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Module 6 Lecture 13 
Centroids and Center of Mass 

In all our previous lectures, in engineering mechanics, we primarily saw how to compute the 

various forces and the moments for concentrated loads. When we have distributed loads in a 

system, then we have to find their equivalent, in order to evaluate the moments due to those 

distributed forces and their effects on the equilibrium of the body. So, we will see certain 

procedures to compute the points of concentrated load that can be said to be equivalent to the 

distributed loads.  

(Refer Slide Time: 00:02:11 min) 

 

One such measure is the centroid or the center of mass. We will discuss about them and how to 

compute these values for various shapes, in this lecture. So, for your reference, this is module 6, 

lecture 13, of Engineering Mechanics course. 
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Let us see what kinds of distributed forces occur. We very well know that gravity acts on all the 

constituent parts of matter. Thus, it is in fact a distributed force. So, weight of a body, is in fact a 

distributed force. Here, the distribution of the force is throughout the volume of the body. Every 

part of the body experiences the gravity. Thus, the weight of the body is in fact a distributed 

force over the volume. 

Next, we have some examples of force distributed on surfaces, like the water pressure on the 

walls of the dams or the walls of the pressure vessels, is in fact a distributed force on surface. So 

pressure is an example of force distribution on a surface. Then, we have also force distribution 

on line or on curves. We have examples like, the loading of the beams that we have already seen. 

We see the dimension like, here it is 3 dimension, here it is 2-D and here it is 1-D and we have 

the force distribution and examples for all these cases. 
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Let us see how to compute this mass center or equivalent points, through which we can assume 

the mass to be acting, in order to compute the weight of the system or the moment of the weight 

of the body, with respect to some coordinate frame. Let us consider a rigid body which is having 

uniform density, rho. Here in this picture, you see one such body and it is acted upon by gravity; 

this body is acted upon by gravity. Let us fix some reference frame, OXYZ. If we consider a 

differential mass element of this body, say this small q that you see over here, the mass of this 

element is rho dv, if dv is the volume of the element. The weight is gravity times the differential 

mass, which is equal to g times rho dv. This vector shows both magnitude and direction of this 

weight of this differential element, that is dw. 

If we consider the object which has dimensions comparable to say the size of the earth, then, if 

we consider a differential element in this body and if say this is the center of the earth, then, we 

know that gravity at any point acts radially towards this center. This vector which is dw, is in fact 

acting towards the center of the earth, say, CE. If we consider the size of this body to be small, 

then we can assume that all these vectors are in fact parallel. In this case, or in reality these 

vectors are not parallel, but if the size of the object can be considered to be small, then these 

vectors can be assumed to be parallel.  
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That is the assumption that we make that if we assume the object size to be small and is close to 

the Earth’s surface, then we can assume these directions to be vertical and all these differential 

elements have this weight dw, which is parallel to the Z-axis. It is equal to g times rho dv, where 

g is the acceleration due to gravity, and rho is the density and dv is the volume. If we assume the 

size of the object to be small and close to Earth, then the assumption that all these vectors dw are 

parallel is valid. With this assumption, let us see, how to find the resultant of all these forces, that 

is dw. The resultant of these forces if we say is w is equal to summing up all these differential 

weights over the volume v of this object, which is equal to integral over the volume of g rho dv. 

This expression gives the resultant of all these differential weights. But now, we have only 

equated the forces to find the resultant. Now we have to find if the moments are also equal, so 

that we can find the point of action of this equivalent force W. 

Let us consider the location of this differential element dv at x, y and z with respect to this 

reference that is OXYZ.  
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If we are interested to find the moment of these differential weights with respect to this axis OX, 

and equate it to the moment of this concentrated load W, which, let us say, acts through a point 

G. Let the coordinate of this point G be x bar, y bar and z bar with respect to this frame of 

reference. If this concentrated load W has to be equivalent to all these differential weights dw, 

then, sum of the moments of these forces about this axis OX, has to be same as the moment of 

this vector w, with respect to this axis OX. We write that, if we take the axis OY, then we can 

write x bar, which is the momentum for this vector w, with respect to this axis’ OY times w is 

the moment, should be equal to the summation of the moments of all these vectors dw, over the 

entire volume. So integral vx, which is the momentum for this vector dw, which is g times rho 

dv.  

From this expression, we can find what is x bar or the location of the coordinate for the 

concentrated load, with respect to the axis OY. Similarly, we can sum the moments with respect 

to the other axes, say with respect to OX, in which case the momentum is y bar. If we take the 

axis for this OZ, then we have this momentum of z bar. So, we can write, these additional 

equations, that is, y bar W equal to integral v y times g rho dv. 

From this expression, we can find what this y bar or the location of this vector, with respect this 

plane OXZ. In the same way, z bar W equal to integral v z g rho dv, which gives this value z bar 
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or the location of this point with respect to this plane OXY. From these expressions, we can now 

locate the point x bar, y bar, z bar, which can be considered as the point through which the 

equivalent load or the equivalent weight W, acts. This point is known as the center of gravity for 

this body. Weight of the body is also defined by this integral dw. 

(Refer Slide Time: 15:24)  

 

Let us see how we can extend this discussion to find other centers, that we call as center of mass 

or centroids. To find this quantity center of mass, which is nothing but a point through which all 

the differential mass elements act as a single quantity, that is, the mass of the object. It can be 

said to be the equivalent point through which the complete mass of the body is assumed to be 

concentrated. Let us assume that uniform gravity acts throughout the object. In that case, this 

quantity g can be taken out from the integral. So, we get this g times of M as the weight is equal 

to g times of integral v rho dv. So, the quantity has been defined in this way, from which we 

remove this common terms and we get this expression for M as integral v rho dv. It is nothing 

but the integration over the volume of dM, which is nothing but rho dv. Now, we can take 

moments of this mass and equate it to the moment of these differential mass elements, that is dM. 

We have x bar M is equal to integral v xdm, which is rho dv. From this expression we get the 

coordinate x bar or the location of this point through which it is assumed that the complete mass 

M acts with respect to say the plane OZY. In the same way, the other two coordinates, that is y 
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bar and z bar can be computed by taking the corresponding first moment of this mass. This 

coordinate x bar, y bar, z bar defines the center of mass. If the gravity is acting throughout and it 

is same, then we have the mass center and the center of gravity as the same location. 

(Refer Slide Time: 18:50)  

 

We can extend this discussion, to define this centroid or the point, where we can assume that the 

complete volume is concentrated. If we assume that the body is constituted with uniform density 

material, then, this rho can be taken out of this integration and can be cancelled. Thus, we have 

the volume of the body as integral over the volume dv, the differential volume of these elements. 

The coordinates of the first moment are x bar v is equal to integral over v x dv. In the same way, 

the other coordinates that is y bar and z bar are defined. These coordinates x bar, y bar and z bar 

are the centroids of this volume. 

From these discussions, we see that, if we assume the density to be uniform and the gravity to be 

the same throughout the volume of the body, then, the center of gravity, the center of mass and 

the centroid of the volume are all located in the same place. 
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Let us discuss and extend these derived quantities for thin plates. For thin plates, the thickness 

can be assumed to be uniform and equal to t. So the differential element dv is equal to t times the 

differential element dA. If I consider an element whose thickness is t, then if dv is the volume of 

this differential element, it is equal to t times or the thickness of this body times dA, which is the 

differential area of this element. So, we write dw, or the weight of this element as g times rho 

times dv, which is t times of dA. If we compute those quantities, we will find that if other things 

remain constant, that is, it is a homogeneous material, so rho is constant and gravity is also acting 

constant and it is a thin plate or a uniform plate, then t is constant. Then, we will see that, the 

centroid C of this area coincides with the center of gravity and center of mass of this plate. So, 

we have the area of the plate as the integral of this dA. The first moments are x bar A equal to 

integral xdA and this quantity integral xdA, is known as the first moment of this area with 

respect to the y-axis. Because we are taking this momentum with respect to this y-axis, this 

quantity is known as the first moment of the area with respect to y-axis.  

Same way, the coordinate y bar is defined and is known as the first moment with respect to the x-

axis. So these quantities that is x bar and y bar can be found for various shapes, [….] tabulated 

and engineers generally use these values for their computations. That means, the location of the 

mass center or the center of gravity is same as the location of the centroid and this is useful for 

various computations. 
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Let us further extend this discussion to uniform wires. If you consider a small element in this 

wire, the weight of this element is dw, which is equal to g times rho times a. If a is the cross 

section area, let us assume that, this is the differential element and it is having uniform cross 

section throughout this wire. Let us say, a, is the area of cross section of this element, which is 

constant throughout this wire times dL or the differential length that we have taken along this 

wire. We have dw as g times rho a dL. If we integrate this, we find the quantities, that is, if we 

take out these constants like g and rho and a, from the integration, because we assume 

homogeneous material and small objects; so g is also constant. We are additionally assuming a 

wire of uniform cross section; so, this a is constant. So the integration simplifies to L, which is 

the length of the wire equal to integral dL. We have the first moments as x bar L equal to integral 

x dL, which is the first moment of this curve with respect to the y-axis. We have this quantity y 

bar L equal to integral y dL or the first moment of this curve, with respect to the x-axis. So, we 

have seen, in general, how to compute the coordinates of the centroids or the mass center and the 

center of gravity. 
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We will discuss little more the discussions on finding the centroids and mass centers for the case 

of plates. For lamina or plates, the centroid lies on the line of symmetry. This can be found from 

this example, where we have taken this plate or lamina, which is having symmetry with respect 

to this axis say Oy. We have already seen that the centroid is defined based on the first moment 

of the area. So if we take any differential element say dA, the first moment of this element with 

respect to this axis Oy is nothing but xdA. We defined the centroid x bar and if A is the total area 

as the sum of this value xdA, for the entire region, we see that if symmetry exists for this object, 

then for every element dA which is at a distance of x from this Oy, we have a corresponding 

element dA prime, which is at a distance of minus x. 

This quantity can now be grouped as integral xdA plus minus xdA prime and for every element 

that we find we have a complementary element dA prime, which is having the same momentum. 

These two quantities cancel out and this becomes zero. So obviously area is not zero, so this 

quantity x bar has to be zero. That means, the moment or the first moment of this area with 

respect to this Oy is zero; that means it lies on the same axis. It can be proved that the centroid 

lies on the line of symmetry, by considering this first moment. 

Here, you see another example. We see that this geometry or the shape of the plate has a 

symmetry with respect to this axis b b prime. If we shift our axes, let us say our y and x and 
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compute the moments, then we can find an element at p and p prime, having the same moments 

say x and minus x. So if we sum up the first moment of these differential elements, they sum to 

zero and we find that the coordinate x bar has to be zero that means it has to lie along this line. 

So this is valid for any shape, which is having an axis of symmetry. If we have two axes of 

symmetries, then the centroid lies at the location where these lines of symmetries intersect for the 

lamina. 

(Refer Slide Time: 31:25)  

 

Here, you see an example where this shape has symmetry, with respect Oy or the y-axis as well 

as with respect to Ox. So, if we try to find the first moment of this area with respect to this axis 

Oy, we have x bar A equal to integral xdA. We see that these elements have a corresponding 

element which is having the same area. The integral xdA can be said to be constituting of 

integral xdA minus the complementary elements, that is dA prime and this quantity being zero, 

we have x bar as zero. Similarly, if we take the other integral that is y bar A equal to integral 

ydA, we again see that for each of this elements we have the complementary element dA prime 

and this quantity is zero and thus we find y bar is also zero. We see that, the centroid is located at 

x bar y bar which is zero comma zero, which is nothing but this origin and we see that, this 

origin is nothing but the intersection of the lines of symmetry and this is valid for any shape. 
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Let us consider this triangle; it has three axes of symmetries. We consider these two that is D, D 

prime and B, B prime, and the intersection of these two lines of symmetry is at C. This 

discussion, whatever we have done, can be extended to this, by considering any element, any 

differential element. It is possible to find a corresponding element and thus the sum of the 

moments of these elements is zero, with respect to this axis. Same way, it is possible to find 

elements which are having the same moment with respect to D D prime. Thus, if we sum them it 

becomes zero and thus they lie along this axis. 

If the mass or center or the centroid has to lie along this line, as well as along this line, we see 

that, the possibility exists only at the point of intersection that is C. So, this discussion holds 

good for any shape. If we have the lines of symmetries, then we can advantageously use it and 

we can only find the other coordinate that has to be found by the integral.  

(Refer Slide Time: 35:39)  

 

For shapes which are very common for engineering application, we have the centroids defined. 

Like for this picture, we have the centroid located along the axis of the angle bisector and only 

we have to determine this y bar, which is, in this case, if you find the integral, it will be h by 3. In 

the same way, let us consider another example, like a semicircular lamina and since we have one 

axis of symmetry, we can say that C or the centroid, will lie along this line and we can only find 

the location of this C, with respect to this diametrical line; if r is the radius and if we integrate it, 
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we can find this quantity y bar as 4 r by 3 pi. So for common shapes, these values, that is, the 

centroids x bar and y bar are tabulated and they are available for use for various computations.  

(Refer Slide Time: 37:33)  

 

Generally, the shapes that we use are composite shapes, which constitute a combination of these 

simpler shapes like the circular lamina, the rectangular lamina, or the triangular lamina. If you 

are interested to find the mass center or the centroids or center of gravity for these complex 

shapes and if it is possible to divide them into simpler shapes, for which the centroids are 

defined, then the problem of finding the centroids is made easy. Let us see this; the areas of the 

centroids of various shapes are known. If a flat plate can be divided into several of these shapes, 

then the coordinates X bar and Y bar of the center of gravity can be determined from the 

coordinates, that is x1 bar, x2 bar etc of these various parts. 

Let us see this example. We have this shape, complex shape and we are interested to find the 

location of its centroid or mass center, that is, these quantities X bar and capital Y bar. We find 

that this shape can be decompressed into, let us say, one rectangle and two triangles. For these 

simple shapes, the location of the mass center is known, that is, let us say, G1, G2 and G3 are the 

location of these mass centers. If W1, W2, W3 are the weights of these plates, then, the first 

moment of all these quantities, with respect to this axis Oy, the sum of all these moments is equal 

to the moment of this force, single force, which is nothing but sum of W1, W2, W3 into the 
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momentum. So that is what we have, X bar sigma W is equal to sigma x bar, which is nothing 

but the location of the centroid, mass center and center of gravity, if we assume homogeneous 

materials, and same way Y bar sigma W is equal to sigma y bar W. From this, we have X bar 

sigma A is equal to sigma x bar A and Y bar is equal to Y bar sigma A is equal to sigma y bar A. 

In this way, it is possible to find the location of the centroids of plates, if they can be 

decomposed into simpler shapes. 

(Refer Slide Time: 41:13)  

 

Let us take one example to find the centroid of a plate, which can be decomposed into simpler 

shapes. Here, you see a lamina which is composed of certain annular hole region and composed 

of a triangle and a rectangle. This shape, from our understanding, can be decomposed into a 

rectangle, a triangle and a semicircular lamina. We have to remove from the sum of these areas, 

this area corresponding to this circle. We see that this complex shape can be decomposed into 

simpler shapes, for which the centroid is known. We have this rectangle, whose centroid is 

located. This rectangle has two axis of symmetry. So, it is located at 40 mm from x-axis and 60 

mm from y-axis. 

Let us take this triangular lamina. We know that the centroid is located at a distance one-third 

height, so in this case the height is 60 mm. So it is located 20 mm below the x-axis. If we 

consider this semicircular lamina, it has an axis of symmetry. So, its centroid lies at 60 mm from 
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y-axis, which is equal to the radius of this semicircular lamina. It is located from its diametrical 

line at a distance of 4r by 3 pi, which is in this case 25.46 mm. For this circle, the centroid lies at 

the center of the circle, which is 80 mm from the x-axis and 60 mm from the y-axis. 

(Refer Slide Time: 44:24)  

 

Knowing these quantities, we can find the first moment about the required axes, let us say x and 

y-axis, and from which, we can find the first moment of the sum of all these areas. For x-axis, I 

can write x bar A is equal to, if I say this as the area of the rectangle and I have the location of 

the centroid with respect to the y-axis as 60 mm, so 60 times the area of the rectangle, which is 

40 times 60 plus 40 times area of the triangular lamina plus 60 times the area of the semicircular 

lamina minus 60 times the area of the circular lamina. Since we know all these quantities can be 

computed from the geometry and we also know the total area A, which is area of the rectangle, 

plus area of the triangle, plus area of the semicircular lamina, minus area of the circular lamina, 

we find this quantity X bar can be determined.  
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Let us move on to discuss how to find these centroids by the method of integration. We have 

already considered that, if I have an area and I am interested to find the centroid of this lamina, 

or the plate, then I consider a small element, say dA, which is equal to dx times dy, where these 

are the dimension of these elements. So I find the equivalent x bar A as integral x dx dy, where A 

is equal to integral dx dy and this is a double integral, because you have to integrate for the limits 

in x and y. So for curves, if I consider this curve and I am interested to find the centroid of the 

area, under this curve between the limits say x1 and x2, then I consider this differential element 

dx dy and I can find this quantity. 

I can avoid this double integral, if I consider, instead of an element whose dimensions are dx dy, 

I consider this rectangular strip, whose dimensions are dx and y. For a small element, I can say 

that this is equal to a rectangular strip whose dimension is y. So if I have the equation of this 

curve defined as y equal to some function of x, then I can define a series of such rectangular 

strips and integrate them. 

So the double integral has been converted to a single integral, where if I consider these elements, 

I know that, the centroid of this rectangular strip will lie here, which I may call it as y bar of the 

element. I can sum these quantities to find the centroid of the area under this curve. By taking 

suitable elements, one can avoid this multiple integrals. Let us see some examples. So you can 
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either consider thin rectangles as shown in this example or you can consider other forms of thin 

strips also.  

(Refer Slide Time: 50:14)  

 

Here, you see one example where we have this curve and whose equation is known and we are 

interested to find the centroid of this area, that is, the area under this curve. Let us take this thin 

element which is a vertical strip, whose centroid is located at y bar element and at x bar element 

for axis the Oy and Ox. So, we can write x bar A as integral x dA, which is the double integral, if 

we take a small differential element of this form. But since we have taken this rectangular 

element, it becomes a single integral with x bar of this rectangular element times dA, where dA 

is the area of this thin strip. In the same way, we can define this y bar. 

We know that for this thin strip the area is ydx, so we have this quantity as integral x ydx, where 

y is a function of x again. So now, it becomes a single integral in x. In the same way, here we 

have, for determining y bar, it is integral y by 2 which is this distance times y dx, which is the 

area of this element. Again, this is a function of x, because we have y as a function of x and so it 

is again a single integral.  
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We can also take other forms of elements, like in this example, we have a thin triangular strip 

which can be swept in order to approximate this area. So, we can define the centroids by taking 

these elements, where dA is the area of this element. In same way, y bar can be defined as 

integral 2r by 3, which is the location of the centroid with respect to this coordinate. We have 

this area as 1 by 2r square d theta, where d theta is the angle swept by this small triangular 

element. 
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Let us consider one example to completely illustrate this procedure. We have this curve, y equal 

to kx square, which is a parabola and we are interested to find the location of the centroid. To 

proceed with this problem, first we have to determine this value of k. We find that by 

substituting the end condition that y is equal to b, when x is equal to a and from that, we find this 

value of k. Thus, we write the equation of this parabola as, y equal to b by a square x square. 

(Refer Slide Time: 54:34) 
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Now we find the total area. We have this differential element dA, which is considered as a thin 

vertical strip and we integrate this between 0 to A and we have the area as ab by 3. 

(Refer Slide Time: 55:02)  

 

In order to find the first moments, we consider this element, which has the location of the 

centroid as y element, which is y by 2, and x element, which is nothing but x itself. Qy, which 

defines the first moment of this element and the sum of all these first moments is the first 

moment of this area with respect to y-axis and it is found as a square b by 4. 

Here, you will see that xy dx is the first moment of the small elemental area and it is integrated 

between the elements 0 to A. Similarly, we can find the other moment, that is the moment with 

respect to x-axis. Once we know these moments, we also know the area and we can find the 

coordinates that is x bar and y bar.  
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We have area as well as Qy found and so we can find this x bar and it is found as 3 by 4a. 

Similarly, we can find y bar as 3 by 10 times of b.  

This example illustrated the method of finding the centroids by integration.  


