that will give me EI 

del four u by del x four into del u dx dt. So, this becomes EI del four u by del x four into 

del u dx dt. So, this is. So, I have to add for this expression for this expression I have 

found this expression. So, the total expression will become. So, this, so the total 

expression will contain this term plus these 2 terms and the expression given in 6. So, by 

adding these terms I can write the integral. 



(Refer Slide Time: 54:41) 

 

So, the integral del L dt equal to 0 can be written as. So, this will be equal to t 1 to t 2 0 

to l m del square u by del t square. So, there is a negative sign here plus. So, I can write 

this plus or I have a negative sign here again. So, this is minus minus EI del four u by del 

x four into del u dx dt. So, this is the term and I have to add these 2 more terms that is 

minus t 1 to t 2 minus t 1 to t 2 minus integral t 1 to t 2 EI del cube u by del x cube into 

del of del u by del x 0 to l. So, this term and another term is there. So, this is the other 

term. So, this is plus. So, I can write this is plus plus integral. So, this t 1 to t 2 I can 

write here. 

So, this is t 1 to t 2 integral t 1 to t 2 EI del cube u by del x cube.So, here, so in the first 

expression this becomes del square u by del x square and here it is. So, this is del square 

u by del x square and in the next term it becomes EI del cube u by del cube this is cube 

del x cube into del u at 0 to l dt equal to 0. So, this becomes the final expression or after 

applying this Hamilton principle we obtain this expression. So, this is equal to 0. So, 

now, in the like the previous case here also this del u that is the virtual displacement is 

arbitrary. So, this whole term will be equal to 0 when this integral term or this terms 

between this bracket will vanish. That means, this minus del square u by del t square 

minus EI del four u by del four equal to 0. 
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So, writing that term. So, I can write m del square u by del t square plus. So, that is a 

minus minus. So, it will becomes plus. So, EI del four u by del x four equal to 0. So, this 

expression can be written in this form also del square u by del t square plus EI by m del 

four u by del x four equal to 0 this equation is known as the Euler-Bernoulli equation. 

So, unlike the wave equation you can see here this is a forth order equation. So, this is 

del four u by del x four and in case of wave equation the expression was del square u by 

del t square plus C square del square u by del x square equal to 0. So, this is the wave 

equation and this is Euler-Bernoulli equation. 

So, here we have derived the Euler-Bernoulli equation by applying this Hamilton 

principle along with this as we have taken the beam to be of general type we can find all 

possible boundary conditions also. So, from these 2 expressions you can find the 

boundary conditions. So, for this general case we have found the equation motion by 

applying this Hamilton principle. So, in this case we have seen by applying Hamilton 

principle you can get the equation motion and the boundary conditions. So, today class, 

we have studied or we have found the equation motion for longitudinal vibration of rod 

and transverse vibration of beam by using Hamilton principle. And next class, we will 

study how to solve this wave equation and Euler-Bernoulli equation for different 

boundary conditions. 


