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Analysis of Structures-2 

Module 3 Lecture 7 
Internal Forces in Beams 

Today we will continue with our lecture on internal forces in beams. For your reference, this is 

lecture number 7, module 3 of the web-based engineering mechanics course. In the last lecture, 

we saw how to determine the internal forces in a member, particularly in beams.  

(Refer Slide Time: 01:48) 

 

Today, we will continue with the discussion on the internal forces and see how to depict these 

forces as a diagram. We have the shear force diagram and the bending-moment diagram 

depicting the shear forces and the bending moment, which are the predominant internal forces in 

a beam, along the entire length of the beam for a particular loading and support condition.  

These diagrams help a civil engineer in designing the beam because in one glance the diagram 

shows the shear forces and bending moment that occur in the entire length of the beam. Today 
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we will see how to create these diagrams for beams under various loading and support 

conditions. 

Let us take for discussion an example. Here you see a beam which is pinned at one end and 

supported by a roller at another end and we have say one concentrated load P. First, in order to 

construct the diagram we determine the support reactions. We construct the free body diagram to 

do that. At A, we have a pin connection, so we have both a vertical component and a horizontal 

component of a force, but since we do not have a horizontal component of an applied load, this 

component vanishes. We quickly see that for the equilibrium of this beam, the reaction at A and 

the reaction at B both should be equal to half of this load that is P by 2. 

Once we have determined the reactions, let us consider a section at C to construct the free body 

diagram of a portion of a beam in order to determine the shear force and bending moment at this 

section. As we move this section from A to B, we get the shear force and bending moments 

along the length of the beam. The same is plotted in order to obtain the shear force diagram and 

bending-moment diagram.  

This is a free body diagram of the portion of the beam AC. We have this shear force, the bending 

moment and axial force, if any, in the positive convention. For this case, since Ax is 0, the axial 

force H is also 0 and we have only the shear force and bending moment as the internal forces. As 

we move this section, we get the shear force and bending moment along the beam and the same 

is depicted as a diagram. So this diagram shows the shear force variation from A to B; this 

diagram shows the bending moment variation from A to B.  

Let us see this little more clearly. 
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(Refer Slide Time: 05:47) 

 

If we take a section between A and the midsection of the beam, then this is the free body diagram 

of any such section because this load P is not available in the free body diagram of that portion 

of the beam. From this, we determine the shear force and bending moment. We have already 

determined Ay to be P by 2. If we consider L to be the length of the beam and this concentrated 

load is acting at a distance of L by 2. Let us say we have considered a section at a distance of say 

x; so this is a section at the distance x from A. 

For equilibrium of this section, we can equate the forces to be 0 and moment to be 0 to find the 

shear force and bending moment. Equating these vertical components, we have Ay plus V is 

equal to 0; thus, V is equal to ―Ay. 

We see that as the section moves from A to any point up to L/ 2 of the beam, the shear force does 

not vary and it is equal to ―Ay and remains constant. So we plot the same. Here to some scale 

we have plotted this Ay which is equal to ―P by 2. We have plotted the same and it remains 

constant up to the mid-section. 

From the moment equation, summing the moments about this point we have the moment of this 

force Ay which is clockwise and positive. We have Ay whose momentum is x and the clockwise 

moment, so it is negative and we have this moment M which is positive, equal to 0.  
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We get M is equal to Ay times x which is P by 2 times of x. As x increases as we move from A 

the bending moment increases. At A, x equal to 0, so bending moment is 0. As we increase x the 

bending moment increases linearly. It reaches a maximum value at the midsection where x is 

equal to L by 2 and the bending moment is PL by 4, the maximum value. The same is plotted 

here. 

Now for plotting the shear force and bending moment in this section that is from midsection to 

B, we consider this free body diagram. We set up similar equations, that is, the force summation 

and moment summation to determine the shear force and bending moment and draw the 

remaining portion of the diagram. So, in this way we can construct the shear force and bending-

moment diagram for beams under various loading and reaction conditions.  

(Refer Slide Time: 11:13) 

 

Let us note certain behaviors of these diagrams. The shear force that has been depicted is the 

shear force in the positive convention. We have seen in the last lecture the positive conventions 

of shear force and bending moment, the way these forces tends to shear or bend the beam. For 

the beams which have only concentrated loads, as we have seen in this example, we see that the 

shear force is constant between the loading points. We have the reaction at A and a concentrated 

load at the midsection. We see that the shear force remains constant between these two points of 
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loading. The moment varies linearly - either it increases linearly or decreases linearly between 

the points of loading. 

These behaviors can be used to plot the shear force and bending-moment diagrams conveniently 

by determining the values of shear force and bending moments at locations where we have 

concentrated loads. In between, we can plot using these behaviors that is the shear force remains 

constant and bending moment varies linearly for these concentrated loads.  

(Refer Slide Time: 13:23)  

 

If the beam is loaded with uniform loading like the loading pattern shown in this picture, we 

have this beam OB which has a loading pattern defined by this load curve.  

If we know this equation of the load curve, then we can determine the total load on the beam by 

computing the area under this loading curve. So if we take a small element of the beam Bx, the 

corresponding load is dW which is equal to the area of this incremental rectangle. In order to 

compute the total load, we have to integrate to find this area. The total load is computed. So we 

have this W, the total load, as the sum of these areas of incremental rectangles which is integral 

dA. If it is equal to A then that is the total load. 
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(Refer Slide Time: 15:11) 

 

If you want to represent this distributed load by a concentrated load, so that we can use the shear 

force and bending moment drawing procedures of concentrated loads for the distributed loads 

also. So in order to do that we have to find an equivalent concentrated load for any given 

distributed load. 

We have already seen that the area under this curve gives the value of the total load that is W, 

but now we have to determine the point of action for this concentrated load. In order to 

determine that we can sum the moments of these individual incremental forces about say a point 

O and equate it to the moment of this concentrated load about the same point O. By doing this 

we can determine the momentum for this concentrated load W.  

We can find that for the first moment of this weight to be the same, this load W has to act 

through the centroid of this area. So the moment of this force W is OP times W, should be equal 

to the sum of the moments of these individual elemental weights. From this, we know the 

distance at which this concentrated load has to be placed. 
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(Refer Slide Time: 17:29) 

 

For common shapes we know the location of centroids. Like for this triangular lamina, the 

centroid lies along the angle bisector and at a distance of h by 3 from the base. Another lamina is 

shown; here, from this geometry we say that the centroid lies along one of the diametrical lines 

and at a distance of 4r by 3 pi, if r is the radius. 

(Refer Slide Time: 18:36) 
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For loading curves which have complicated shapes, we can determine the equivalent load by 

considering the area under the curve as constituting of areas of simpler regions for which the 

centroids can be determined. Like in this case, we have this area A1, A2 and A3 for which the 

centroids C1, C2 and C3 are known. Thus, by equating the first moment of these areas about O to 

the first moment of this composite area, we can know these momentums say x bar and y bar that 

are necessary for computing the equivalent load and its location.  

(Refer Slide Time: 19:42)  

 

Let us see one example. Let us consider a beam which is cantilevered at B and supporting a point 

load of say 500 Newtons at C and supporting a uniformly distributed load up to point D from B. 

The dimensions are known and all the dimensions are in meters. 

In order to determine the shear force and bending moment we first determine the end reaction. 

So in this case, we have at B, which is the fixed end, the three components of reaction: Bx, By 

and M the bending moment. A is a free end so we do not have any reaction. From the 

equilibrium of this body, we write these equations. The first is summing the force component 

along the x direction, from which we find that Bx has to be 0 because we do not have any 

horizontal component of the loading, so Bx has to be 0.  
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Next for the sum of the forces to be 0, the vertical components have to be 0. From the diagram, 

we see we have 500 Newton force at C and a distributed load, say in this case let us take this to 

be 30 Newtons per meter acting from D to B. 

We can find the equivalent concentrated load, which is nothing but the area under the curve, 

which is 30 Newtons per meter for 15 meters. We have the vertical component of reaction By 

equal to 0. From this, we get By as 950 Newtons.  

For equilibrium, the sum of the moments of all these forces has to be 0 about any point. Let us 

consider the point B and sum the moments of various forces and equate it to 0. We have the 

moment at B which is a counterclockwise moment, so which is positive. We have the moment of 

this 500 Newton force whose momentum is 20 meters, so we have 500 into 20. Then we have the 

moment of this distributed force. 

The equivalent force is the total load acting through which centroid. So here, in this case, this 

centroid lies midway from D to B that is at 7.5 meters from B. So we have the moment as 30 into 

15, which is the total load, and whose momentum is 15 by 2. So the sum of all these moments 

has to be 0. From this, we get the moment as ―13375 Newton meter or it is 13375 Newton 

meter in the clockwise direction. So now, we have found the reactions, that is, the moment as 

well as force reactions at B. Now we can proceed to find the shear force and bending moments. 

In order to construct the shear force and bending moment, we can take sections for which the 

loading patterns are similar; because, the behavior of the shear force and bending moment curves 

will be constant or same for a portion where there is no change in the loading behavior. 

Here we see for this case that AC, CD and DB are portions where the loading behavior is 

consistent for drawing the shear force and bending-moment diagrams. So let us consider first the 

section AC. The free body diagram of the same is that we have no end reactions at A and also we 

do not see any forces in the section. 

We take this shear force and bending moment in the positive sense. For equilibrium of this 

section, let us say at any distance x between A and C, the sum of the forces and sum of the 

moments has to be 0. From that, we find that V has to be 0 and M has to be 0 as well because we 

do not see any other forces; so these components have to be 0 for this section CD. 
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Let us consider now the portion CD and draw the free body diagram. Here we have a 500 

Newton force acting at C and no other force is there. The shear force and bending moment are in 

the positive sense. 

Let us consider this section at a distance of x from A between C and D. For the equilibrium of 

this section, again, we write the force summation and moment summation and equate it to 0. So 

we have from the force summation ―500 plus V has to be 0, from which we find that shear force 

has to be 500 Newtons. Summing the moments about this point we have the moment of this 500 

Newton force, which is counterclockwise and which is equal to 500 times this distance minus the 

distance AC which is 5 meters. So we have x minus 5 and the moment M which is also positive 

because it is counter clockwise to be 0. From this, we get M as ―500 times x minus 5 Newton 

meter.  

(Refer Slide Time: 29:58) 

 

Let us consider the portion DB and draw the free body diagram of the same. We have a 

concentrated load of 500 Newtons at C and from the point D, we have this uniformly distributed 

force of 30 Newtons per meter.  

We are considering this section at a distance of x between D and B. We have the shear force V 

and the bending moment M. So this completes our free body diagram. For equilibrium we can 
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write the force summation and moment summation to 0 to find the shear force and bending 

moment. 

Let us sum the forces. From this, we see that we have a 500 Newton force which is negative and 

we have this 30 Newton meter force acting for this distance; so which is ―30 times x minus the 

distance AD, which is 10, plus the shear force V equal to 0. From this, we get V as 500 plus 30 

into x minus 10 Newtons. Summing the moments, we have the moment of this 500 Newton force 

which is counter clockwise, so we have 500 into its momentum, which is x minus 5 meters and 

the moment of these distributed forces. The equivalent force of this distributed force lies in its 

centroid. We have the same as 30 Newton into x minus 10 is the total load, which is acting at a 

distance of x minus 10 by 2 from this section and we have the moment M. The sum of these has 

to be 0. From this, we have M as ―500 into x minus 5 minus 30 into x minus 10 squared by 2, 

so many Newton meter. 

Now we have for the complete length of the beam the shear force and bending moment equation 

from which the shear force as well as bending moments can be determined to draw the shear 

force and bending-moment diagram. So, let us draw the shear force and bending-moment 

diagram. 

Let these be the points, so we have the beam section AC, CD and DB. In the section AC, we 

have seen that the shear force is 0; so, let us say to some scale we are drawing the shear force. 

For the section CD, we have found the shear force to be 500 Newton; so it jumps to 500 Newtons 

and remains constant in this portion CD; the value of the same is 500 Newton. For the portion 

DB, we have seen that the shear force starts from 500 Newtons and linearly varies to a shear 

force value of 950 Newtons at B. This completes our shear force diagram.  

Let us draw the bending-moment diagram to some scale. We have already seen for the section 

AC we have bending moment to be 0; for the section CD, the bending moment is linearly 

varying; for this section DB, it varies as a second-degree curve. The value of the bending 

moment at this point and this point can be found from these equations and can be marked for the 

given scale. We know that this value is 13375 Newton meter and the same way this will be 1500 

Newton meter. So, in this way we can construct the shear force and bending-moment diagram for 

beams with concentrated or distributed loads. 
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(Refer Slide Time: 38:08) 

 

For the distributed force, if we consider the differential relations of equilibrium rather than the 

algebraic relations of equilibrium, the construction of shear force and bending-moment diagrams 

becomes easier. So, let us formulate the equilibrium of a portion of a beam subjected to a 

distributed load. 

Here in the picture you see a continuous loading function say w(x) which varies with respect to 

the length of the beam. For the purpose of deriving the relations, we have considered the loading 

to be in the positive y direction. 

Let us consider a free body diagram of a small portion of this beam. If we take the free body 

diagram of a portion up to C and let us say for the beam, we have the shear force in the two sides 

of the beam as depicted in this picture. 

Now, let us take a section at a very small distance, say delta x, on the right hand portion of the 

beam. If we consider the free body diagram, we will have a shear force which has changed also 

incrementally. In the same way, we can consider the moments also. 

This picture shows the free body diagram of such an incremental beam section. At C, we have 

this shear force and bending moment, all in the positive sense. For a section D, which is at a 

distance of delta x we have the shear force and bending moment incremented by a small value 
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delta V and delta M. We have a loading curve and the total load in this section is w delta x. We 

can write the equilibrium equations for this elemental beam section to get the differential 

relation. 

(Refer Slide Time: 41:53) 

 

Let us first derive the relation between the load and the shear force. For equilibrium of this 

element CD, the total forces have to be 0 from which we get minus V, the force at C, plus the 

upward force V plus del V at D plus the upward forces which are applied, that is w delta x, on 

this incremental beam portion to be equal to 0. 

In the limit, we get dV by dx as ―w; so, if we integrate this quantity we get the shear force for 

any particular section between CD. If we integrate this value from C to D, we get the difference 

in the shear force between the section D and C as the negative of the area under the load curve 

because this value, that is integral wdx between C and D, is nothing but the area under the load 

curve. So we have this relation that the change in the shear force is equal to the negative of the 

area under the load curve. This property can be used to construct the shear force diagram. 
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(Refer Slide Time: 43:57) 

 

Similarly, let us consider the bending moment and shear force relation. We have the moments M 

plus delta M, which is counterclockwise, and so a positive value and a clockwise moment of M, 

so which is negative plus the moment due to this force V, which is V times delta x. We are 

taking the moments about this point D minus the moment of the load about this point; so we are 

considering an equivalent load passing through its centroid. So we have ―w delta x into delta x 

by 2. In the limit we get the relation between dM by dx is equal to ―V. 

If we integrate this relation between C and D, we find that the difference of the moment between 

D and C is equal to the negative of the area under the shear force curve. So these two relations 

can be used to draw the shear force as well as bending-moment diagrams.  

We will consider an example. 
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(Refer Slide Time: 45:42) 

 

Let us take a beam AB with an uniform loading of w Newtons per meter for the entire length of 

the beam L. First, we determine the end reactions and it can be quickly found that these reactions 

have to be equal to half of the total load. The total load is area under the load curve which is w 

times of L, so we have the reactions at A as well as B as wL by 2. 

Once we have determined this reaction, let us construct what we call as the load curve where we 

depict all the loads, both the applied load as well as the reactions in the diagram. We have the 

reaction RA at A which is a positive value of magnitude wL by 2; so, we mark it as a point load 

or a concentrated load at this point A. At B, we have the reaction RB whose magnitude is again 

wL by 2, so we mark it as a concentrated load. In between A and B we have this uniform load 

which is negative because it is a downward load and so we mark ―w Newton per meter. This 

shows the negative loading between A and B. 
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(Refer Slide Time: 47:41) 

 

Now let us see how to determine the shear force curve from this loading curve. For the points 

where we have concentrated loads, we have to use the algebraic relations to find the shear force. 

So we can find the shear force at A.  

Now let us see how to determine the shear force between A and B. If we consider a section at 

any distance x from this end, the shear force at this section is let us say designated as V, then we 

have the relation V minus VA, which is the shear force at A, equal to the negative of the area 

under the load curve which is nothing but the area under this curve. 

We can find that the shear force at A is ―wL by 2 and so the shear force at any section is equal 

to w times of minus L by 2 plus x. We have at A the shear force minus wL by 2 and it linearly 

changes to wL by 2 at B. At any point, the value of the shear force is equal to the negative of the 

area under the load curve. 

Once we have constructed the shear force curve, we can determine the area under the shear force 

curve and thus, we can move on to draw the bending moment curve. 
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(Refer Slide Time: 50:15) 

 

Here we see that the shear force is linearly varying. The area under this curve can be found out 

and the bending moment at any section, say a section at this point, is equal to the negative of the 

area under the shear force curve, that is, the area of this portion and that will be the bending 

moment at this section. 

We can find that the bending moment at A is 0; so the bending moment at this point will be the 

bending moment at A minus the area under this shear curve. Already the area under the shear 

curve is negative, so we have the positive value of M. In this way, we complete the bending-

moment diagram for the entire portion of the beam. 

From these diagrams, we can note certain properties. We see that the maximum value of the 

bending moment occurs at a point where the shear force curve crosses the abscissa. The 

maximum value of the same is equal to wL square by 8 in this case. 
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(Refer Slide Time: 52:06) 

 

Certain other things that we can note from these shear force and bending-moment diagrams are 

that these equations are obviously valid for points where we do not have any concentrated loads 

or concentrated couples; because, there we will have a discontinuity and we cannot use this 

differential relation. The change between say the shear force between two points is equal to the 

area under the load curve and the same is valid for the bending moment curve also provided 

there are no point loads or point couples. 



19 

(Refer Slide Time: 53:03) 

 

We have found from this example that this can be conveniently used to draw the shear force and 

bending-moment diagrams. One more interesting thing that we note is the degree of the curve is 

one degree higher between the load curve and the shear curve and for the load curve and the 

bending moment curve the degree is two degrees higher. 

Here we see that the load curve is a constant, so we have a constantly varying shear curve. The 

bending moment curve varies as a two-degree curve. In this case, it is a parabola. This way it is 

possible to construct the shear force and bending-moment diagram. We have also seen that at 

places where the shear force curve crosses the abscissa, we have the possibility of the extreme M 

value for the moment. 

These characteristics can be used to draw the shear force and bending-moment diagrams for the 

beams. Let us consider one example. 
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(Refer Slide Time: 54:35) 

 

Let us say we have a beam with a pin reaction at A, the roller reaction at B, the uniformly 

varying load of say 100 Newtons per meter and a point couple at say the point D which is equal 

to 60000 Newton meter. Various dimensions are 30 meters, 30 meters and 30 meters  

First, we determine the end reactions. From the equilibrium of the complete beam, we know that 

we have two components of reaction: Ay and Ax at A. At B, we have a single component of 

reaction that is By. By considering the free body diagram, we can determine these values. 

Summing the moments about A and equating it to 0, we find that the reaction By has to be 1000 

Newtons and the reaction Ay has to be 1500 Newtons. We do not have a horizontal component of 

the reaction that is Ax is 0. 

Now that we have determined these reactions, we can construct the load curve. So we have a 

1000 Newton force at A or let us say this point is C. At A, we have the reaction which is 1500 

Newton. Then we have the negatively applied load which is uniformly varying. At B, we have 

the upward reaction of 1000 Newton force. So from this load curve let us try to determine the 

shear force curve. 

At C, we get the shear force as 1000 Newtons from the algebraic relations by considering the 

free body diagram of a portion between, let us say, this C and A. Now, we see that between this 
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point C and A there is no change in the load and we do not have any loads; so the shear force 

remains constant. At A, we have a concentrated load of 1500 Newtons which is an upward force 

in this diagram; so the shear force curve goes down by 1500 Newtons and the shear force at this 

point is ―500 Newtons. This can again be found by considering the equilibrium of the portion 

AC. 

For this portion, where we have this uniformly varying load, since the load curve is linearly 

varying, the shear curve will be varying with one degree higher. That means it will be quadratic 

in nature. At this point, it will rise by a value equal to the total area under this curve. Let us draw 

it. (Refer Slide Time: 1:00:14 min) 

We know that it has to be a quadratic curve. The total area under this curve is 1500 Newton and 

thus it rises to the point with positive 1000 Newton shear force value. Between this portion and 

B, we do not have any change; at B, we have this 1000 Newton positive force, so the shear force 

curve comes down. These are the various points on the beam. 

From this shear force curve, we can determine the area under this curve and we can use the same 

to construct the bending-moment diagram. So at C we have a 0 bending moment. The area under 

this curve in this portion CA constantly increases and the bending moment is negative of the area 

under the shear force curve, so it has to be linearly increasing. Then for this portion, it is a little 

more difficult to directly determine it. So let us consider the portion BD. At D we have a 

negative moment and the area under the curve constantly increases and between this portion AB 

it has to be one order higher, so it becomes a cubic curve. In this fashion, we can construct the 

shear force and bending-moment diagrams using the differential relations. 

In the next class, we will continue our discussion and we will see determining the internal forces 

in the other class of commonly used element, that is, the cable.  


