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Engineering Mechanics 

Dr. G. Saravana Kumar 

Department of Mechanical Engineering 

Indian Institute of Technology, Guwahati 

Module 3 Lecture 8 
Analysis of Structures - II  

Cables 

Today, we will continue our discussions on internal forces. In the previous two lectures, we saw 

how to determine internal forces in the structural members and particularly we discussed about 

finding these internal forces in beams. The other class of structures that are predominantly used 

are cables. 

(Refer Slide Time: 01:35) 

 

We will see how to analyze the internal forces in cables in this lecture. The cables, being flexible 

elements, are subjected to tensile forces only because they cannot resist any compressive force 

and they cannot also take any bending moment. 

Some examples of cables are: suspension bridges, transmission lines, aerial tramways, guy wires 

for high towers, etcetera. In this picture, you see a bridge that is being supported by these cables; 



2 
 

so this is the suspension bridge. You have these vertical cables tied to the platform of the bridge 

and supported by these cables. 

The primary concern in the design of such structures is to know the shape of the cable when the 

cable is loaded with various kinds of loads that could be concentrated or could be a distributed 

load. Accordingly, we would like to know the lengths of the cable to be used so as to maintain, 

let us say, the platform in the horizontal position or in the required position. So, we will start the 

discussion with concentrated loads and then move on to distributed loading on cables.  

(Refer Slide Time: 03:41) 

 

Here you see an example of a cable that supports concentrated loads. The cable is supported at A 

and at B and carries some concentrated loads say P1, P2, P3, etcetera at various locations C1, C2, 

and C3. These loads as well as their horizontal spans are known. The interest is to know these y 

coordinates, that is, the shape the cable will take once these loads are being applied to this cable. 

Certain things we can note for analysis, we assume that these locations are given. That means the 

horizontal spans x1, x2 and x3 where these loads are applied to the cable are known. We also 

assume for the current analysis that the weight of the cable to be negligible when compared to 

the concentrated load; else, the shape of the cable will be different if we also consider the weight 

of the cable because it becomes a uniformly loaded cable in that case. But for the current 
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analysis, we assume the weight is negligible compared to the concentrated loads. This resistance 

to bending is also very low for the cables, so these end reactions will be only force reactions and 

not any bending moment. 

Between two portions, say C3C2 or C3B the cable can be assumed to be a two force member. This 

is because the loads are applied at C3 and at B and we are neglecting the weight of this portion so 

it becomes a two force member. Since we have seen that the cables can only be loaded in 

tension, the forces developed in this portion are tensile and their direction is that of the pulling 

nature. 

(Refer Slide Time: 06:41) 

 

Our interest is to determine these vertical coordinates of the point of loading or in other sense the 

shape of the cable.  
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Let us consider the free body diagram of the complete cable in order determine the end reactions. 

In this picture, you see the free diagram of the cable. You have at A, two components of 

reactions Ax and Ay because we saw that the cable cannot take any bending moment; since the 

cable is fixed to this point A, the end reactions have to be only two force components and no 

bending moment. In same way at B, the cable is fixed; so, there will be two components of 

reaction By and Bx. 

The shape of the cable is unknown; that means, it could be something like this: the dotted line 

shown or it could be something like this or any other position. So we do not know the end 

tangent of this cable, that is, the direction of this line AC1. We also do not know the direction of 

this line that is C3B. So we have two unknown components at B and two unknown components 

at A. 

We see that we have a total of four unknowns involved in this: that is, Ax, Ay, Bx and By. If we 

consider the equilibrium of this portion for the two-dimensional cable layout, we can write three 

equations. From the force summation equation, we get two scalar components: that is sigma Fx 

equal to 0 and sigma Fy equal to 0. For the moments to be 0, we have one scalar component that 

is the moment about the z-axis that is perpendicular to the plane of the problem. 
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With these three equations, we can only find three unknowns. Since this problem has four 

unknowns we need one more equation to solve this; so it could be as a known point on the cable. 

So, if we know the y co-ordinate of let us say a point D on this cable, then it is possible to write 

additional equations to solve for the unknown.  

(Refer Slide Time: 10:05) 

 

Let us assume that we know the coordinate of this point D on the cable. It could be any point 

either in this segment or in this segment. If we know this, let us draw the free body diagram of 

one portion of the cable: that is, either AC1D or DC2C3B. Let us consider this portion AC1D and 

draw the corresponding free body diagram. 

At D, we have the tension of the cable which is both unknown in magnitude as well as direction. 

That is depicted by this arrow. We have these two unknown forces Ax and Ay; the reactions at A 

and these loads whose horizontal location is known and not the vertical location. We know this 

coordinate D - both x and y. So now, it is possible to write an additional equation, say the 

moment summation equation about point D. Now we will have three equations from the earlier 

free body diagram and one more equation from this free body diagram totaling to four, to 

determine the four unknowns. 
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This is the additional equation that we have and now we have four equations to determine the 

four unknowns. The two more equations that is the force summation will give the horizontal and 

the vertical component of this tensile force T, that is Tx and Ty. 

Now that we have determined these end reactions it is possible to determine the tension in each 

of the segments and also the location, the vertical coordinate of the location of the concentrated 

loads by considering the free body diagrams of sections of the cable. 

(Refer Slide Time: 12:33) 

 

Let us consider this section AC1C2 and draw the free body diagram. Since we have determined 

both Ax and Ay, we know the tension that will be occurring in this segment, that is, AC1; so we 

do not need to consider the free body diagram of the portion AC1 again. But now we do not know 

the tension in this segment, that is C1 C2; so we take this segment and consider the free body 

diagram. 

The tensile force T is both unknown in magnitude and direction; so we mark the same as both Tx 

and Ty as unknown. We also do not know this y co-ordinate that is the location of the point of 

concentrated load in the vertical direction. So we can now write the equations for equilibrium. 

We take the moment summation about this point C2; since this unknown force T passes through 
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this point, we only have moments because of the concentrated load P1 and the moments due to 

this Ax and Ay, the end reactions.  

This equation sigma MC2 equal to 0 is Ay times the momentum, which is x2 and this leads to a 

clockwise moment about this point, so it is negative. Ax has a momentum of y2 again which is 

clockwise, so it is negative. This force P1 has a counter clockwise moment so it is positive. P1 

times the momentum is x2 minus x1 equal to 0, so in this we know Ay, Ax, this location x2, as well 

as P1. We only have this y2 as unknown and that can be determined. 

The other two equations, that is, sigma Fx equal to 0 and sigma Fy equal to 0 yields the other two 

unknowns that is Tx and Ty. So if we write this equation let us say sigma Fx equal to 0, it is Ax 

plus Tx. We have only these two forces equal to 0. For this equation that is sigma Fy equal to 0 

we have Ay minus P1 minus P2 minus T sin theta equal to 0, this is nothing but Ty the vertical 

component. So from these two equations, since we have only this Tx and Ty as unknown, the 

same can be determined. 

It is interesting to note that the horizontal component of the tension that is Tx, which is T cos 

theta, is equal to this reaction Ax for all the segments. So even if we consider the free body 

diagram of the cable for the portion AC1 or for a portion in between C1 and C2; at any point the 

horizontal component of the tension is equal to Ax. That is because we do not have any 

horizontal loading in the cable, so the horizontal component of the tension is always equal to the 

horizontal component of the end reaction. This is useful in certain analysis.  
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Let us see an example to illustrate the complete procedure. Here you see a platform which 

weighs 2000 Newtons and is held in a horizontal position using cables. The cables are tied at this 

point E and at point A. In order to maintain this platform in the horizontal position, we have the 

concentrated load P2 which is 500 Newtons acting at a point B. This is to make sure that the 

cable takes a shape such that the platform is maintained in the horizontal position. 

The lengths of these cables AB, BC and DE and their inclinations are to be found. We know 

these horizontal spans: that is the span between AB, between BC, CD and DE. For this analysis, 

we assume the mass of the cable to be negligible. So in order to proceed we consider the free 

body diagram of the complete cable.  
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The unknowns for this problem are the end reactions, that is Ax, Ay, Ex and Ey as well as the 

forces at this point C, that is Cx and Cy, because if we know these forces Ex and Ey, then Dy and 

Dx are also known. So the unknowns for this problem are six that is the horizontal and vertical 

components of forces at A, C and at E. It could be otherwise stated in terms of the magnitude and 

the direction of the tension that occurs between various segments of the cable. 

Here we have three segments AB, BC and DE. So the unknowns can be restated as the 

magnitude and angle of these tensions in these segments that is, say T1 theta1 for the segment 

AB, T2 theta2 for the segment BC and T3 theta3 for the segment DE.  
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Let us draw the free body diagram of the complete cable. This figure shows the free body 

diagram of the complete cable. At E we have this end reaction which is equal and opposite to the 

tension that occurs in this portion DE that is T3, so that is what the end reaction has been marked 

as T3 in the opposite direction. 

Same way, at A the reaction is equal and opposite to the tension that occurs in the segment AB, 

so that is why we have marked T1 in this direction. Let us replace this platform CD by a 

concentrated load of 2000 Newton acting through its CG. 

From the free body diagram, for the equilibrium of the cable to exist, the sum of the forces has to 

be 0 and sum of the moments has to be 0. Let us write the corresponding equations. Let us write 

the force summation along the horizontal direction and equate it to 0. We have the horizontal 

component of this force T1 acting in the negative direction, so we have minus T1 cos theta1. Then 

we have the horizontal component of this force T3 in the positive direction, so plus T3 cos theta3. 

We do not have any other horizontal forces so this has to be 0. Let us say this is our equation 1. 

For the forces to be 0, the vertical component has to be also 0. We have the vertical component 

of this force at A which is T1 sin theta1 in the positive direction. We have this concentrated load 

P2, so minus P2 which is known. The equivalent concentrated load of the platform CD so minus, 
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let us say, W which is the weight of the platform which in this case is 2000 Newtons. Then we 

have the vertical component of this tension plus T3 sin theta3. Let us say this is equation 2. 

Then the moments have to be 0. So let us take the moment summation either about E or A where 

we have the unknown forces. Let us take the point E and equate it to 0. We have the moment of 

this force T1. The horizontal and vertical components of this force have moments about E. Let us 

consider the horizontal component first, which is T1 cos theta1. The momentum for the same is 

15 meters and it causes a counter clockwise moment about this point E; so it is a positive 

moment. 

Let us consider the vertical component that is T1 sin theta1. It causes a clockwise moment about 

point E. So it is a negative quantity, minus T1 sin theta1. The momentum for the same is this 

complete span, which in this case is equal to 80 meters. Then we have the moment due to this 

force P2; so we have plus P2 times 70, which is the momentum. This also causes a counter 

clockwise moment, so it is positive. We have the moment due to this weight which is also a 

counter clockwise moment so it is positive. So we have plus W times the momentum is 35. This 

has to be 0. 

We have got the three equations of equilibrium. From this, we can determine three unknowns but 

we see that we have six unknowns in this problem, so we have to consider one more free body 

diagram in order to get three additional equations. Let us consider the free body diagram of the 

platform that is CD.  
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Here you see the free body diagram of the platform CD. The unknowns are the tension occurring 

in the portion DE and the portion BC which is T2. From this free body diagram for the 

equilibrium, we can write three equations, two force summations and one moment equation. 

Let us first write the force summation that is sigma Fx has to be 0. We have the horizontal 

component of the force T2 cos theta2, which is negative, plus T3 cos theta3, which is in the 

positive direction has to be 0. For the forces to be 0, the vertical component has to sum to 0. We 

have the vertical components; T2 sin theta2 plus T3 sin theta3, the two vertical forces at C and D 

minus the weight W of the platform to be 0. 

For equilibrium to exist the moments have to be also 0, so either we can take moment about C or 

D. Here let us take the moments about C to be 0. At C this force T2 passes through this point C. 

So it does not cause any moments but we have moments due to this concentrated load, the 

equivalent concentrated load of the platform, and this force T3. The moment of this force is 

clockwise and so it is negative, so minus 2000. The momentum is 15 meters. 

The moment due to the vertical component of the force T3 is plus T3 sin theta3 times the 

momentum, which is 30. The horizontal force that is T3 cos theta3 passes through the point C and 
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so it does not has any moment; so this has to be 0. So if we say that this is equation 4, 5 and 6, 

we have now the six equations to solve for the six unknowns.  

(Refer Slide Time: 30:41) 

 

If we solve these equations, we can determine the unknowns. Since our interest is only in the 

shape of the cable, so here after solving we have found these angles: theta1 as 56.31, theta2 as 45 

degrees and theta3 as 45 degrees. 

Once we know these angles, we can determine the lengths. The length of the portion AB is equal 

to 10 divided by cos theta1, 10 meters which is the horizontal span divided by cos 56.31, so many 

meters. It is equal to roughly 18.12 meters. Similarly, the length of the portion BC is the 

horizontal span divided by cos theta2 which is 45 degrees. It turns out to be 28.28 meters. The 

length of the portion DE is equal to 20 divided by cos 45 degrees, which is again 28.28 meters. 

This example completely illustrates the way we solve the cables when subjected to concentrated 

loads.  
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Let us move on to discuss cables under uniform loading. This kind of situation occurs in the 

cables which support the bridges. In the earlier example, we have seen a cable supporting a 

bridge. We see that there are at equal distances the cable is tied to the platform of the bridge, so it 

is equivalent to a uniformly distributed load in the horizontal direction for the cable. Let us 

consider a general cable ACDB which is tied at this point A and B, subjected to some kind of a 

uniform loading. It could be varying in magnitude along the cable either along the cable or along 

the horizontal direction.  

We are interested to find the shape of the cable under the load. The internal forces that develop 

in the cable at any location are tangent to the shape of this curve. Let us say at C, where the 

tangent of this curve is horizontal, the tension in the cable is directed in the horizontal direction. 

At B, where it is fixed, the direction of the tensile force is tangent at this point and which is also 

equal to the reaction at this point B.  

In order to solve let us consider a portion of this cable, let us say this portion CD and draw the 

corresponding free body diagram. At C since the tangent to this curve is horizontal, the tension is 

T0 which is directed in the horizontal direction. At D, this tension force T is along the tangent 

and we do not know this angle, so this force T is both unknown in the magnitude and direction. 

This W is the equivalent load of all these distributed loads. 
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Let us construct the free body diagram and from this free body diagram write down the equations 

relating these forces. One graphical method of solving of the equilibrium particularly, in case of 

two-D is using the force polygons or force triangles. Here you see that method applied. You 

mark these forces T0, T and W. For equilibrium to exist the sum of all these forces has to be 0. So 

that means they have to form a closed polygon where the ends of the vectors have to meet. 

From this force triangle, we have the horizontal component of this tension T that is T cos theta 

should be balanced by this force T0. So we have this T cos theta equal to T0. The vertical 

component of this force T which is T sin theta has to be balanced by the vertical force W that is 

T sin theta is equal to W. Also, since this is a right angle triangle we know that T0 is in the 

horizontal direction and weight acts in the vertical direction and so this forms a right angle 

triangle. 

We have the magnitude of T as square root of sum of the sides T0 square plus W square; also this 

angle theta is nothing but tan inverse of opposite side that is W by T0. So these equations come 

from this force triangle. 
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If we move this point along the cable to any other location, the tension in the cable changes, but 

we see that the horizontal component of this tension T which is equal to T cos theta has to be 

equal to the tension at this point C throughout the length of the cable. So the horizontal 

component of this tension force T remains constant and equal to T0. 

The vertical component of this tension equals to the total load carried between the portion C and 

D, where C is the minimum point on the cable. The total load carried in this portion is equal to 

the vertical component.  

From this we see that the tension in the lowest portion on the cable that is at C is the lowest and 

as we move along the cable towards the end support, the tension increases and becomes 

maximum at the end supports that is at A and B. 
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Let us consider few examples of uniformly distributed loads on cables. One, we call it as a 

parabolic cable because the shape of the curve taken by the cable is a parabola. This occurs when 

the cable is loaded uniformly along the x direction. This kind of a situation can be approximated 

for cables which support the bridges. 

Here in this picture, you see the cable ACB supporting a bridge platform which is having a 

weight w Newtons per meter length of the bridge. This is connected to the cable through these 

vertical strings or cables, so the loading is like a horizontally uniformly loaded cable. If we 

consider this portion CD and draw the free body diagram, C being the lowest point on the cable 

we have the horizontal tension T0. At D, the tension is tangent to this path, which is both 

unknown in magnitude and direction. The total load carried in this portion which is equal to w 

times the x span of this cable CD that is wx, which acts through the center span between C and 

D. 

Let us find what these values are through the force triangle. The magnitude of this tensile force T 

has to be equal to square root of T0 square plus capital W square, which is w square x square. 

This angle is given by tan theta which is equal to wx divided by T0. 
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Let us sum the moments of these forces about this point D. We have this vertical force wx 

having a momentum of x by 2 which causes a counter clockwise moment; so it is positive. So we 

have wx into x by 2. The moment of this force T0 is a clockwise moment; so we have a negative 

moment minus T0 times y which is the momentum of this force T0 about this point D. 

This equation relates the y and x coordinates of the various locations of the cable. Rewriting this 

equation we have y is equal to wx square by 2 T0. So this is an equation of a parabola. We have it 

in the form y equal to Ax square, which is the equation of a parabola, where A is in this case w 

by 2 T0 square. 

That is why we called it as a parabolic cable since the shape of the curve taken by the cable is a 

parabola. In some problems, we may be given the end conditions in terms of the tangent or in 

terms of the curvature, so in that case it is convenient to use the differential forms of this 

equation, i.e., is either dy by dx or d square y by dx square. For this cable, we have d square y by 

dx square as w T0. 

Sometimes there maybe some constants in the equation. Since here we have considered our 

origin at C, these constants becomes 0, else we generally have this equation with some additional 

constants. We will see some example later.  
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Let us consider now the cable which is loaded uniformly along its length because in all the 

previous cases we have not concentrated on the effect of the weight of the cable itself. The 

weight of the cable acts along the length of the cable and in the previous discussions we have not 

considered the same, so let us see how the shape of the cable changes if we consider the self-

weight of the cable. 

Here you see a cable ACB where the self-weight is considered and it acts along the length of the 

cable. At any point D which is having a coordinate x, y, has a coordinate along the length of the 

cable as s. Let us also assume that the lowest point along the cable that is C has a vertical 

coordinate of, let us say, c. 

Let us draw the free body diagram of a portion that is CD. We have the horizontal component of 

the force T0 at C, the tension at D which is both unknown in direction and magnitude and the 

weight of this cable which is ws; s is the coordinate along the length of the cable. This is total 

vertical weight for this portion CD.  
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The internal tension force T’s magnitude can be related to the vertical force w and the horizontal 

force T0 or the tension at C as T equal root of T0 square plus w square s square from the force 

triangle. If we write T0 by w as c then this can be rewritten as w times root of c square plus s 

square, where c is the ratio of this horizontal tension to the uniform weight w. So this is 

obviously from this force triangle. 

Let us relate the horizontal and vertical coordinates with the coordinate along the curve because 

the weight is distributed along the length of the curve, so we should be able to correlate the x and 

y coordinate with the path coordinate that is the length of the curve. 

First, let us relate this x with the cable length s. For that, we consider this differential element ds, 

which spans dx and dy along the horizontal and vertical directions and write the equation. For a 

very small element, dx is equal to ds times cos theta and cos theta can be obtained from this force 

triangle which is equal to T0 by T. If we find what is the value of T0 by T from this equation, we 

have it as 1 over root of 1 plus s square by c square. This can be quickly found by substituting 

the value of T and T0 from these two relations and solving. 
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We have this dx as ds divided by root of one plus s square by c square. If we integrate this from 

this point C to D we get the relation between the total length s spanned by the segment CD and 

the horizontal distance spanned by this curve segment CD. 

(Refer Slide Time: 50:14) 

 

We integrate it between this point and the point of our interest. So the integral is 0 to s ds by root 

of 1 plus s square by c square which is equal to c times of sin hyperbolic inverse s by c. 

Rewriting this, we have s equal to c sin hyperbolic of x by c. This equation relates the horizontal 

coordinate x to the path coordinate or the length of the cable s.  
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Let us relate the x and y coordinates of the cable. We may be interested in some cases to relate 

the y coordinate with the length of the cable also, so in that case we can again write the equations 

in the similar way. We write again from this differential element dy is equal to dx tan theta and 

tan theta we get from this force triangle as W by T0, which is equal to s by c. We know that this 

is equal to sin hyperbolic of x by c from the previous equation that we derived for the relation 

between x and c.  

Let us integrate this between the limits so we have y minus c equal to the integral between the 

limits 0 to x sin hyperbolic x by c dx, which is equal to c cos hyperbolic x by c minus c. If we 

rewrite this, it is y equal to c cos hyperbolic x by c which is nothing but the equation of a 

catenary. In some problems, we may be interested by knowing the end conditions as the tangent 

and the end location, so it is possible to write the differential form of this equation and solve for 

the same. We have the differential form as d square s by dx square which is equal to w by T0 

times ds by dx.  
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Let us solve one example problem. Consider a blimp which is tied to a cable such that certain 

portion of the cable is lying on the ground and certain portion of the cable is hanging. The weight 

of the cable as 10 Newtons per meter and the length as 400 meters is given. As this blimp is 

flying, it is developing a forward thrust of 100 Newtons against the air resistance and it is 

developing a lift of say 1000 Newtons. 

We are interested to find at what height the blimp is flying and what length of the cable is lying 

on the ground. In order to solve this problem, let us consider the point where the cable is attached 

to the blimp as our coordinate reference. If we draw the free body diagram of the blimp, we have 

the 1000 Newtons lift generated by the blimp, 100 Newtons forward force developed by the 

blimp and the tension in the cable say Ty and Tx. This is our origin and this is the positive x and 

positive y direction. From the equilibrium equation, we have Tx as 100 Newtons and Ty as 1000 

Newtons from this free body diagram. 

Let us draw the free body diagram for the cable where certain portions of the cable are lying on 

the ground and the remaining cable is hanging. We have these forces developed by the blimp and 

we are considering this as our origin. This cable is uniformly loaded by its self-weight which is 

10 Newtons per meter. 
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In order to solve this problem, let us take the differential relations between y and x which is 

equal to ws by Tx plus C1. This comes from the force triangle. If we consider any portion of the 

cable, we have the horizontal component of the tension force Tx balanced by the tension force T, 

the weight of the cable which is ws and the horizontal component Tx balancing the forward thrust 

of 100 Newtons. So from this force triangle, we have this equation in the differential form. 

We know that at the origin, where x equal to 0 and y is equal to 0, we have the length of the 

cable to be 0 and dy by dx which is a tangent is equal to the ratio of Ty and Tx, which is 10. If we 

substitute this, we find C1 as 10. At the contact point where this cable contacts the ground, we 

have the tangent to be 0; so, we have dy by dx equal to 0 at contact. From this, we get s equal to - 

100 meters. That means the length of the cable between this portion, where the coordinate is 0 to 

the point where it is in contact with the ground, is 100 meters. So of the total length of the cable 

which is 400 meters, 100 meters of the cable is hanging and so the remaining 300 meters is lying 

on the ground.  
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Let us consider the relations between the length and the x coordinate from the equations that we 

have derived for the catenary. This is the general equation and the equation that relates the y co-

ordinate with the length. H is the horizontal component which is nothing but Tx. From this 

equation at origin s equal to 0, so we get C2 as minus Tx by W times sin hyperbolic C1 We know 
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this C1 and we also know this horizontal component and the weight carried, so from this we find 

C2 as - 29.98. At the contact point we know that s is equal 100 and from this we get x equal to C2 

which is equal to ―29.98 meters. If you remember that this is the cable and this is our coordinate 

0 and we have found that at the point where the cable is in contact the x distance is ―29.98 

meters. 

If we solve this other equation at origin, that is at this point, we have s equal to 0, x equal to 0 

and y is equal to 0.From this we find this constant C3 as cos hyperbolic minus W by Tx C2. We 

have already found this constant C2 and from this, we find C3 as ―100.47. 

At the point of contact with ground, x equal to ―29.98 meters and we substitute this in this 

equation to find that y is equal to H by W plus C3 which is ―90.47 meters. So at the place where 

the cable is in contact with the ground the y coordinate is ―90.47 meters. So the height at which 

the blimp is flying is 90.47 meters. So this example shows how to compute the shape of the 

cables; loaded uniformly along the cable or uniformly along the x direction. We have to use 

sometimes the differential forms because sometimes the end conditions are known in terms of 

the tangents or their locations.  


