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Kinematics in 3D 

We will be discussing three dimensional motions. We will discuss three dimensional kinematics, 

and then three dimensional kinetics. We have studied quite a lot of dynamics; we have studied 

Newton’s law, Euler’s law. There is no reason to be afraid of the three dimensional things, but 

generally, students do not find comfortable in doing the problems related to three dimensional 

kinematics or kinetics. The reason is that in three dimensions, the first difficulty is that if you 

want to solve the problem with a piece of pen and paper, then three dimensional objects have to 

be suitably represented there. So that is the difficulty of visualizing. Sometimes, you will see 

some figures in three dimensions and you will not be able to visualize properly what these things 

are? The second is, as the number of dimensions increase then the required number of equations 

to be solved also increase and also the corresponding terms in the equation. Sometimes they 

increase, not in the proportional way, but by the order of n square or more. So, there will be 

computational difficulties. Keeping those aside, the basic principle remains same. There is no 

reason, why we should not be able to understand the three dimensional dynamics. Only thing is 

that we may not be able to solve very lengthy problems here itself, but we will get this thing. 

Nowadays, computational tools have become quite advanced. Those problems can be solved by 

computers also. 

The objective of these lectures is to understand the basic concepts, how to develop the equations 

and understand some very interesting phenomena. In two dimensional, suppose a disk is rotating 

with a constant angular velocity then there is no torque acting on this, because there is no angular 

acceleration; but in three dimensional, even if there is constant angular velocity, there can be 

some torque. These types of things we will study here. 
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If I start from 3D kinematics, in this we first study the motion of rigid bodies in three 

dimensional space. We start the lecture, by discussing different types of motions, which we have 

already discussed in the previous one. Mostly, we gave examples from 2D space. Now we will 

give examples from 3D.  

There are basically, different types of motions; one is translation. In translation, there are two 

types of translations. One is the rectilinear translation in which the translation between any two 

points in the body will move along parallel straight lines. Suppose there is a line in the body, that 

line remains parallel to itself. Naturally, in this translation angular velocity is zero. But in a 

rectilinear translation, the two points move along parallel straight lines; that is the point. They 

have to move in a straight line. Then it is rectilinear translation.  

Then the other type mode of motion is curvilinear translation. In curvilinear translation, two 

points in the body will move along congruent curves. There will be two types of curves; this is 

one type of curve and then another type is this one. Suppose this is a point, it is moving and 

similarly a parallel type of curve is there which also is moving. In either case, every line in the 

body remains parallel to its original position. In either case, that means, in both in rectilinear and 

curvilinear translation every line in the body remains parallel to its original position. 
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In this animation, I am going to show you one animation. The cube will undergo translation 

along a curve. This is not a planner curve, this maybe space curve; that means one plane is not 

there which can encompass this curve. A line on the face of the cube will always remain parallel 

to itself. I am playing this animation. Just see this line. Although this cube is moving in a curved 

path, this line always remains parallel. So, this is an example of a translation. Sometimes if you 

sit on a merry go round, in that you actually move in a circular path, but your body remains 

basically in the same position. That means a line in the body will remain parallel to itself. 

Therefore, what happens in translation is that a line on the face of the cube always remains 

parallel to itself . That is what this animation shows. 
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If you see this figure, consider two points A and B on the body; that body has been shown. If rA 

is the position vector of A, this point A has been shown here; rB is the position vector of B and 

rA/B is the position vector of A with respect to B, then vA is equal to vB. Because rA is equal to rB 

plus rA by B, sum of these vectors and rAB is always constant, because the rAB is not rotating. If you 

take the derivative, you can always say that r dot A will be equal to r dot B; that means, vA is 

equal to vB. Any two points on the body will have same velocity, because r dot AB will be 0. 

Similarly, if you take the derivative of this, we can say aA is equal to aB. Therefore, acceleration 

of two particles will be same that is the speciality of translation. 
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This is because the magnitude of rA/B remains constant with time, because the body is rigid. In 

case if a body would have been flexible then this relation was not correct because there may be r 

dot AB. In the flexible body even in translation, different points may have different velocity, but 

we are studying the rigid body mechanics. In rigid body, two points are having same velocity, 

same acceleration and therefore that is the speciality. 

(Refer Slide Time: 09:25)  
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Thus, in the translation of a rigid body every point in the body has same velocity and 

acceleration. Thus, the velocity and acceleration of the whole rigid body can be specified by 

specifying the velocity and acceleration of one point. So, usually we specify the velocity of the 

mass center. That means, if we say that mass center is moving with velocity then the whole body 

is moving. All points in the body are moving with the same velocity and acceleration also, that is 

the mass center. 

(Refer Slide Time: 10:00)  

 

Let us discuss another type of motion. This was the translation and the other type is fixed axis 

rotation. A rigid body is rotating about a fixed axis OO dash in space. Suppose this OO dash is a 

fixed axis that is rotating. The angular velocity omega is represented by a vector along the axis. 

It is rotating about that axis. Our convention is that about the axis about which the body is 

rotating, that axis will represent the vector of the angular velocity. Angular velocity vector is 

having the direction of that vector and magnitude is the magnitude of omega. From here, you are 

observing that this is a body and x y z system has been shown. This is theta and this is any 

arbitrary point P which is at distance r from this one, and this distance is d and after that we go to 

the next. 
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If you view this one like this from this one and you see by viewing from this side from top, you 

see that it is rotating counterclockwise. If it is rotating counterclockwise then your angular 

velocity vector will be directed towards you. If you observe that some body is rotating and from 

the top you see, its direction of rotation is counterclockwise then the angular velocity vector will 

be towards you. If the body was rotating clockwise then the angular velocity vector will be away 

from you that is in the opposite direction. 

If you view as shown above and observe that the body is rotating counterclockwise then the 

vector omega will be directed towards you. If the rotation is clockwise, the vectors will be 

directed away from you. The magnitude of omega is equal to the angular speed omega of the 

rotation; that is, the tangential speed of a point divided by its distance from the axis of rotation. 

Magnitude will be like this. If you find out that point P is there, point P has got some tangential 

linear velocity. You divide it by this small d and that becomes the angular velocity that is, the 

magnitude. 
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Let us go to this point. Let P be any point on the body. Now, concentrate on this figure and d is 

the distance from the axis. Then P has the speed omega times d. Let r be the position vector of P 

referred to coordinate system which you have chosen with origin O on the axis of rotation. Then, 

if this is theta then d is equal to magnitude of r times sin theta, where theta is the angle between 

omega and r; omega is the angular velocity vector and r is the position vector. In this case, 

omega dot d will be omega times r sin theta, which is equal to omega cross r. This will be omega 

cross r, because omega d can be written as magnitude of omega r sin theta. It is same as the 

magnitude of omega cross r, because cross product of two vectors, omega and r is omega r sin 

theta. 

Omega d is the tangential speed. There is no normal component of speed, because it is rotating. 

This point is moving in a circular fashion. 
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The velocity of point P is basically V is equal to omega cross r. So, you have got a formula that 

velocity is equal to omega cross r. Note that, the velocity of point P is normal to both omega and 

r; that means, the tangential velocity will be normal to omega as well as position vector. The 

acceleration can be found by differentiating this above equation; that means, differentiate V is 

equal to omega cross r and you can get the acceleration. a is equal to omega dot cross r plus 

omega if you differentiate r, r is rotating. So, this is r dot. r dot will be again omega cross r, since 

r dot is equal to V that is omega cross r. We have seen that r dot equal omega cross r that is V. 

Therefore, acceleration comes out to be omega dot r plus omega cross omega r. 
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Since the direction of omega is fixed, as we are discussing the case in which the axis of rotation 

is fixed, that is along the axis and only magnitude can change, it has the same direction as 

omega. What happens is omega dot has same magnitude as omega. So, omega dot is also along 

that one and therefore omega dot r and has the same direction as omega cross r and is equal to V. 

Thus, in the equation, the first component that is omega dot r which can be written as alpha times 

r is equal to V is the tangential component of the acceleration. That is the tangential component 

of the acceleration and if we indicate omega dot by alpha, the angular the angular acceleration, 

then tangential component maybe written as alpha times d.  

So, omega dot is equal to alpha and alpha cross r. Its magnitude will be alpha r sin theta that 

means alpha times d; that is, the tangential component of the particle is the angular acceleration 

of the particle times the perpendicular distance from the axis. 
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Let us look at the other component that is omega cross omega cross r. This component is in the 

plane of rotation that is normal to fixed axis and perpendicular to tangential direction. Therefore, 

it is basically in the plane but in the normal direction. It can be easily seen that the magnitude of 

omega cross omega cross r is omega square d, because magnitude of omega is omega times d 

and omega is there, so omega square d. This is that component, centripetal component of this 

one. Since V and a, are perpendicular to omega and omega dot, V dot omega is equal to zero. 

Why? Because V, tangential velocity is always perpendicular to the direction of omega; so V dot 

omega is equal to 0.  

Similarly, V dot omega dot is also 0; dot product of velocity and angular acceleration, and 

tangential velocity and angular acceleration is 0. Similarly, the acceleration into omega is also 

equal to 0 and then, acceleration into omega dot is also 0. These are the equations. So, these are 

important things.  
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We have discussed the rotation about fixed axis; that means axis of rotation is fixed. Now, we 

can discuss the case in which the rotation is about a fixed point. Point may be fixed but axis may 

not be fixed; axis maybe changing, like in the rotation of a top, axis is there so that axis keeps 

changing. Now, we will study the situation in which axis of rotation is not fixed. However, it 

passes through a fixed point. The interesting point, I will bring here is that finite rotations are not 

vectors. Suppose you know that there are rotations, axis rotating. We are going to discuss the 

rotations. So, the point I would like to emphasize is that, like displacements can be added like a 

vector, can we add finite rotations in three dimensions like a vector? No. To demonstrate it, we 

have shown some animation. 

Here, I will show animation in which you rotate the block by 90 degree about z-axis first and 

then 90 degree about y-axis and see what the orientation of the block is.  
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This is a block. In this cube, different faces have been shown by different colors. Top is green, 2 

is slightly brown and 3 is blue. Here, I show z-axis rotation. Rotate this by 90 degree about z-

axis. Now, this face has come like this and if I say y-axis then you got this type of orientation. 

You can see it again; z-axis rotation 90 degree and y-axis rotation like that.  

(Refer Slide Time: 21:06)  
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Now, in the next figure, rotate the block by 90 degree about y axis first and then 90 degree about 

z axis. See the orientation. You will find that both orientations are not same. Suppose I rotate it 

at y-axis, you got like this and z -xis I am rotating, I got like this. So, I get totally different type 

of things. See this animation again; about z-axis, rotation by 90 degree. You can do these types 

of experiments, with your learning and more clarity by taking some book, and rotating it 90 

degree and then again 90 degree about some other axis like that. You see that finite rotations are 

not commutative. It depends in which order you rotate.  

(Refer Slide Time: 21:59)  

 

This simple example illustrates that finite rotations are not commutative and hence cannot be 

treated as vectors. They cannot be treated as vectors. On the other hand, infinitesimal rotations 

maybe treated as vectors. For that, we illustrate something.  
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We will see that in the animation it is like this, suppose you press 1A first. I am rotating it first 

here, then about different axis like that and in this I am changing this axis. I am rotating it like 

this and then here I am rotating it about z-axis here. Here, basically the rotations have produced 

the same result. We can see it again. First rotate it about z-axis and then rotate about y-axis; 

Here, first rotate about y-axis and then about z-axis, we get the same thing. Again, these are 

small rotations. This is like this and then after that you get like this and after that reset.  
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Thus, if d theta1 and d theta2 are small rotations about two axes, then d theta is equal to d theta1 

plus d theta2. If you divide this by dt then omega is equal to omega1 plus omega2. We can divide 

it by dt, limit dt tends to 0. Therefore, what happens is that in this case, the velocities can be 

added like vector.  

(Refer Slide Time: 24:32)  
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For example, consider the following arrangement in which there is a disc which is rotating at 

omega1. There are two bearings on which this shaft is mounted. There is a disc that is also 

spinning about another axis. If I show x y z axis, one rotation of the whole disc is about z and 

this is spinning about y-axis. In this case, what happens is that disc A is rotating about the 

vertical axis with an angular velocity omega1. Disc B is mounted on a shaft supported by two 

bearings on disc A. The angular velocity of omega is omega1 plus omega2. Therefore, the 

combined velocity omega is equal to omega1 plus omega2 vector. Therefore, combined velocity 

is like this.  

(Refer Slide Time: 25:32)  

 

Angular acceleration: when the magnitude of omega remains constant but the direction changes; 

we can find out the angular acceleration in that case. The angular acceleration alpha is the time 

derivative of angular acceleration that is a is equal to omega dot. We can write this big omega 

cross this small omega, where this big omega is the precession angular velocity of omega. That is 

the expression for angular acceleration if the axis is also precessing. That is called precessing 

motion.  
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For example, in this you see that there is disk which is rotating. On this, is mounted some shaft 

and on which there is a rotor which itself is spinning with omega2, but the axis of rotation of 

omega1 is fixed. However, the axis of rotation of omega2 is changing then the magnitude of 

angular acceleration of B is omega1 into omega2. We discussed about translation, then about 

rotation about a fixed axis and then we discussed rotation about a point. Now, we discuss the 

general 3D motion.  
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Consider a rigid body which has an angular velocity omega. First, I show the axis system in 3 

dimensions; this is Y, Z, X and O. This is a body I am showing. This body is having angular 

velocity omega. I can show the angular velocity vector omega. It is in this direction; at the same 

time, the body maybe translating also. If I choose an axis system X Y Z on the body, this is y, 

then z and this is x where small o is the origin, a point on the body. We choose another axis 

system that is oxy which is considered to be fixed; that is the velocity and acceleration of point o 

is always zero and we assume that x y z axis remains parallel to X Y Z. That means we have 

attached an axis system which remains parallel to x y z. Then the velocity of a point P, this point 

support there is a point P, with respect to o maybe written as velocity of point P, VP is equal to 

Vo plus omega cross r P by o, small o.  

You get VP is equal to Vo plus omega cross this one and similarly, the acceleration, ap can be 

written as ao, small o plus omega cross rp by o plus omega cross omega cross rp by o. These are the 

expressions which we developed while studying kinematics also.  
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Now, I will take one example. Consider this link. Suppose there is shaft and these are the 

bearings. Here also these are bearings. Suppose this just supported that axis and then in this you 

have attached one link like this and here by pin joint another link is there and if it is rotating with 

omega1 and this axis is x y z. This axis if I attach another axis system if this point I call A, and 

this link is B the third link is BC. Here I attach a small x then you have y and then this is z. This 

is omega2. y-axis which I have shown is perpendicular to the plane of your screen. xyz and 

capital XYZ both are parallel. In that case, we can always write that VC is equal to VB plus 

omega2 cross rc by B. This is the expression and VB is equal to basically omega1 times l because it 

is rotating by omega1 times j plus omega2 cross j minus l cos theta i plus l sin theta k. If you 

simplify that, you would get w1 l j plus w2 l cos theta times k plus w2 l sin theta times i. So, that 

type of expression you get.  

I could have taken another reference system that is rotating reference axis.  
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If we take XYZO, this is a fixed axis system and if we take a body like this in 3D, but if we take 

a small o origin and this is x y and z. This axis system is also attached, but this time it is not 

parallel; instead it is rotating also. Therefore, what happens in this, suppose xyz rotates with 

angular velocity omega that means rotation of axis is by big omega, which is different from the 

angular velocity small omega of the body, omega and omega in general can be different.  

(Refer Slide Time: 34:52)  
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Then, you can easily prove that if I take i axis about this and j about this y, then you can easily 

prove one point that i dot unit vector dot is equal to basically big omega cross I; angular velocity 

of the axis system cross product with i. Similarly, you can say j dot is equal to omega cross j. 

Similarly, k dot is equal to omega cross k. Here, dot indicates the time derivative. The expression 

for the velocity and acceleration of point P then become, VP is equal to, suppose we have point P 

on the body that become VP, then Vo small plus omega cross rp by o plus Vrel, relative velocity of 

that point. ap becomes equal to ao plus omega dot cross rp by o plus omega cross omega cross rp by o 

plus 2 omega cross Vrel plus arel. These expressions we have already discussed, but we are just 

looking at them again from the point of view of 3D kinematics.  

In this case, Vrel is basically in 3D. It is x dot i plus y dot j plus z dot k and arel is x double dot i 

plus y double dot j plus z double dot k. If the axes are rigidly attached to the body then omega 

will be equal to omega. In that case, since they are rigidly attached Vrel and arel, both will be 0. In 

this case, the equation reduces to your previous equation. That is omega cross rp by o.  

We now solve the same problem which we just solved. We will go back to the previous slide. 

We have solved this problem. Now, this time we attach the axis system to link 1 itself that means 

it rotates with the link 1.  

(Refer Slide Time: 38:29) 
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In that case, we will get VC is equal to VB plus omega1 i cross minus l cos theta i plus l sin theta 

k plus omega 2j minus omega1i l cross minus l cost theta i plus l sin theta k. If we simplify then 

this becomes basically omega1 lj plus omega 2j cross minus l cos theta i plus l sin theta k. We get 

the same equations as we got before; same velocity. So, one can take different type of axis 

system and he can get the same result.  

(Refer Slide Time: 40:04) 

 

Now, we take another example. Suppose there is shaft here. Let us put in some bearing and it is 

rotating with omega. You have axis attached here z and this is x and this VA. Then the relative 

velocity of this is VA is equal to omega cross rA by o plus Vrel that is omega cross r times j, this is 

in y direction plus Vrel and it’s absolute acceleration will be omega square rj plus twice omega 

Vrel i, where 2 omega Vrel is the Coriolis acceleration. These equations which we discussed can 

be used for 3 dimensional things also. 
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We discuss about that. Just pay attention that how many independent coordinates a body has; 

rigid body. A rigid body is composed of so many particles. Supposing a rigid body has got N 

particles. If there are N particles a rigid body is composed of, although we will say that in rigid 

body N tends to infinity, otherwise it will not be continuum, we cannot have discrete set of 

particles.  

Suppose there are N particles then, each particle has 3 degrees of freedom, xyz. So, total degrees 

of freedom are how much? 3N; since, each particle has 3 degrees of freedom. Therefore, 3N 

coordinates are needed to specify the body. However, these coordinates are not independent; 

they are related, because in the rigid body distance between two particles is fixed. So, one 

particle is connected to other N minus 1 particles. Thus, we write N minus 1 equations relating 

the coordinates and distance.  

Similarly, for the second particle, we can write N minus 2 equations, since the equation relating 

this and the first particle has already been written. For third particle, we can write N minus 3 

equation. Thus, total available equations are N minus 1 plus N minus 2 plus, plus ….. plus 1. 

This is equal to N minus 1 into N minus 1 plus 1 by 2; that is half N and N minus 1. For large N, 

these equations, total available equations these are constraint equations. They are more than 3N; 

suppose you take N is equal to 100. So 3N is 300, but this will be 100 times 99 by 2 that means 
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50 into 99. So, 4950; these are much more than this thing. But all of these equations are not 

independent.  

This way we cannot ascertain. Another way to understand that is if we know the coordinates of 3 

points; let us say there is a rigid body and you know the coordinates of three points; three points 

coordinates are known. Then for any point, if you take any fourth point in the body, there are 

like, if I take this point then there are three equations relating coordinates with the distance of the 

points. This is like this, this is like this and this is like this. Once you have fixed up three points 

on the body then all points get constrained. They cannot have their independent degrees of 

freedom. We can only take three reference points but the three reference points themselves are 

also not independent. There are three equations of distance actually. Thus, the independent 

degrees of freedom are 3 into 39 minus 3, that means 6. So, there are only 6 independent degrees 

of freedom. 

Since there are 6 degrees of freedom, if we fix a point o on the body and some coordinate 

system, then 3 coordinates are needed to specify the origin of the coordinate system. Since total 6 

degrees of freedom are required to specify the body, 3 coordinates are needed to specify the 

orientation of the axis. There are many ways of specifying the orientation of a Cartesian set of 

axis, relative to another set with common origin, but most common is the Euler angles. So, most 

common is Euler angles. We will explain this by animations.  
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Euler angles are defined as 3 successive angles of rotation. Many conventions are followed but 

the sequence implied here, it started by rotating the initial system of axis XYZ. Suppose you 

have an angle alpha about X axis, the resulted coordinate system is labeled as x2 y2 and z2. The 

z2 axis is same as z1 axis. Suppose, you have a system that it is x1 y1 and z1; you rotate and this 

axis is same as that one.  

You give the first rotation, you got another system x2 y2 z2. It has rotated about the z1 axis by 

an angle alpha but the z2 is same as z1 in that direction. See this animation again. Initially x1 y1 

z1, now rotate it. First rotation has given x2 y2 z2. Then we go to the next we give the second 

rotation. In the second stage the intermediate axis x2 y2 z2 is rotated about y2, about this y2 to 

produce intermediate set x3 y3 z3. Now, it is rotated about y2. This is how it will rotate. Now, let 

us see the second rotation. So, by second rotation, y3 is same as y2 in the same direction but 

these has rotated, x3 and z3 and those angles are beta. So, that rotation is beta. The intersection 

of x2 y2 and x3 y3 planes, this is x2 y2 and x3 y3, is called as the line of nodes. These two 

planes intersect. So, that is called line of nodes. Will see it again; this was x2 y2 plane and then 

this gets rotated. This is x3 y3 plane. Their intersection will be called line of nodes.  

Now, we see finally x3 y3 z3 is rotated above z3 by an angle gamma. Therefore, what happens 

we reset that and see third rotation about z3; so, gamma.  
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Euler angles are not the only way to specify the motion of this thing. There are others. Once we 

have the rotations, these rotations can be represented by the matrices and finally we can multiply 

the matrices to get the final outcome. Now, we can have another type of rotation. More common 

convention in engineering application is like this. We can have the axis system and we can have 

yaw. This is called yaw, yaw motion; that means, about this vertical axis the plane is moving that 

is yaw motion. Then we have pitch motion. This is pitch motion. Yaw motion is this one and 

pitch is about this upward. Pitching motion is about this transverse axis. This one is called pitch 

and roll is about the longitudinal axis; this is roll motion. These types of conventions can be 

done. These are the motions.  

We have discussed kinematics and now, we have to discuss kinetics also. Before that, let me just 

show that in 3D. Earlier you got some appreciation of the visualizing of the 3D kinematics etc. 

and why you have to understand the type of angle system and all these things.  
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Now in the case of Euler angle, here suppose you have got D is equal to cos alpha sin alpha 0, 

minus sin alpha cos alpha 0, 0 0 1 and then the rotation about another axis can be specified by 

cos beta 0 minus sin beta, 0 1 0, sin beta 0 cos beta, and the rotation about the third one B is cos 

gamma sin gamma 0, minus sin gamma cos gamma 0, 0 0 1. If we denote the old axis system by 

x y z and new by x prime y prime z then you have these equations; x prime y prime z prime is 

equal to BCD xyz. Like that we can get the relations. 

We will get the coordinate systems relating one axis system with the other axis system. This way 

it can be done. So, once we understand these things, we can have, for any particular body, we 

can have three coordinates xyz of the origin and we can also have alpha beta gamma. These are 

the angles. With this, we can describe this thing. 

In the next lecture, we will be discussing the Euler’s equation; that means we will start dynamics. 

Then, we will also study one phenomena of that gyroscope. We will study gyroscopic motion 

and that will be the topic of the next lecture.  


