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Free Vibration 

Today, I am going to speak on free vibration. The study of vibration is concerned with the 

oscillatory motion of bodies and the forces associated with them. 

(Refer Slide Time: 01:21) 

 

You might have seen number of bodies which will keep on oscillating. In some bodies, even if 

there is absence of force, they keep vibrating for sometime. For example, if you have a tight 

string and you displace it slightly, then after you remove the force also, your hand will keep 

vibrating for sometime. Similarly, if you have a spring mass system and you displace the mass 

slightly, it will start oscillating. These are examples that without of presence of any force, the 

body is vibrating, but at the same time, you may have another example that there is disturbing 

force. 



2 
 

The force is like, if you would have travelled in a bus, the bus is travelling, the road is rough. So, 

because of the rough road, the forces are transmitted through your tyres and they come up to the 

seat. So, you feel those types of vibrations. There are vibrations; they may be because of some 

external force, or without external forces also, that body can oscillate between two positions. The 

study of vibration is divided into two general classes; free vibration and forced vibration. Free 

vibrations take place when a system oscillates under action of forces inherent in the system itself 

and when external impressed forces are absent. 

If there are no forces, then body, obviously will be in equilibrium. Therefore, there must be some 

forces which will cause the acceleration of the body and body’s velocity, if we change like that it 

will keep vibrating. However, there are no external forces. The system under free vibration will 

vibrate at one or more of its natural frequencies. 

If we take a spring mass system and disturb it free, for some distance, that means we displace the 

mass by some amount, then in that case, there is where motion of the mass starts and this is 

called free vibration. There, the spring force is always present and at the same time, you have 

inertia force, bodies under equilibrium, under the spring force and inertia force. So, it can be seen 

that it starts with two, with one particular natural frequency. That natural frequency, the property 

of the system is independent of the how much you have displaced. We are interested to find out 

the natural frequency. 
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Let us go to the next slide. Vibrations that take place under the excitation of external forces are 

called forced vibrations. When the excitation is oscillatory, the system is forced to vibrate at the 

excitation frequency. If the frequency of excitation coincides with one of the natural frequencies 

of the system, a condition of resonance is encountered and dangerously large oscillations may 

result. You may see that, suppose there is a spring mass system and you apply some oscillating 

force, in the beginning the motion can be of some different kind, but after some time, the system 

will vibrate only with the natural frequency; only with the frequency of the forces itself, 

whatever forces you have kept. So, it will vibrate with that; that is, in steady state, the frequency 

of excitation coincides with one of the natural frequencies of the system.  

A vibrating body can vibrate in a number of ways. However, first we will study that very simple 

case, that is called simple harmonic motion, in which that displacement can be represented by a 

sin function or a cosine function, because sin theta is equal to cos 90 plus theta. So, simple 

harmonic motion, a body is said to have simple harmonic motion, if it moves in a straight line 

such that its acceleration is always proportional to its distance from a fixed point and is directed 

towards the fixed point. This is one definition of simple harmonic motion. 

 In this, let us pay attention to each and every part. The body has to move in straight line; that 

means, if you have a spring mass system, mass may vibrate and it may move. It moves in a 
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straight line. Therefore, this is satisfied. So, this type of motion can qualify for simple harmonic 

motion. Acceleration is always proportional to its distance from the fixed point. That is another 

condition and is directed towards the fixed point. If the acceleration is not directed towards the 

fixed point or at least one particular point, then body will not come back to that point. The 

vibrations will not take place. So, that condition is also required. 

Suppose you might have done one experiment, seen, this pendulum. A pendulum is attached, if 

you slightly disturb it, it goes to new position and then if you release, it comes back but it over 

shoots the material position and reaches here. It keeps oscillating. Naturally, this ball is moving 

on the arc and it is not moving in a straight line. So, it should not be a simple harmonic motion. 

However, you can see that if angle theta is very small then it can be considered a straight line 

only. This segment, if you take a bigger circle and cut it here then the small portion that will 

appear is more or just like very close to a straight line. Therefore, approximately, simple 

harmonic motion can be obtained by this. 

(Refer Slide Time: 09:30) 

 

Oscillatory motions may repeat itself regularly. Suppose you have force vibration such as spring 

mass. This is or even if that in free vibration, you have a spring mass system and it may repeat 

regularly. We know that it goes, and after from 0 second it was here, at 5 second it went there, 

after 5 second 5 more second it came here then it went here. So, this type of behavior keeps 
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continuing or it may display considerable irregularity like in earthquake, earthquake vibrations 

are there, but they are irregular. 

When the motion is repeated in equal intervals of time, it is called periodic motion. That equal 

interval of time, when you have periodic motion, the repetition of time t is called the period of 

the oscillation. Its reciprocal f is equal to 1 by T is called the frequency. So, t is the time period, f 

is the frequency. If the motion is designated by the function x(t) then a periodic motion must 

satisfy the relationship, x(t) is equal to x(t plus T), T is the time period. At time period T, it 

should come back to the same position. So, x(t) is equal to x(t plus T), and that is the condition 

for a periodic motion. 

(Refer Slide Time: 11:21) 

 

Simple harmonic motion which is a periodic motion is represented as the projection on a straight 

line of a point that is moving on a circle at constant speed with the angular speed of the line OP 

designated by omega that means the simple harmonic motion. 
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There is a circle on which a particle is moving. It is connected by a string. You can assume that 

in a horizontal plane, we attach this string with the mass and it is moving in the circle. So, if it 

starts at time t is equal to 0, then theta at time t is equal to omega t, because we have said that it 

is moving. So, its angular position at any instant is indicated by theta is equal to 2 pi theta is 

equal to omega t. Why theta is equal to omega t? Because, at any point it is moving with a 

uniform velocity, so, at any point between two time intervals, the displacement should be same. 

So, omega must be some constant. So, theta is equal to some constant times time.  

Then, what you do that draw a projection. So, this point may be called O, this may be called P 

and this is may be M. Now, study the motion of M, how the point M moves. Do not study the 

motion of P, study the motion of M and see what type of motion is this. P is obviously moving in 

the same way it is going, but M is like this. In the beginning, M was here because P was here; so 

P. Then, as it moves here (Refer Slide Time: 13:52 min), the M keeps rising and finally when P 

is here, then P and M coincide and M goes here. After that, P goes from here to here, then M will 

move from top position to here. Then P goes from here to here; M goes from here to here; then, P 

goes from here to here; then M goes from here to here (Refer Slide Time: 14:16 min).  
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Naturally, when it is completing a circle, by that time M has gone from this point to this point, 

came back from this point to this point, came back from this point up to this point and then went 

to this point (Refer Slide Time: 15:00 min). So this motion is oscillatory motion type in one 

evaluation itself it went from here. 

Naturally, when it is completing a circle by that time M has gone from this point to this point 

came back from this point to this point came back from this point up to this point and then went 

to this point. So, this motion is oscillatory motion type. In one revaluation itself it went from 

here, came here then this this like that so this type of motion will repeat. Therefore, with the 

angular speed of the line OP designated by omega the displacement x can be written as x is equal 

to A sin omega. That we can write, displacement of this point can be written x, because A sin 

omega t. If A is the radius then this is naturally, this will be A sin omega t. Theta is equal to 

omega t. Therefore, acceleration is x double dot is equal to minus A omega square sin omega t is 

equal to minus omega square x. 

Thus, characteristic of simple harmonic motion is that the acceleration is always proportional to 

displacement pointing opposite to this displacement. If x is equal to A sin omega t then x double 

dot acceleration will be minus A omega square sin omega t that is minus omega square times x. 

Therefore, in a simple harmonic motion, acceleration is proportional to displacement pointing 

opposite to the displacement and it is that is the this thing that means pointing towards the origin 

whatever you have taken. 

The quantities omega, is generally measured in radians per second and is referred to as the 

circular frequency. Sometimes, term circular is dropped and it is just called frequency. 
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Since the motion repeats itself in 2pi radians, we have the following relation; omega is equal to 

2pi by T is equal to 2pi f. Omega t must be same as omega t plus T, where T is the time period 

and not omega t. It is sin omega t, because we know that, it is same as sin omega t plus 2 pi. So, 

what happens that you have 2pi is equal to omega T, where T is the time period. Therefore, 

omega is equal to 2pi by T, 1 by T is called the frequency. Therefore, this can be written as 2pi f. 

In every actual case of free vibrations, there exists some retarding or damping force which tends 

to diminish the motion. Otherwise, the body will always keep oscillating. You have seen that if 

you take a tight string and displace it slightly, it keeps vibrating for some time, but after that it 

stops. Why? Because of the presence of damping. Similarly, if you take that simple pendulum 

and displace it slightly, it keeps oscillating for some time and after that it stops. Why? Because 

of the damping. Therefore, if the damping forces are small enough, they can be neglected, 

because they are very small. So, sometime, we can study for considerable period of time, the 

motion keeps taking place and it can be neglected. 

Moreover, from designer’s point of view, it is conservative first to study the motion without 

damping. After that we see, what is the effect of damping. Damping will have effect on reducing 

the vibration. 
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A vibrating system is modeled by a spring mass system, in its most simple form. You can take a 

spring and hang it from a ceiling. At the other end, if you put a mass, it becomes a spring mass 

system and you can study this one. But it is not that the study of this spring mass system is 

limited only to this type of thing. Many other systems can be approximated by a spring mass 

system. You can always say that this is something like a spring. Suppose tight string is there and 

you displace. So, middle point behaves like, as if there is some spring. Similarly, if you have a 

rod and you have continuous rod, and if you are opposing by a force P, it displaces because of 

Hooke's law, elasticity is removed, the force goes back. So, it is basically a type of spring, the 

rod also can be modeled by a spring. 

Similarly, the mass may be distributed, but mass, you can concentrate at one point. So, you can 

make a simple model of that real system. Let us derive the equation of motion for a spring of 

spring constant, k. Here, one end of a spring, of a spring constant k is fixed and a mass is 

attached at the other end. When you put the mass, there is a displacement. This is the static 

displacement, delta d. This is the equilibrium position. At this point, W will be equal to k delta. 

Make the free body diagram of this one. 

This is mass, this is W and this k delta. So, it is in equilibrium. Now, disturb it slightly. You give 

the motion x. Then what happens, that the total restoring force is what spring has stretched by an 
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amount k delta plus x. Therefore, this is k delta plus x is equal to W and this is x dot, this is x 

double dot, x dot denotes velocity of that mass. x double dot denotes the acceleration of that. 

Those forces have been shown here. W and k delta plus Wx. 

 We see that W is equal to k delta, but here, there is a force W and other side, the force is k delta 

plus x. Naturally, it is unbalanced. So, unbalanced amount is kx. So, that is a restoring force. 

That will try to bring it back to the original position. 

(Refer Slide Time: 22:40) 

 

In the free body, let us summarize, the mass is being pulled by gravitational force W of 

magnitude mg, due to this spring stretches. The free body diagram of the mass is shown in the 

middle of this figure. The mass is balanced due to gravitational force and spring force. If the 

static deflection of the spring is delta, then k delta is equal to W is equal to mg. 
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If the mass is pulled down by a distance x, the spring force becomes k delta plus x. However, the 

gravitational force is mg only, which is equal to delta. Thus, there will be a net vertical force 

upward, which will start the motion of the mass. Applying Newton’s second law of motion, mx 

double dot mass times acceleration is equal to net force acting on the particle, that is W minus k 

delta plus x or mx double dot is equal to minus kx. This is the equation of the motion. So, we 

observe here that x double dot is equal to minus k divided m into x, k by m is a constant. It is a 

system property, k is the spring stiffness of the system and m is the mass of the system. So, this 

is constant. Therefore, acceleration is, where minus constant times x, acceleration is proportional 

to x and it is directed towards origin, because it is negative sign and the motion is obviously in a 

straight line, because we are talking about x-coordinate. If the motion was in two coordinates, 

then we would have used x y. So, this is the simple harmonic motion. 
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If we just define the circular frequency omegan by the equation n, omegan square is equal to k by 

m, or consider that since k times m is a constant, therefore, let me represent it by omegan square. 

Time being let us consider it a constant. The equation of motion becomes, x double dot plus 

omegan square x equal to 0 or x double dot is equal to minus omegan square into x. 

(Refer Slide Time: 25:46) 
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It has the following general solution. If you solve this equation, this will be x is equal to A sin 

omegan t plus B cos omegan t; that is the general solution of this type of problem. You can get 

this from differential equation or substitute this equation into that previous equation. You see 

that the equation is satisfied. So, the general solution of this equation is basically A sin omegan t 

plus B cos omegan t. The constants A and B can be determined from the boundary condition.  

For example, at t is equal to x is equal to x(0), if you put that boundary condition then x(0) will 

be equal to B, because what will happen, put t is equal to 0; so x(0), x at 0 is equal to 0. This 

becomes B cos omega. So, x(0) is equal to B. So, that is one thing. It is basically sin omegan t. 

This naturally has got a period of 2pi omega, because omegan must be… So, this must be the 

frequency, because omegan repeats. 

So, sin omegan t is equal to sin omegan t plus T. Therefore, we can say omegan into t is equal to 2 

pi or omegan is equal to 2pi by t, where this is time period. So, time period is equal to 2 by 

omegan.  

(Refer Slide Time: 27:39) 

 

Let us say, at t is equal to 0, x is equal to 0 and x(0) is equal to B. Similarly, x dot is equal to A 

omegan cos omegan t plus B omegan sin omegan t at t is equal to 0 x dot is equal to x dot(0). 
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Therefore, x dot(0) is equal to A omegan. If you put this thing, because this term, at t is equal 0 is 

0 therefore, A is equal to x dot (0) and divided by omegan. 

(Refer Slide Time: 28:15) 

 

Thus, the general solution of this problem can be written as x is equal to x dot (0) divided by 

omegan multiplied by sin omegan t plus x(0) cos omegan t. Here, we see that this is the general 

solution of the problem. If initial velocity is 0 then this will be the solution. If initial 

displacement is 0 only you provide the velocity and this will be the solution. The natural period 

of the oscillation is omegan into T is equal to 2 pi or T is equal to 2pi divided by omegan that 

means under root m by k. Therefore, what happens, the time period is proportional to 1 by under 

root k. It is proportional to under root m. 

If you take a spring mass system and suppose the spring is very stiff, and k is very high then time 

period will be almost 0, that means motion it will immediately come back to the same position. 

So, time period is 0. It vibrates and if k is equal to very small then time period becomes very 

high similarly about the mass. So, it is like this. 
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Natural frequency is given by fn is equal to 1 by T that means it is 1 by 2pi under root k by m. 

So, this is the type of motion and it keeps occurring. These are the simple equations of that. Now, 

we have to talk about viscously damped free vibration. In previous example, we considered only 

the restoring force of the spring that is kx. Now, we are going to consider a damping also. 

Viscous damping force is expressed by the equation, f is equal to cx dot, where x dot is the 

velocity of the system. We should also put minus cx dot, because it is opposite direction. So, this 

is that way. 
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Then we represent this system in which viscous damping, viscous damping means there is 

damping; that means, resistance is proportional to the velocity, but in the negative direction 

minus cx. So, that means acceleration is proportional to this is force, damping force is 

proportional to F(t). Take the mass then represent by a spring. Then again, we have a dashpot. 

Dashpot is one thing that suppose you take a system part which is filled with oil, and in this a 

piston is moving. So, this type of system is called dashpot. Here, the force is proportional to the 

velocity more, because you know that in a viscous material, if this object is moving, therefore, 

the force is proportional to velocity. Here, we can put F(t) as the force acting downward on the 

mass. Actually, you will not observe that in a system we always have dashpot but we are only 

modeling. That effect, the same type of effect which this dashpot provides, may be provided by 

some other mechanism. If a cantilever beam is vibrating, so many particles are having that 

influence. So, this is very complicated, but we can actually put like this. 
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Therefore, equation of motion is m x double dot plus c x dot plus kx is equal to F(t). That means, 

because if we can apply the D'Alembert's principle, we can say, the F applied force, or we can 

say mx dot. Newton’s law mass times acceleration is equal to F(t) minus cx dot minus kx. Now 

for free vibrations F(t) is equal to 0. Hence, m x double dot plus c x dot plus kx is equal to 0 for 

free vibration. This is the equation for free vibrations in the absence of damping.  

Let us assume that x is equal to A into e to the power st, where s is any number. So, it is any 

variable you define. Let us assume that, one solution is x is equal to A to the power st of this 

solution. So, see what happens, we have to put this value in this expression then ms square plus 

cs plus k e to the power st, is equal to 0.  
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This equation has been put which is satisfied for all values of t, when s square plus c by m s plus 

k by m is equal to 0. Then it is satisfied for all values of t. So, this is that type of a thing. 

Otherwise, because e st cannot be 0, e to the power st cannot be 0, except when t becomes minus 

infinity. This cannot be 0. Therefore, this must be equal to 0. If this equation is known as 

characteristic equation, it has two roots s1 and s2 given by s1 is equal to minus c by 2m plus under 

root c by 2m whole square minus k by m. This is one root s1. 
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Similarly, s2 will be equal to minus c by 2m plus under root c by 2m square minus k by m. Let 

me show you some more steps. Now, you have got two roots of this problem; that means both 

are the solutions. 

(Refer Slide Time: 36:04) 

 

We assumed that the solution was x is equal to A e to the power st, but it has got two roots. So, 

the solution will be what? That solution can be written as A e to the power s1 t; this is also 



20 
 

satisfied and B e to the power s2 t; that will also satisfy. Therefore, we can say A plus B e s 2 t 

also satisfies this one and if you want only this, put A is equal to 0. If you want only this, put B is 

equal to 0. A and B are just constants. Therefore, putting the value of s1 and s2, x can be written 

as e minus c by 2 m into t. This is A e to the power under root c by 2 m whole square minus k by 

m multiplied by t plus B e to the power minus under root c by 2 m square minus k by m, and t 

outside this square root term. 

We get this type of term; let us see what happens. When the damping term c by 2m square is 

larger than k by m, it is larger than k by m then the exponent in the above equations are real 

numbers. This is A to the power some real number t and this is equal to this one and in this case 

there are no oscillations are possible. It cannot provide the oscillatory motion. This case is called 

over damped case; this is over damped. So, no oscillations are possible in over damped case. 

When the damping term c by 2 m square is smaller than k by m that means this is smaller. If it is 

smaller then this will be called under damped case. This is under damped case. In this case, this 

is square root of a negative number. Therefore, it becomes imaginary number this is this one. 

Therefore the exponent becomes basically you can say in this case I can write exponent becomes 

plus minus under root k by m minus c by 2 m whole square. So, this becomes like this; k by m 

minus c by 2 m whole square and this is imaginary number. 

Therefore, in this case what happens? See you have got s1 then s2 is equal to this one. Now you 

consider e plus minus under root k this one this can be written as cos under root k by m minus c 

by 2 m square t plus minus i sin under root k m minus c m square by t, because e i theta is equal 

to cos theta plus i sin theta. You have to use that relation. 
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In this case, in the limiting case, between the oscillatory and non-oscillatory motions, we have c 

by m square is equal to k by m and the radical is 0. The damping corresponding to this case is 

called critical damping; that is cc. Therefore, cc is equal to 2 by m under root k by m or it is 2 m 

times omegan or this is 2 under root km. So, critical damping is a property of the system. If you 

know that it depends that this is the thing So, k by m is critical damping. Any damping which is 

more than the critical damping is called over damping. Any damping which is less than the 

critical damping is called under damping. Therefore, any damping can be expressed in terms of 

the critical damping by a non-dimensional number, zeta. 

We say the zeta is equal to c by cc or we can use any other symbol c by cc, where cc is the critical 

damping. If c by cc is more than 1, this is the case of over damping. If c by cc is less than one, 

this is the case of under damping. 
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We see, what about the amplitude? In the case of that we say we started with this equation, we 

discussed about one point, as I already showed here, that you have e minus c by 2 m. So, that 

means, A can be taken. This term can be written in terms of sin omega t cos omega t. You have 

the amplitude term that means you can write x is equal to something like x0. You can always 

have some term. So, this is x0 e minus c by 2mt and then may be inside, you may have p sin 

omega t and this thing. 

I am not writing that term. So, x is equal to x0 e minus tau omegan into t. That term is e minus 

this is the thing tau omegan. In this case, if there is 0 damping, tau 0 then x is equal to x0; that 

means amplitude remains constant. But if tau is some number then it will be exponentially 

decreasing. Therefore, the amplitude keeps on decreasing in exponential fashion. It never 

becomes 0, but it keeps on decreasing. This is a profile and this is what has happened. 
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Frequency of damped oscillation is equal to, omegad is equal to 2 tau divided by Td. This is Td 

that is omegan 1 minus tau square. That is not tau. This is basically zeta. The amplitude keeps on 

decreasing exponentially as t tends to infinity, the amplitude tends to 0. So, that way, you know 

damp motion will take place and this is how it will be covered.  

Having discussed about the free and forced vibration, let us discuss simple cases. Let me just see, 

what you have learnt. 
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This is the spring mass system, here omegan is equal to under root k by m. What happens if we 

put two springs here? What type of equations we will get? 

 This is m. In this case, suppose you displace it by distance x from here, mx double dot is equal 

to minus k1 x minus k2 x. If you make a free body diagram of this mass, you indicate you can say 

minus k1 x and minus k2 x will be the forces. So, you have mx double dot minus k1x minus k2x 

that means mx double dot plus k1 plus k2 x. so it is the same type of equation. 

Here, compare this equation with previous equation mx dot plus kx equal to 0. So, we see that 

we need not solve this again. We can see, equivalent k. In this case, we can say k equivalent is 

equal to k1 plus k2. So, these two springs are in parallel. Therefore, their stiffness gets added up. 
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Let us see another case, in which there is a mass. This is the mass m, this is k1, this is k2 and it is 

x. If you give that this x. So, let us make the free body diagram of this. Let us say that this point 

displaces by y. So, we have mx double dot. Newton’s law applied. mx double dot is equal to 

minus k2 x minus y. We can say, because mass is this one, separately we can draw and this is 

accelerating. So, its acceleration is mx is x double dot and this is mass. 

Here, this becomes k2 x minus y, because this end of the spring has moved at a distance x and the 

other end has moved at a distance y. So, mx double dot is equal to minus k2x minus y. If you 

consider the spring k1 so k1 spring is there. Now, this gets stretched by an amount y. So, this 

force is minus k1, so minus k1 y. 

Consider that spring k2; spring k2 is subjected to a force minus k2 (x minus y) and it must be the 

same, because the force is getting transmitted. From transmissibility principle, this is same as 

basically, this is k2 plus. This is k1 and this is y; that means, k1 y is equal to k2 x minus k2y. 

Therefore, y is equal to k2x divided by k1 plus k2. Therefore, your equation becomes mx dot is 

equal to minus k2x. k2x minus k2y. So, this becomes k1 plus k2 and this becomes k2x. So, minus 

mx dot is equal to minus k2x and this is k2x minus k2y. k1 plus k2 is equal to k2x divided by k1 

plus k2. This is y and this is x minus k2 x divided by k1 plus k2. So, simplify it. This will come out 
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to be minus k1 k2 divided by k1 plus k2x. Compare it with mx is equal to mx dot is equal to minus 

kx. 

(Refer Slide Time: 53:20) 

 

Therefore, we see that in this case, the k equivalent comes out to be k1 plus k2 divided by k1 plus 

k2. Therefore, 1 by k equivalent is equal to 1 by k1 plus 1 by k2. When these things are in series 

then they are added in this fashion. You can easily see that k equivalent cannot be; suppose you 

have k1 k2 and in this case, k1 is greater than k2 then naturally the k equivalent will be cannot be 

more than k2 actually. Therefore, when they are in the series then equivalent stiffness reduces. 

So, when the springs are in series, then this is 1 by k equivalent 1 by k1 plus 1 by k2.  

Let us see, say for example, this case, here this is k1, this is k2. How should I solve this problem? 

This is the x position from here. If this mass is displaced by some distance, therefore, k1 mx dot 

so, free body diagram. Let us see making the free body diagram. This is m. This is minus k1x. 

This spring gets compressed, because, suppose this gets stressed by x, another spring gets 

compressed by x. Therefore, this becomes k2x. So, minus k2 this is k2x. 

Let me make k1x like that, but this is k2x.This gets compressed. So, it puts opposite force. So, 

when we consider the force coming on the mass, this has to be put k2x. Therefore, mass mx dot x 

dot is equal to minus k1x minus k2x. That means minus k1 plus k2x. So, equivalent stiffness is 
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basically, minus k1 plus k2. Therefore, considering that springs are in parallel does not mean that 

physically they will look in the same line and this thing that they are basically like this because 

they undergo same type of displacement. If they are going with the same amount of displacement 

then they are in parallel. If they are undergoing the different displacement then they are not in 

parallel. They are in series. Here, they are in series, because here this is the thing and then after 

that another spring is there. It gets stretched. So, they are in the series. 

This goes by some x amount. This point, with respect to this point, it may move some another 

distance. So, it is like that. 

(Refer Slide Time: 57:50) 

 

Therefore, if you have finally this type of problem; k, k1, k2, k3 here all the springs are in parallel. 

Therefore, equivalent stiffness is k1 plus k2 plus k3 and omegan will be equal to under root m 

divided by k divided by k1 plus k2 plus k3 divided by m. By this, you can find out the vibrations 

of this one. So, we have discussed about the free vibrations in the absence of damping. We also 

have discussed the vibrations in the presence of damping. In presence of damping, you can easily 

derive that in presence of damping, the natural frequency will be omega times under root 1 

minus zeta square; that is, damping. Therefore, the natural frequency and damped natural 

frequency reduces by that thing. 


