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Engineering Mechanics 

Prof. U. S. Dixit 

Department of Mechanical Engineering 

Indian Institute of Technology, Guwahati 

Module 14 Lecture 35 
Kinetics in 3D 

In this lecture, we will discuss the kinetics of rigid body. You know that it has been already 

stated that the rate of change of linear momentum of a body is equal to the net applied force. This 

is valid in inertial frame of reference. 

(Refer Slide Time: 01:33) 

 

That means sigma F is equal to G dot. This is vector this also vector. Dot represents time 

derivative. Similarly, the rate of change of angular momentum is equal to net applied moment, 

when the terms are taken either about a fixed point O, or about the mass center that is sigma M is 

equal to H dot. This equation is also valid, if the angular momentum H and the moment M are 

taken about fixed point O, or mass center, or a point which is moving towards or away from the 

center of mass. When H can be expressed in terms of components measured relative to a moving 

coordinate system then H dot can be written as H dot is equal to dH by dt x y z plus omega cross 

H. Axis system itself is rotating with angular velocity omega. 
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Then you have to write like this; H dot is equal to dH by dt x y z axis itself is rotating then this is 

the thing. That means I have to write like this. This becomes H dot x i plus H dot y j plus H dot z k 

plus omega cross H. 

You know the cross product, and suppose omega is having three components; omegax i then 

omega along y direction, omega y component and then omega z component, then you can do the 

cross product and finally you will be getting these equations, H dot x minus Hy omega z plus Hz 

omega y i plus H dot y minus Hz omega x plus Hx omega z j plus H dot z minus Hx omega y plus 

Hy omega z k. Here, omega x, omega y, and omega z are the components of the angular velocity 

omega of the axis. 

If the axis system is attached to the rigid body itself, in that case, omega is equal to omega i, 

small omega; that means, the angular velocity of the body itself. In that case, we can write these 

equations and you know that this is equal to moment. 

(Refer Slide Time: 05:59) 

 

So, sigma Mx comes out to be H dot x minus Hy omega z plus Hz omega y. Similarly, sigma My 

comes out to be H dot y minus Hz omega x plus Hx omega z, sigma Mz is equal to H dot z minus 

Hx omega y plus Hy omega x. 
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We have already developed these expressions. If we write that H is basically, Ixx omegax minus 

Ixy omegay minus Ixz omegaz I, these expressions we have developed plus minus Iyx omegax plus 

Iyy omegay minus Iyz omegaz j plus, minus Izx omegax minus Izy omegay plus Izz omegaz k. 

If a xyz axis are principal axis, if xyz axis chosen are the principal axis then Ixy is equal to Ixz is 

equal to Iyz is equal to 0. Thus, H is equal to Ixx omega x i plus Iyy omega y j plus Izz is equal to Izz 

omega z k. 

You see that how simplified it becomes. Then, in that case, if you take that just like that, and that 

is the advantage of finding out the principal axes. Now, expression has become very compact. 

Hence then in this case if xyz are the principal axis then Hx component is Ixx omegax Hy 

component is Iyy omegay and Hzz is basically Izz omegaz. 

(Refer Slide Time: 09:56) 

 

If we put these in F, then we get sigma Mx is equal to Ixx omega dot x minus Iyy minus Izz omega y 

omegaz. sigma My is equal to Iyy omega doty minus Izz minus Ixx omegaz omegax. sigma Mz is 

equal to Izz omega dotz minus Ixx minus Iyy omegax omega y. So, we get these set of equations 

somewhat simplified. Had we not used the principal axis, the expressions would have got very 

complicated. 
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In this case, we got simplified expressions that is sigma Mx is equal to Ixx omega dotx minus Iyy 

minus Izz omegay omegaz. sigma My is equal to Iyy omega doty minus Izz minus Ixx omegaz 

omegax. sigma Mz Izz omega z minus Ixx minus Iyy omegax omegay. 

These equations are known as Euler's equation. They are known as Euler’s pronounced as oiler, 

Euler’s equation. These are called Euler’s equation and they have been named after a Swiss 

Mathematician. The conditions under which these equations are applicable are these as follows: 

Number one: The reference point where the body axes are fixed is a point fixed in space. These 

are called body axes, why? Because they are moving with the body only. So, they have angular 

speed as the body itself, speed of that body. 

The reference point where the body axes are fixed is a point fixed in space, or is the center of 

mass itself. That can be either you take a point in the body, either that point is the fixed point or 

that point is the center of mass; however, apart from that, it can also be a point which is 

accelerating, but the acceleration is either towards the center of mass or away from the center of 

mass. Two things are there. There are three types of things. Number 1: point should be either 

fixed. Then you know these equations, Euler’s equations are valid. Number 2: point can be 

center of mass, whether it is fixed or not fixed does not matter; then also the equation is valid. 

The third thing is that the point may not be fixed also. It may not be center of mass, but it is 

moving. It is accelerating towards the center of mass or away from the center of mass. So, this is 

the first condition under which these Euler’s equations are applicable. 

Number 2, condition is that the xyz reference frame is fixed on the body and is directed along the 

principal axis at that reference point. Otherwise, we would have got complicated expression. So, 

these xyz axes are the principal axes. 

Third point is that the moments of the forces are taken about the reference point. About the 

reference point, we take the moment and also the components of the inertia matrix are 

determined with respect to the body axis at that point. Moments of the forces have to be taken 

about that reference point. Similarly, components of the inertia matrix are also determined by 

that. So, we have got these three sets of Euler’s equation. We supplement these three sets of 

equation by three equations of motion. Three equations of motion, for the motion of center of 
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mass that is Newton’s law that is Fx is equal to m times ax, Fy is equal to m times ay, Fz is equal to 

m times az. So, total six. So, these six equations are enough to solve different types of problems. 

For example, we take various examples. We take one example. 

(Refer Slide Time: 16:24) 

 

Suppose body is just rotating about x axis only. Then, we get sigma Mx is equal to Ixx omega dot 

x, Euler’s equation. Body is rotating with a constant angular velocity then no net moment acts on 

it. If body has the component of angular velocity along x and y axis, both, then what happens? If 

the body has the component of angular axis velocity along x and y, then 1 equation; sigma Mx is 

equal to Ixx w comma x, sigma My is equal to Iyy omega comma y, sigma Mz is equal to minus Ixx 

minus Iyy omegax omegay. In this case, we get these types of things. Now, if Ixx is not equal to Iyy, 

then in that case, body experiences net moment in z direction also. Even if suppose omegax is 

constant, therefore sigma Mx is Ixx w omega dot x; that means, this is 0 sigma My is 0. However, 

sigma Mz will be present. If Ixx is not equal to Iyy then sigma Mz will be 0. If Ixx is equal to Iyy, 

that means Ixx is equal to Iyy, then sigma Mz will be 0 in the case of constant rotation about two 

axes like x and y. Otherwise, this will be this one. It is like this that you know this phenomena 

comes. 
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Then we discuss torque free motion. In the absence of torque, what all motion we get that is 

called torque free motion. 

(Refer Slide Time: 19:00) 

 

If we write the Euler’s equation then this is Ixx w dot x minus Iyy minus Izz omega y omega z equal 

to 0 is the first equation you will get. Second will be Iyy omega dot y minus Izz minus Ixx omega z 

omega x is equal to 0. Then Izz omega dot z minus Ixx minus Iyy omega x omega y equal to 0. 

These three equations can be solved. If in this case, if Ixx is equal to Iyy then you get Ixx omega 

dot x is equal to Iyy minus Izz omega y omega z and you get Iyy omega dot y is equal to Izz minus Ixx 

omega z omega x. Now, Izz omega dot z is equal to 0. These are the three equations you get. If you 

know Ixx is equal to Iyy in torque free motion then omega z is equal to constant. Third equation 

gives omega z is equal to constant and omega dot x is equal to basically minus Izz minus Iyy Ixx 

omega y omega z is equal to minus C omega y. 
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Similarly, omega dot y will be equal to Izz minus Ixx Iyy omegaz omegax and this is equal to C 

times omegax. If we differentiate the above equation, this equation then you will be getting 

omega dot y is equal to C times omega dot x; that is equal to minus omega dot x is equal to minus 

C omega y. Therefore, this becomes minus C square omegay which gives you omegay is equal to 

A sin Ct plus B cos Ct, where constants A and B can be found from the initial conditions. 

Similarly, we can find out the expressions for omegax also. If angular velocity is constant then 

what happens, there will not be any dot terms. Sigma Mx will be minus Iyy minus Izz omegay 

omegaz, sigma My is equal to minus Izz minus Ixx omegaz omegax, sigma Mz is equal to minus Ixx 

minus Iyy omegax omegay. 

In case Ixx is equal to Iyy is equal to Izz, in that case, of course the torques will be 0. Suppose Iyy 

and Izz are different, in that case, even if the angular velocity is constant then also there is torque 

acting. Therefore, this is what the point I want to emphasize. This point, you know that even if 

you have a constant angular velocity, it is possible to have moments; that means, there can be 

moments and still there can be constants. That is what we get from the Euler equations. 
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Suppose there is a sphere about which if you take a point at the center mass centre, Ixx is equal to 

Iyy is equal to Izz. In that case, of course that sigma Mx will be 0, sigma My will be 0 and sigma 

Mz will be 0. So, sphere can keep rotating without any moment, but in general it is not true. 

Suppose we discuss about steady rotation of an asymmetric body. 

(Refer Slide Time: 25:14) 

 

From the Euler’s equation, we see that steady rotation of an a symmetric body is possible if 

omegax omegay Ixx minus Iyy is equal to omegaz omegax Izz minus Ixx is equal to omegay omegaz 

Iyy minus Izz is equal to 0. This requires at least two of the components of angular velocity is 0 

that is the angular velocity is along only one of the principal axis. Then it can be without any 

moment. 

If we discus about the translation of a rigid body then you get omega is equal to 0, omega dot is 

equal to 0. In this case, Euler’s equations are automatically satisfied and the motion can be 

studied by Newton’s law only. So, this is what you think if you have got that. So, we have 

understood the Euler’s equation and we will discuss about the very interesting phenomena that is 

called gyroscopic motion. 
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We discuss the gyroscopic motion. Without giving any formal definition to what is gyroscopic 

motion, I would draw your attention to the following figure. 

Consider the motion of a heavy disc of mass m. This disk is spinning with an angular velocity of 

omega. So, the mass of the shaft, for the time being you assume that it is negligible, but you have 

got a heavy disk mg. Its velocity is omega and the whole shaft is précising with an angular 

velocity omegaP. Then what happens? If you just put a pin joint here; that means, this link is by a 

pin joint then you may think, because this is a heavy disk, naturally it should fall; but you will 

see that surprising thing that this will not fall actually and the motion will continue. How it 

happens? This is called gyroscopic effect. 

What is the reason for this? 
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Motion of the disk is spinning with an angular velocity of omega which is high, but at the same 

time, the rod on which it is supported precesses about the vertical axis with an angular velocity 

omegaP. The precession velocity, time being you can assume is smaller; that spin velocity 

omega. This system is in balance. How this system is in balance? Why it is not falling 

downwards? 

(Refer Slide Time: 29:19) 
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We have to see this thing; if we make the free body diagram of the system and we have to show 

the reaction R of the vertical post and this reaction is balancing, the force due to gravity mg is 

equal to R. 

However, there is a torque that is Ty is equal to mgr. It acts in the vertical plane xz and its 

magnitude is mg times r. It can be represented by a vector Y direction, because like this mgr. So, 

it is no torque. It is trying to, it acts clockwise. Therefore, it is going away from you. So, that 

means it is along the plus Y direction. 

(Refer Slide Time: 30:22) 

 

By Euler’s law, the rate of change of angular momentum is torque. Assume that the precession 

velocity is very small in comparison to spin velocity. Then the spin velocity may be written as I0 

omegaI, I0 omegai is not the spin velocity, spin momentum along the spin velocity direction. 

Where I0 is the polar moment of inertia of the disc about x-axis and i is a rotating unit vector in 

the direction of X. 
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Therefore, Ty is equal to d by dt I0 omegai is equal to I0 omega di by dt; that means, I0 omega 

omegap into j. The direction of Ty is along j, so it is consistent with the applied torque; that 

means, I0 omega omegaP can balance Ty. We have already discussed that applied torque T is 

equal to mg times rj. Thus, in this case, mg into r is equal to I0 omega into omegaP which gives 

us omegaP is equal to gr divided by I0 omega. Therefore, due to its weight, spinning, that rotor 

will also start precession. So, instead of falling, you know this type of thing. 
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We observe that precessional angular velocity is inversely proportional to spin angular velocity. 

It is inversely proportional to that thing. That means if the rotor is spinning at a very high speed 

then it will not precess that fast. So, that means spin provides some sort of stability. You require 

more torque to precess it. We observe that precessional angular velocity is inversely proportional 

to a spin angular velocity. In case the disc was not spinning, it would not have been possible to 

balance it on A. It would have started falling down in the vertical XZ plane, because if you see 

that equation, theoretically, if omega is equal to 0 then omegaP will become infinite; it cannot be 

infinite. Actually what happens in that case, it will basically fall. You know that this one would 

have started falling down in the vertical XZ plane. That is the phenomena will happen. 
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However, it does not happen here due to spin motion of the disk. If it has to fall in the vertical 

plane during spinning of the disk, there has to be a torque in the horizontal plane represented by 

a vector along negative Z direction. Suppose it is falling, you know that it will start creating. So, 

there has to be a torque in the horizontal plane for the spinning one. Why? 

(Refer Slide Time: 34:54) 
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This is clear from this figure, because spinning rotor has got angular momentum. Initially its 

angular momentum is like Iw and after it has slightly tilted, means it started falling and the rotor 

has moved down. Therefore, finally it goes like this. 

(Refer Slide Time: 35:17) 

 

When the disk has fallen by a small angle, the direction of its angular momentum gets changed, 

though the magnitude remains same. Change in angular momentum is as shown in the following 

figure. So, this is delta Iw. So this is the thing. 



16 
 

(Refer Slide Time: 35:45) 

 

For very small angle between initial and final vectors, the change will be perpendicular to the 

initial vector. You have got Iw and you know it started falling and at this point this is also Iw. 

This is the change and the change is almost perpendicular. Thus, change in the angular 

momentum is in the direction of negative Z. Therefore, a torque in the vertical negative Z 

direction is needed. Otherwise, this cannot take place. This is not present here. So, the disk will 

not precess in vertical plane. That is the way it has been shown. 

This is actually based on the assumption. Of course, that spinning velocity is much more than the 

precession velocity. If we do the precise analysis then we will see, the disk will start oscillating 

in the x-z plane. Spin velocity is not a constant velocity but should be understood as the mean 

velocity only. So, precession velocity is not a constant velocity but should be understood as this 

one. 

Before going into detail about the gyroscopic motion, we will first present simple examples of 

engineering importance concerning this topic. 
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We have understood that if a body is spinning and a torque is applied normal to the axis of spin, 

the body starts precessing and the precession axis is normal to the axis of spin and axis of torque. 

This torque is often named as that gyro couple. If a body which is spinning is precessed about the 

perpendicular axis, the gyroscopic couple has to be applied on the body. If the body in turn will 

apply a reaction on the members who apply gyroscopic couple on the body, as per Newton’s 

third law. So, these things have to be kept in mind. 
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If the axis of spinning and precession are perpendicular to each other then gyroscopic couple is T 

is equal to I omega into omegaP, where omega is spin velocity and omegaP is precession velocity. 

This shows that if omega is high, a huge amount of torque is needed to precess it. This fact about 

the gyroscope is exploited by using it to provide stability of vehicles. 

(Refer Slide Time: 39:19) 
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A bicycle remains stable at high speed because of gyroscopic motion. You cannot balance 

yourself on a stationary bicycle; that everybody you have experience, but when you start moving 

then you do not fall. This is gyroscopic effect and it has a role to play here. See this person 

sitting on the bicycle; this is the reaction of the ground and this is the weight of this one and it is 

spinning. So, w L is equal to I times w. 

If you want to turn the bicycle towards left then you lean your body towards left. By leaning the 

bicycle towards left, you shift the center of mass towards left. Therefore, you generate a couple 

mg. So, couple is generated in anticlockwise direction. That vector, couple vector is now directed 

towards you. Therefore, you get L is equal to I omega. So, angular momentum also changes and 

therefore, you start precession that means you shift. 

(Refer Slide Time: 41:14) 

 

This produces, a torque pointing from front wheel towards rear wheel. Hence, the angular 

moment vector rotates about a vertical axis and the bicycle precesses towards left. So, this is due 

to gyroscopic motion. 
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Once we spin a gyroscope, its axle wants to keep rotating in the same direction. If we mount a 

gyroscope in a set of gimbles so that it can continue pointing in the same direction, it can be used 

as a gyrocompass. You have this type of this thing and it is the vertical axis.  

Suppose it can rotate about the vertical axis. On that, you have mounted another gimble which 

can rotate about the horizontal axis. Then you have mounted a shaft. This is the axis of spin. It 

can spin about that. Mass center always remains fixed, but these things can rotate about vertical 

axis. Then this can rotate about horizontal axis. However, once you have imparted some motion 

and since there is no torque to precess, it will keep rotating in the same direction. Therefore, it 

will act as a compass. 



21 
 

(Refer Slide Time: 42:58) 

 

In this figure, a spinning wheel can precess about vertical and horizontal axes. If this is kept on 

the ship, the axis of spin will maintain a fixed direction irrespective of the orientation of the ship. 

Thus, the axis of spin can provide a good pointer to direction. 

(Refer Slide Time: 43:27) 
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Another example of the effect of gyroscope couple is shown in the following figure. This is the 

figure and disc is rotating. This is the axis, this is a motor and this is rotating about that. There is 

a spin motion of the rotor but at the same time whole disc is rotating. 

(Refer Slide Time: 44:03) 

 

Motor is mounted on a rotating platform having some angular velocity. Disks are spinning. 

Bearing on which it is supported will experience the additional forces due to gyroscopic effect. 

This is explained as follows. 

As a result of precession, the angular spin momentum changes as follows: initially, the situation 

is like this and you give a small change. So, final velocity is this. 



23 
 

(Refer Slide Time: 44:55) 

 

Therefore, a torque has to be applied on the shaft, because its angular momentum is changing. 

Initially, the angular momentum is like this. Finally, after sometime, it has become like this. So, 

this much is the change. Since there is a change, the torque has to be applied. Who applies this 

torque? Of course, the bearings. This shaft, in turn will put the load on the bearings as follows. 

Therefore, the bearings will apply the torque. So, the shaft in turn will put the load. So, if we 

make the free body diagram of the shaft, this is the torque coming on this because this is 

clockwise because it is going away from the paper. 
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The shaft, in turn will put the load on the bearing as follows: Newton’s third law, opposite way. 

So, this is a thing you will be getting this one. Then you are applying torque and that is what you 

are getting. Thus, the left bearing will be loaded downward and right bearing upward. 

(Refer Slide Time: 46:09) 

 

Gyroscope can be used for stabilizing the ship. Roll of a ship can be stabilized by the action of a 

heavy rapidly spinning disk rotating in a set of bearings, like, this is the ship and here you have 
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put this in the bottom, that horizontal rotor which is rotating about a vertical axis. So, this is what 

is being done. Suppose the ship now tilts, so angular momentum will change. For that, there has 

to be presence of a heavy torque. You know that that torque cannot be provided. Therefore, the 

ship remains stable. 

(Refer Slide Time: 47:20) 

 

In the absence of any torque vector along the longitudinal axes, the ship will not be able to roll. 

Finally, about this thing, now you can easily verify. We have said T is equal to I omegap into 

omega. If omega, if directions of precession angular velocity and spin angular velocity are 

perpendicular to each other, in that case. Otherwise, the formula is T is equal to I omegap cross 

omega, cross product of the precession angular velocity and this one. 
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We present some more examples of gyroscopic motion. We discuss, some more interesting 

problems related to gyroscope. Let us consider the motion of a rapidly spinning top. Every one of 

you might have played in your childhood with the top. In this case, it is symmetric that atleast Izz 

is different, but Ixx is equal to Ixyy. Its mass is, mass times gravity, mg. So, it is directed 

downward and this is omegaP. Then you have got, these are the fixed axes system, X Y and Z and 

this is omegaP. This is X Y and Z. At any point of time, this is small z- axis which is attached 

spin axis of the top, which is a making an angle theta with the Z axis, capital Z axis. At the same 

time, if I make here, in this plane, perpendicular to that if I have this XY, these are the body axis 

attached. This is making angle psi.  
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So, then in that case, if it is assumed that top is symmetric, Ixx is equal to Iyy then we neglect the 

small angular momentum component due to the precession and consider angular momentum H 

equal to I omega, the angular momentum about the axis of the top associated with the spin only. 

The magnitude of moment about O is due to the weight of the top and is mgr sin theta, where r is 

the distance from O to the mass center measured along the axis of spin. So, mgr sin theta. 

Change in angular momentum in time t is actually, I omega sin theta d phi. This is clear form the 

following figure like this. 
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Suppose this is I omega and it has changed like this, I omega dot. Here, this is, I omega sin phi 

component that only changing. That vertical component along the z direction is not changing; 

that means, you have I omega, but it can be this. One component is along this, another 

component is along this. So, this is what? In the figure, OB represents the initial angular 

momentum and OC is the momentum after the precession of the top by an amount d psi. 

(Refer Slide Time: 52:11) 
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BC represents the change in angular moment. The angle BAC is d psi. The initial horizontal 

component of angular momentum is represented by AB and final horizontal component of 

angular velocity by AC. The vertical component remains fixed in magnitude and direction. The 

horizontal component changes only in direction. Its magnitude is always I omega sin theta.  

We assume theta remains same. Axis of spin is inclined for very small angle d psi BC will be 

approximately, I omega sin theta d psi. Thus, the gyroscopic couple is given by the rate of 

change of angular momentum. Hence, the magnitude of gyroscopic couple is given by T is equal 

to I omega sin theta d psi by dt is equal to I omega sin theta omegaP and that is equal to mgr sin 

theta. 

(Refer Slide Time: 53:41) 

 

In this case, mgr becomes I omega omegaP. It is not dependent on theta, or you get omegaP is 

equal to mgr divided by I omega. This expression shows that as omega reduces, the spin velocity 

reduces and omegaP increases. That is why it is observed that at the end of its motion the top runs 

much faster. 

The general motion also involves. If you do precise analysis, you will find out that it also 

involves wobbling about the mean precession. This wobbling is called nutation. In this, the angle 

theta does not remain fixed, but keeps on oscillating. Now, we can do somewhat detailed 
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analysis. Also, we remember about Euler’s equation and we have given that lecture on Euler 

angle. 

(Refer Slide Time: 54:52) 

 

In that we assume that top’s axis is symmetric with z-axis as the axis of symmetry. The reference 

xyz has the same nutation and the precession motion as the body, but is chosen such that the 

body is rotated with an angular speed phi dot relative to it. So, that means xyz are not exactly 

fixed on the body. There is some difference O. That is, phi dot O is a fixed point then M0 is equal 

to dH0 by dt xyz plus omega cross Hxi plus Hyj plus Hzk. Here, omega is the angular velocity of 

reference xyz at O. 
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Let Iz be the moment of inertia about the z axis and I be the moment of inertia about an axis 

normal to z-axis at O. Then you will be getting Hx is equal to I omega x Hy is equal to I omegay 

Hz. You will be getting Iz omegaz and omegax will come out to be theta dot, omegay will come 

out to be psi dot sin theta, and omegaz will be phi dot plus psi dot cos theta. Therefore, H0 will be 

I theta dot i plus I psi dot sin theta j plus I phi dot plus psi dot cos theta k. 

(Refer Slide Time: 56:47) 
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We note that I, j and K are constants as seen from xyz. Then we can say that dH0 by dt is equal to 

I theta dot dot i plus I psi dot sin theta plus psi dot theta dot cos theta j plus I phi dot dot plus psi 

dot dot cos theta minus psi dot theta dot sin theta k. Angular velocity of reference xyz is omega 

is equal to theta dot I plus psi dot sin theta j plus psi dot cos theta k.  

(Refer Slide Time: 57:43) 

 

Now, substitution of these into the expression for moment M0 gives, M0 is equal to I theta dot dot 

plus Iz minus I psi dot square sin theta cos theta plus Iz phi dot psi dot sin theta I plus I psi dot dot 

sin theta plus 2 I theta dot psi cos theta minus Iz phi dot plus psi dot cos theta j plus Iz phi dot dot 

psi dot dot cos theta minus psi dot theta dot sin theta k. 

The corresponding scalar equations are: Mx is equal I theta dot dot plus Iz minus I psi dot square 

sin theta cos theta plus Iz phi dot psi dot sin theta and My will be I psi dot dot sin theta plus 2I 

theta dot psi cos theta minus Iz phi dot plus psi dot cos theta and Mz will be Iz phi dot dot plus psi 

dot dot cos theta minus psi dot theta dot sin theta. These are the there equations and these are 

non- linear equations. So, you see that solving them is a bit complicated term. 
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Let us discus about the steady precession. Now, consider the case in which nutation angle theta, 

spin velocity phi dot and precession speed psi dot is constant. Precise analysis will show 

something different and all other components of the moment are 0. Thus, for steady precession 

we require a constant torque about x axis that it will lie in. 

(Refer Slide Time: 59:39) 
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Now, psi dot phi dot plus psi dot cos theta is equal to omegaz. Hence, Mx is equal to bracket Iz 

omegaz minus I psi dot cos theta psi dot sin theta. From this, we see that the required moment on 

the top must be in the x-direction, since other components are 0.  

(Refer Slide Time: 01:13) 

 

As a special case, if we put theta is equal to pi by 2 and omegaz is equal to phi dot and psi dot is 

equal to omegaP and we put Mx is equal to M. Then from the above equation, we get M is equal 

to I omegaP phi dot that is I omega P into omegaz. The above equation is the equation of motion 

of a rotor which is precessing at a speed of omegaP and spinning at a speed of omegaz. 
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For a top, Mx is mgr sin theta. Therefore, we get mgr Iz psi dot phi dot minus I minus Iz psi dot 

square cos theta. Second term is small compared to first term. Hence, we get psi dot is equal to 

mgr divided by Iz phi dot. This is the expression we obtained earlier, by assuming that the 

angular momentum is entirely along the spinning action. So, we had got that expression based on 

the assumption about this thing. 

(Refer Slide Time: 01:01:43) 
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Therefore, we are getting almost the same equation. I will end this lecture by giving a simple, 

another example. A student stands on a revolving stool holding a bicycle wheel that is rotating 

about a vertical axis. If the rotation axis is turned out to 180 degree, what will be the effect? 

(Refer Slide Time: 01:02:10) 

 

We know that it is before, and after that it is like this. So, in this, two different situations are 

shown. In this case, the angular momentum remains conserved. Thus, I omega is equal to minus I 

omega plus Is big omega where, I and Is are the moments of inertia of wheel and stool 

respectively. Omega and big omega are the angular velocity of the wheel and stool respectively. 

From this, you can find out that you know that since it has changed, you can find out omega. 

This is how it can be done. 


