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Engineering Mechanics 

Prof. U. S. Dixit 

Department of Mechanical Engineering 

Indian Institute of Technology, Guwahati 

Introduction to vibration 

Module 15 Lecture 37 
Forced Vibration  

(Damped Undamped) 

Last lecture, we studied free vibration problems. Specifically, we studied the behavior of two 

systems. 

(Refer Slide Time: 01:26)  

 

One is a damped natural vibration and another is undamped vibration. In damped one, the 

damping is present and in undamped, natural vibration damping is not present. Now, we 

specifically took two systems. This is the spring mass system. We have studied that problem and 

then another model was that in which we attached a dashpot. We attach a dashpot here and we 

put like this. Here, if we make the free body diagram of this, this was having kx, the force.  

Therefore, governing equation was naturally, mx double dot is equal to minus kx. Whereas in 
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this system, this is mass m and this is kx. This will basically be cx dot. Therefore, governing 

equation was mx dot is equal to minus kx minus cx dot. No external force term was present. 

(Refer Slide Time: 03:30) 

 

In this lecture, today, we are going to study forced vibrations with damping and without 

damping. Vibrations that take place under the excitation of external forces are called forced 

vibrations. When we put that in this one, when the excitation is oscillatory, the system is forced 

to vibrate at the excitation frequency. What happens, when we apply a force on a spring mass 

system, suppose we know a mass is there and it is held by a spring then we displace the mass. 

Naturally, we have created a disturbance from its equilibrium position. So, the natural vibrations 

may start, but the natural vibrations that is free vibrations, they will decay with time because of 

the presence of the damping. 

If damping is not there, then of course these free vibrations will not decay, but because there is a 

damping, these decay with time. In any system, damping is always present. There is no system in 

which there is no damping. All systems, because undamped case is just an idealization, therefore 

what happens? These vibrations will decay, but because there is a force present that keeps 

vibrating, we are mostly interested in the steady state response. Then the system will vibrate with 

the excitation frequency. If the frequency of excitation coincides with one of the natural 

frequencies of the system then we get a condition of resonance in which dangerously large 
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oscillations may result. Large amount of oscillations take place when there is a condition of the 

resonance. 

Now, we are going to study the mathematical treatment of that forced vibration. French 

mathematician J Fourier, who was born in 1768 and died in 1830, showed that any periodic 

motion can be represented by a series of sine’s and cosines that are harmonically related. That 

means you have a periodic function, suppose you have a periodic function fx, it can be 

represented by a0 plus a1 sin omega x plus a2 sin 2 omega x like that, there may be so many terms 

upto infinite. Then you have b1 cos omega x plus b2 cos 2omega x like that. So, cosine and sin 

terms are there. In a general case, that Fourier, we will not discuss about the Fourier series 

method. 

However, we know that if we have any periodic motion that can be represented by a series of 

sine’s and cosine’s. Therefore, the study of forced vibration under the action of a harmonic 

excitation force is very important, because suppose if we can find out the expressions for that 

what happens? When the force f is equal to a1 sin omega t then we can take another force f is 

equal to another a2 sin 2 omega t. Therefore, under the action of combined terms, the response 

will also be combined, because this system if we take k and m and even damping coefficient c as 

a constant, then this is a linear system. That means, we can simply find out the displacement by 

superposition under the two circumstances. 
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Therefore, let us try to study that. This is mass then this is a spring then this is dashpot and this is 

x. There is a force F acting here. Now, this will be F0 sin omega t. Let us assume that F is equal 

to F0 sin omega t that means you have got a sinusoidal forcing function. This is kx then this is cx 

dot; kx is the restoring force and kx is this one. Therefore what happens? Now this is the free 

body diagram of mass m. There is a force F0 sin omega t. This is kx and this is cx dot. 

(Refer Slide Time: 09:00)  
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Then consider the spring-mass-dashpot system. The mass is displaced by distance x and its free 

body diagram is as shown. From this figure, we see that the equation of motion is mx dot dot 

plus because the equation is basically mx dot is equal to minus kx minus cx dot. Therefore, it can 

be written as plus F0 sin omega t. Therefore, this can be written as mx dot dot plus kx plus cx dot 

is equal to F0 sin omega t.  

Solution to this equation consists of two parts; one is called the complementary function, which 

is the solution of the homogeneous equation. That means, if we solve mx double dot plus cx dot 

plus kx equal to 0, we will get one solution that is called solution of the homogeneous equation. 

This equation mx dot plus cx dot plus kx is equal to 0 is called homogenous, because if x equal 

to a, is the solution then x is equal to constant times a, is also a solution. That means, if one 

solution is x then naturally cx is also a solution. So, it is totally homogeneous that it is called 

complementary function. The other one is that particular integral that depends upon the term on 

the right hand side. In this case, it is F0 sin omega t. So, the combined motion is basically just the 

combination of complementary function and particular integral. 

The physical significance of this is that when we displace a mass by some force, then combined 

effect which we get, is the sum of these two things; that means, natural vibrations, that mass 

particle starts vibrating in natural mode and then forcing term vibrations are also present. 

Therefore, the motion is the combination of these two. The particular solution in the equation is a 

steady-state oscillation of the same frequency omega as that of the excitation. 
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We can assume particular solution to form this one. We just assume, let us see that what 

happens? 

x is equal to let us say X sin omega t minus phi, where X is the amplitude of oscillation and phi 

is the phase of the displacement with respect to the excitation force. If you substitute this 

expression in the equation of motion, you get like this; minus m omega square X sin omega t 

minus phi, because X sin omega t minus phi has been differentiated two times. So, you get minus 

m omega square X sin omega t minus phi plus c omega X cos omega t minus phi. It has been 

differentiated one time plus kx sin omega t minus phi is equal to F0 sin omega t, or k minus m 

omega square sin omega t minus phi plus c omega cos omega t minus phi into x is equal to F0 sin 

omega t, that expression we got. 

We have to find out the expression for x. If we carryout trigonometry here, can I simplify this 

expression, k minus m omega squared sin omega t minus phi. If we just see that if I can represent 

them in trigonometric form, if this is theta and if this is k minus m omega square and this is c 

omega and this is under root of k minus m omega square plus omega square plus c square omega 

square. Finally, we can get sin theta type of term. 
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If we divide this whole thing by k minus m omega square divided by that thing this we are 

dividing this thing by this expression that means square of these two terms this and this then take 

the under root, we divide by sin omega t. Similarly, here c omega t and here this is cos omega t 

minus phi, like that multiplied; since we divided by under root k minus m omega square plus c 

square omega square. Therefore, we have to multiply it also by this thing then this expression 

remains same. Therefore, the previous expression and this expression is basically same. This is 

equal to F0 sin omega t. 

We can take this common. Here k minus m omega square whole square plus c square omega 

square multiplied by cos theta, because this can be written cos theta and this is sin theta cos 

omega x is equal to F0 sin omega t where theta is basically like this. 
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This is k minus m omega square and this is c omega. Therefore, by Pythagoras theorem, this is k 

minus m omega square plus c square omega square. Simplifying this expression, we may write 

this as sin omega t plus phi, because this is the formula of sin omega t plus phi. This one cos 

omega t minus theta this is sin omega t plus theta minus phi basically, because this is a b. So, sin 

omega t minus phi plus theta. Apply the formula of sin a plus b; so, sin a cos b. So, sin omega t 

minus phi cos theta sin cos omega t minus phi and this is theta. So, this is sin omega t minus phi 

cos theta cos omega t minus phi sin theta. So this is like this. 

In this expression this is omega t this is equal to like that so sin omega t minus phi plus theta is 

equal to F0 sin omega t. We have obtained this expression. 
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If we compare the right and left hand side of this thing, sin omega t, this has to be equal. So, 

omega t plus theta minus phi should be equal to 0. 

(Refer Slide Time: 17:08)  

 

That means we have to say, where X equal to F0 by this one and omega t plus theta minus phi is 

equal to omega t. This condition has to be because for all t, if it has to be correct then this 

relation has to be satisfied which gives phi is equal to theta; that means, which is equal to 
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basically, tan inverse c omega k minus m omega square. We can say tan theta is equal to c 

omega divided by this thing. So, tan omega theta is equal to tan inverse c omega k minus m 

omega square. We can write X and phi. So, X is equal to F0 under root k minus m omega square 

plus c omega square. 

(Refer Slide Time: 18:01)  

 

We can write X as F0 by k divided by k. So, 1 minus m omega square by k whole square plus c 

omega by k whole square and c omega by k 1 minus m omega square by k. It is to be noted that 

F0 by k is the static deflection of the spring under the action of that force F0 k. Maximum 

amplitude of the force is F0. So, if you apply maximum force then you will get the static 

deflection as F0 by k. 
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We know that omegan is equal to under root k by m that is the natural frequency of undamped 

oscillation. Now, Cc is equal to 2m times omegan which is called critical damping and zeta is 

equal to C by Cc, that is called damping factor. We can write c omega by k as c by Cc Cc omega 

by k, that means 2 zeta omega by omegan, because Cc is equal to 2 Cc by Cc 2g. This Cc is equal 

to 2 m into omegan and m by k is basically 1 by omegan square. We just do that simple. So, we 

will keep C omega by k is 2 zi where zi is damping factor omega by omegan. 
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This gives us X divided by F0 by k is equal to 1 under root divided by under root 1 minus omega 

by omegan Whole Square whole square plus 2zeta omega by omegan whole square. This is also 

zeta. This tan and tan phi is equal to 2zi omega by omegan 1 minus omega by omegan Whole 

Square. 

Why we have written this in this form? As we already mentioned, F0 by k is the maximum static 

deflection. X divided by F0 by k gives the ratio of that dynamic amplitude to static amplitude or 

maximum static deflection. Similarly, here we get phi, phi is the phase angle, because we started 

like this. 



13 
 

(Refer Slide Time: 21:09)  

 

We assumed that the force was F0 sin omega t but our displacement was sin omega t minus phi; 

that means, there was a phase difference between two. So, this gives the idea about the phase 

difference. 

(Refer Slide Time: 21:23) 

 

In this case, if c is equal to 0 then there is a no phase difference. There is no damping present, 

then but if there is a damping present then there is a phase difference between the applied force 
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and the response we get. So, that is because effect of damping when it is like that, so that 

damping also introduces a force. Therefore, this comes X is equal to F0 by k under root 1 minus 

m omega square by k whole square plus c omega by k whole square and phi is equal to C omega 

by K whole divided by 1 minus m omega square by K. In this, this is tan phi.  

(Refer Slide Time: 22:33)  

 

Using this, now notice that in this equation A, F0 by k is the static deflection and X is the 

amplitude of vibration. So, amplitude of vibration depends naturally, what is the frequency ratio? 

That means omega by omegan. What is the natural frequency? Therefore, the ratio X by F0 by k 

is often called the magnification factor. How much times the dynamic amplitude is more than the 

static deflection and depends on omega. 
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Now, plots of magnification factor versus omega by omegan have been plotted, we have shown. 

Actually for three damping values that is; tau is equal to 0.01 that is very low damping, tau is 

equal to 0.2 and tau is equal to 1. In this case, at omega by omegan equal to 1. If damping is very 

low then a resonance type condition occurs. So, we see that the magnification becomes under 

almost infinity. Otherwise also, nearby this region, near the natural frequencies, the 

magnification factor becomes very high. 

However, if we have critical damping then magnification factor is always less than 1; that means 

if omega is very high compared to the natural frequency then the magnification factor 

approaches zero. This is very interesting, that means at omega is equal to 0. That means in static 

case, if you just apply some force then there will be displacement. That will be basically X by F0 

by k. Therefore, you will get the same type of thing, but if we apply a very high frequency then 

displacement approaches 0. Why? Because the mass is not able to respond, because of the 

dashpot it is not able to move at all. Therefore, there approach is 0.  

Similarly, but when tau is equal to 0.2 then at resonance it will be very high, but of course, it will 

not be infinite. If there is a damping present in the system, it will not allow the vibration to 

become infinite, of course it becomes very high. Similarly, in the case of the low damping, it is 

like this.  
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When the damping is very small, the magnification factor is very large in the vicinity of natural 

frequency. Hence, the forcing function should not be closed to natural frequency, if the 

vibrations have to be avoided. For very large value of omega by omegan, the magnification factor 

becomes very small. Hence, the operating or forcing frequency should be four to five times the 

natural frequency, for best results. That means, if you have the natural frequency of some system 

is 100 hertz. If you have the forcing function frequency at 400 hertz then you know that it will 

not. We might have noticed these type of examples, like a fan makes lot of noise when it is run at 

a low rpm, but when the rpm is increased, then it does not make that much noise because of this 

phenomena. 

Similarly, some cars also, when they run at a low speed then they will show vibrations, but at 

high speed the vibrations are not seen. 

(Refer Slide Time: 27:02)  

 

For undamped forced vibration, now undamped, one damping factor zeta is equal to 0. Thus, we 

get X is equal to F0 by k 1 minus omega by omega square and we get phi is equal to 0. There is 

no phase difference between the forcing function and the response. Then we are getting this type 

of expression. Here also, it is seen that if omega is very small then X is equal to, of course F0 by 

k, but if omega is very large then this X will approach 0 because of this term F0 by k. So, this 
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term will approach 0; so, F0 by k divided by minus omega by omegan square. This term is 

approaching infinity. You get something like, here 0. So, this is the interesting thing. 

If you have a spring mass system like this, there is a very flexible spring. If you apply force of a 

very high frequency, this will not be able to move that means it will not carryout any vibration.  

Now, complementary solutions known as the transient solution, is of no special interest since 

with time it dies out with a small amount of damping which can never be completely eliminated. 

Therefore, we have not discussed about the complementary solution which are called transient 

solution. This is of no special interest. However, in undamped case, one can study actually and 

one can get some insight about the cases in which damping is almost 0. 

(Refer Slide Time: 29:35)  

 

Let us discuss, the other type of problem that is the problem involving the support motion. What 

is this, that if you have kept this on a support, this is a fixed support like this and this is mass and 

this is a spring and this is dashpot. Now, support itself is getting excited. Supporting is being 

excited and support is undergoing the displacement y and mass itself is undergoing the 

displacement x. This is the equilibrium position of the mass and x is the displacement from this 

position. 
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Let y be the harmonic displacement of the support point. If we measure the displacement x of the 

mass from an inertial reference, we can make from the free body diagram of the mass. It is 

subjected to spring and viscous force. Equation of motion is like this. This is mass, it is stretched. 

Suppose, you have pulled the mass by amount x, but the support by that time also has moved by 

a distance y. So, net stretching of the spring is k(x-y). Therefore, the spring will provide a force 

k(x-y) in this direction. 

Similarly, the net velocity of the mass from inertial reference frame, means from outside 

observer which is on a fixed frame, which is from that frame he is observing and he says that net 

velocity of the mass is x dot minus y dot. This is the velocity that is the relative velocity, because 

otherwise the absolute velocity of the particle is x dot; mass m is x dot. Therefore, support itself 

is moving with y. Therefore, net velocity is relative velocity between this thing is x dot y dot. 

That means dashpot is there. So, dashpot’s piston is moving with x dot. Cylinder itself is moving 

with y dot. So, difference is x dot minus y dot. 

Therefore, cx dot minus y dot is equal to k(x-y). Now, put z is equal to x minus y.  If we put z is 

equal to x, we get mx dot first, by Newton’s law, mx dot is equal to minus k x minus y minus c x 

dot minus y dot. Now, we are getting the terms x minus y. Therefore, better to write it like z, the 

y variable gets reduced like that. 



19 
 

You say z is equal to x minus y, we get mz double prime. Here, we do not have any y term. So, if 

we put that here also, mx dot minus y dot then since we have added here, therefore, from here we 

can subtract that thing. We can add here also so it becomes minus my dot. Therefore, it becomes 

mz double dot plus cz dot plus kz is equal to minus m y double dot, and this is y is equal to, if we 

assume that support is getting excited by y is equal to y sin omega t. Therefore, this is minus m 

omega square y sin omega t. So, you are getting this thing. 

(Refer Slide Time: 33:34) 

 

Its solution can be immediately written as z is equal to Z sin omega t minus phi. Because this 

type of thing we have already done. This is like a force. Instead of the force F0 sin omega t, we 

are having m omega square Y. So, m omega square Y is like a force. So, z is equal to Z sin 

omega and Z is equal to m omega square by Y under root k minus m omega square whole square 

plus C omega square and tan phi is equal to C omega k minus m omega square. 

In this case, if the frequency ratio omega by omegan is large then Z by Y becomes equal to one 

for all values of the damping ratio. Let us discuss this point in detail. We have seen m omega 

square tan phi Z is equal to m omega square Y under root k minus m omega square plus C omega 

square. Now, tan phi is equal to C omega k minus m omega square. 
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In this case, Z by Y is equal to one for all values of the damping ratio. How can we prove this 

one? Let us write Z is equal to omega by omegan is large; that means, Z is equal to m omega 

square Y divided by k minus m. So, we take that. Maybe we can take m square common, so, m 

can be taken common here. This becomes k by m. k by m minus omega square whole square plus 

C square omega square. This is equal to m omega square Y. This is m and this will become k by 

m minus omega square omega square. So, this is under root omegan square minus omega square 

whole square plus C square omega square. 

Now, omega by omegan is large that means omegan is smaller, much smaller in fact in 

comparison to omega square. Therefore, here omegan square minus omega square can be written 

as omega square. So, this will become omega to the power 4 and this becomes m omega square 

Y divided by m under root omega to the power 4 plus c square omega square. Since omega is a 

very large number, omega whole term is very high in comparison to C square omega square. 

First of all, damping is always less than 1 and omega. Therefore, what happens? This I can write 

as m omega square Y divided by m omega square that is omega square. So, this is equal to Y.  

Therefore, Z is equal to Y. Irrespective of damping Z is equal to Y if omega by omegan is large. 

That means, if the support is being excited by a very high this one then Z will be equal to Y, but 

then what happens, Z is equal to Y but Z is basically X minus Y. That means, we have said Z is 

equal to X minus Y and so, that is equal to Y. So, what happens is that Z by Y is almost this one. 

That means, the relative displacement is almost same as the support displacement.  
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Using the characteristic of this type of response, you know that we have got response and 

understanding that we can design various types of systems. You know what is our primary 

interest? Sometimes, you have to design the system for measuring the acceleration. Sometimes, 

you have to isolate the vibrations. So, these types of things are there. 

(Refer Slide Time: 39:35)  
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This briefly we have discussed. Let us discuss one or two other interesting things. This factor, 

which you see here, F0 by k 1 minus omega by omegan square whole square, if omega by omegan 

becomes equal to 1, this will become 0. 

(Refer Slide Time: 39:53)  

 

This factor is 1 by 1 minus omega by omegan square is called resonance factor, rho. We can 

denote it by rho. Therefore, if omega is equal to 0, the resonance factor is 1. If omega is equal to 

very large, resonance factor is 0. 

If omega is equal to omegan resonance factor is infinity. We have seen that you perhaps get the 

idea that at omega is equal to omegan, that amplitude of the vibration becomes very high. Let us 

solve the differential equation when there is a resonance. We know that the differential equation, 

suppose mx dot plus kx is equal to kt say x, kx is equal to F cos omega t. Let us say, omega is 

omegan. So, omegan t and this can be written as x dot plus k by m x is equal to F by m cos 

omegan t. Now, k by m is equal to omegan square. Hence, x dot plus omegan square x is equal to 

F by m cos omegan t. This is the differential equation which has to be solved. 

Here, we can see that, if we just put x is equal to A sin omega t, that will not satisfy this 

differential equation in this case, because this is the thing therefore, in this particular case, when 

the you are getting that same omegan here and omegan here like that, therefore, you will get a 
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particular solution. In this case, is xp is equal to t times A cos omegan t plus B sin omegan t that 

is it and for this C a. Now, we can have these are the constants. We can have cases. 

Let us see, what happens when x is equal to 0 at time t is equal to 0 and x dot is also equal to 0, 

that means displacement and velocity both component are 0. So, what will happen? 

(Refer Slide Time: 43:54)  

 

This will become, at t is equal to 0. So, let us write the solution again. x is equal to t and this is A 

cos omegan t plus B sin omegan t. Now at t is equal to 0, x is equal to 0. Let us see x dot is equal 

to A cos omegan t plus B sin omegan t. So, we have to put that condition and after that, we will 

get some solution which will be equal to xp is equal to F0 divided by 2m omega0 t sin omega0 t. 

That means, at natural frequency the vibrations will always keep increasing. So, this amplitude 

of vibration will always keep increasing. So, this type of phenomena will come. So, with time the 

magnitude always keeps on increasing. This is what we observe. This is the type of resonance. 

So, this condition has to be avoided. 
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Let us see that if in case damping is very small and your omega is very near to omega 0, that 

means omega is almost omegan then x is equal to F0 divided by m omega 0 square. This is omega 

omegan square minus omega square cos omega t. This is the particular integral and this can be 

written as F0 divided by A1 minus omega by omegan whole square and this is cos omega t. 

Therefore we consider that even if there is no damping, let us take the case of no damping, then 

there will be a homogeneous solution also. That will be the complementary part. Complementary 

function is given by C is a constant cos times omegan t minus phi, where phi is some angle. 

Therefore, x is equal to C cos omegan t minus phi plus F0 divided by m omegan square minus 

omega square cos omega t. This term has come like this. In this, we put the condition that at time 

t is equal to 0, x is equal to 0 and  at time t dot t is equal to 0, x dot is also 0.  

That means, we are applying the forcing function at the time when the particle is at rest and from 

that equilibrium position. Then we will not show that required algebra. Then C and phi can be 

eliminated and you get x is equal to F0 divided by m. This will be equal to omegan square minus 

omega square. This is cos omega t minus cos omegan t. So, this can be written as cos omega t 

minus cos omegan t. We have the formula for cos C minus cos t. 
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This can be written as, x is equal to 2F0 divided by m omegan square minus omega square sin 

omega 0 plus omega divided by 2 into t sin omega 0 minus omega divided by 2 into t. So, if we 

plot this thing here, plot may look something like this and then again it goes like this. What 

happens, because omega 0 minus omega is very small, therefore, this time period will be very 

large and we will get the phenomena of beats type of thing. So, here we will be getting the beats 

type of thing. Like that, we can actually study different type of problems. 

We will conclude here. So, today I have discussed about forced vibration problem in which we 

considered damping and this one. Let us consider the cases, you will always not getting a spring 

mass system. Sometimes you have got the axial rod, if you have got axial rod and you are 

applying a force. Here, there may be a mass and you are applying a force here. Even this type of 

problem can be solved by a spring mass system. So, you model it like a spring and this is the 

mass. Some portion of the rod mass can also come here and it can be damped at that point and 

then it becomes like that one. 

Supposing you are applying the displacement; this is the force, this is a rod of length L and this is 

the force. If you apply a force F, cross sectional area is A. Therefore, this will give stress is equal 

to F by A and strain is equal to F by A divided by A times E. E is the Young’s modulus of 

elasticity. Therefore, displacement delta of the end point is equal to FL divided by AE. F by delta 
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is called stiffness k that is equal to AE by L. In this case, the spring constant can be written as 

AE by L and you can actually solve this problem. So, axial vibrations of this system will be 

more, having more frequency if A is more.  

(Refer Slide Time: 54:26)  

 

Similarly, if you have some cantilever beam type of thing here and if you apply some load delta 

here, you have F is equal to PL cube by 3 EI, delta is equal to PL cube by 3 EI. This is known 

from the strength of material. You will come to know about that thing experimentally. 

Otherwise, what happens? Take a cantilever beam. Apply some force and measure its deflection. 

Then you know that one can plot P versus delta P is the force and slope of this gives you stiffness 

dp by d delta. As the length increases, its stiffness decreases. 

Therefore, you can do that one simple experiment. You can make that you take a beam type of 

thing and here between two adjustable clamps you put it and clamp it properly from some screw. 

You can always see that when the length was large and if you displace it slightly, you can 

observe its natural vibrations. It will vibrate with a longer time period that means less frequency. 

If the same thing you displace and you make like this thing has been displaced this side and now 

you have like this here. If you vibrate then the frequency of vibration will be very high and this is 

how it will be doing. Therefore, these types of simple experiments one can do and one can 

observe. In the next lecture, we will discuss the vibration of rigid bodies.  


