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In the previous lecture we studied a rigid rotor, which was mounted at ends by springs, 

and the spring property in two orthogonal directions were different. Such model is valid 

for the bearings in which rolling elements bearings are there. And generally it imparts the 

stiffness damping is relatively low and the stiffness property in two directions may be 

different. Now, if we are considering the hydrodynamic bearing. Then these property not 

only changes the stiffness in two directions in vertical and horizontal direction, but also it 

imparts damping in the two orthogonal direction. Apart from this, there is a cross 

coupled stiffness and damping in the such kind of bearing.  

So, what are these we see in the present lecture, how this stiffness and damping can be 

derived either by a theoretical model or through experiment, that basic outline we will 

study. And then we will study, when a particular rigid rotor is mounted on such complex 

bearings how it is behaviour take place. 
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This is the overview of the lecture, this is rigid rotor mounted on anisotropic spring and 

damper as bearings. Then even we will study the force transmitted through the bearing 

from the rotor. And in this we will be having the following concept to be covered in this 

particular lecture, that is a bearing it linearize parameter model, cross coupling stiffness 

and damping and orbit of the shaft. 
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So, let us take a hydrodynamic bearing and this particular bearing. This is the bearing 

centre when the journal which is inside, which is in the bearing, when it is not rotating. 

Then we expect it will be resting at the bottom of the this bearing, where omega is 0 for 

this particular case. But when the this particular speed increases, now you can able to see 

whatever the fluid which is here, which is in the parents. It will try to go into this 

particular wage and because of this the pressure will be generated at the wage and this 

particular journal will lift on inside the bearing. 

So, I am drawing a particular configuration in which the journal is rotating at particular 

speed and it has taken some equilibrium position inside the bearing. So, now, you can 

able to see that because of rotation of the journal. The fluids are getting pumped in this 

wage part and because of that the pressure is generated in this region and the weight of 

the journal is supported by the pressure generated at the fluid frame. 

In this particular let us say, this is the bearing centre and this is the journal centre and 

bearing centre are offset by some amount. Let us say B J is the radial eccentricity and if, 



we draw a vertical from the bearing centre. This particular angle is called gratitude angle, 

which defines the position of the journal.  

So, if we want to plot the journal motion how it changes it is location with respect to 

speed. Because, for a particular speed it occupies certain position inside the bearing and 

so you can able to see that at rest that is here it is the journal centre it is the beating 

centre. Now as speed increases it changes it is position and theoretically when speed is at 

infinity it reaches to the b. That means, both the rotor and journal centre journal and the 

bearing centre will be at the same place.  

So, we can able to say when speed is increasing the shaft centre takes a particular path 

and for a one particular speed it will occupy. This particular position and this is the radial 

eccentricity, which we have drawn here the B J is the journal position. Let us say at 

equilibrium for a particular seed it is position is given by u not and v not. This is the 

altitude angle.  

So, e r and phi define the position of the journal or even we can able to define with 

respect to v not and u not, now you can able to see that, when we are changing the speed 

this particular journal changing it position. And if we talk about how this the fluid fill is 

imparting the stiffness and damping to the rotor. So, obviously we expect that when we 

are changing the speed, when the journal position is changing. We except it will be 

having different stiffness and different damping property. So, now let us analyze those 

here. 
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The fluid fill which is giving a reaction force on to the general is R u in the direction of 

horizontal direction and this reaction force is function of the position of the journal and 

the instantaneous velocity also. The fluid force in the vertical direction also is function of 

this quantity. So, these are the reaction forces, which is coming from the fluid fill on to 

the journal.  

Now this is at equilibrium position let us see that means, it is at let us say u not and v not. 

If we are giving a some kind of perturbation or disturbance from it is equilibrium, then 

let us say we are giving perturbation to each of this by d u d v and it is velocity 

components to each of these variables. 

So, the fluid film force now will be written as, so this fluid filling force we except that it 

will be changing. Because of this disturbance like this similarly, now this particular is in 

u direction similar variation will be there in the v direction also, this particular function 

we can able to expand using Taylor’s series expansion.  

So, let us say the reaction force in u direction due to the at equilibrium position plus the 

variations components. So, this is the variation in the d u, then variation in the d v and 

the velocity components. These are the velocity components or similar variation we can 

able to express in v direction. So, this will be v plus d v, I am again repeating this. So, 

similar variation will be there in the v direction force velocity components. 



So, this will be equal to force in vertical direction at equilibrium and variations, this we 

are doing with the help of Taylor’s series expansion. These are the velocity components 

changing the force due to the velocity components in horizontal and vertical direction. 

Now we can able to see that this particular force is the force due to the initial equilibrium 

position and the disturbance. Now the change in the force in the at u direction and v 

direction, we can able to get by writing this particular u, which is function of all those 

functions minus at equilibrium.  

So, this can be written as this particular expression that, I am writing as let us say K u u 

into d u, then this expression I am writing as a coefficient K u v d v. The first subscript, I 

am representing to the numerator and the second subscript to the denominator. So, 

numerator is having force and denominator is having displacement. So, this is 

representing the force direction and this is representing the displacement direction 

similarly, these are corresponding to the velocity.  

So, I am writing this as C u u as a subscript d u plus C u v and d v dot. So, here also the 

first subscript is in the force direction u direction and second is in the displacement 

direction that is the velocity direction. So, the change in the fluid forces I am writing like 

this. Similarly, we can able to write in the other direction that is in the v direction. 
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So, the change in the force in v direction will be K v v d u plus K sorry, this will be u v 

and d u then it will v v d v plus C v u d u dot plus C v v d v dot. So, you can able to see 

that, this K and C, which we are represented. This is representing the change in the force 

for a small perturbation in the displacement and this is representing the change in the 

force due to the change in the velocity.  

So, if I actually this is nothing but the stiffness which is stiffness is defined as change in 

the force with respect to the displacement and this is the damping coefficient, which is 

defined as change in the force due to the velocity. So, these are stiffness coefficients and 

damping coefficients. So, if we take one particular coefficient let us say u v. So, this is 

representing change in force fluid filling force in u direction divided by change in 

displacement in the same direction, that is sorry in the v direction because I have taken 

the different subscript v direction, so this particular stiffness.  

So, this particular stiffness is K u v, I have defined in which we are taking the force 

direction u, the change in the force in u and the displacement in the v direction. So, this 

is a cross coupled term, so in this particular case if we are considering a rotor, which is 

supported on such bearing hydrodynamic bearing, if you are giving a force in u direction 

that is horizontal direction.  

There will be displacement in the horizontal vertical direction also so that means, if you 

are giving force in horizontal direction displacement will take place in that direction as 

well as in the vertical direction and when it is taking the displacement is taking in the 

other orthogonal direction. Then those terms are called as cross coupled terms and those 

terms, which are giving the displacement in the same plane they are called director 

terms, so in this particular case. 
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We can able to write these coefficients like this because we have defined four stiffness 

terms and four damping term. So, in this you can able to see this is u K u u K u v and this 

is K v u and this is K v v. So, this four stiffness term and similarly, we have four 

damping term u v and v u and v v. So, in this and this they are called direct stiffness 

term, direct stiffness coefficients and these two are called cross coupled stiffness 

coefficients, similarly here this two are direct damping term and these cross coupled 

damping terms. So, in this particular case, if we are want to define the C u v. So, this is 

the change in the force in v direction due to change in the velocity in the v direction.  

So, change in the force in u direction due to change in the force in the v direction. 

Generally these stiffness and damping coefficients, which are defined for fluid filling 

bearing we have seen that, they are eight in number four are for stiffness term and four 

are for damping term.  

They can be calculated by either calculating change in the fluid filling force for a given 

displacement in particular direction. This change in the fluid filling force either we can 

able to calculate using the lubrication theory, using the Reylonds equation and or 

sometimes people perform the experiments and they give this particular displacements or 

velocity. 

And they measured the fluid filling force, how much they are changing and by with the 

help of this ratio, we can able to get the stiffness and damping coefficients. Now once we 



have the idea of the this particular model, we will analyze the rigid rotor which is 

mounted on these kind of bearings having eight linearized stiffness coefficients. In this 

particular case, you have seen that when we expanded the using the Taylor’s series, these 

expressions we written only the first derivatives higher derivatives we neglected. So, 

basically we have linearized the fluid filling forces, which is actually non-linear in 

nature. So, that we can able to do some kind of analysis by which we can able to 

understand the critical speed calculation of the rotor or even we can able to do the 

instability analysis in subsequent lectures. 
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Now, will analyze a rigid rotor which is mounted on this kind of fluid filling bearing 

having damping and stiffness terms not only in one direction, but in the orthogonal 

direction also. And apart from these, we have cross coupled stiffness in damping terms. 

So, let me write this as C y y this is K y y this is C x x and this is K x x this is cross 

coupled term, let us say this is C x y and this is K x y similarly you will be having 

another cross coupled term. So, these are K y x and C x y.  

So, and this is one end of the bearing similarly other end of the bearing will be having 

these terms. So, this particular rotor is mounted on two identical bearing, let us say for 

this particular analysis and is having both direct as well as cross coupled terms. So, you 

can able to see there are springs and dashpots, which are 8 in number at each end of the 

bearing of the shaft. 



So, basically in this particular case, I am representing because now I am using x y z co-

ordinate system. So, and this is z axis direction and we have y and x in this direction. So, 

these stiffness and damping, they are giving the forces fluid filling forces in the x and y 

direction, that is why I have changed the subscript of the coefficients to x and y.  

So, basically the we can able to see that now, these this particular rotor which is mounted 

on to the two bearings is identical to the previous analysis only thing is now we are 

having so many spring and damper coefficients attached with this. So, if when we draw 

the free body diagram of this particular rotor in the similar lines of the previous lecture. 

So, let us say I am drawing the free body diagram in the y z plane and in this particular 

case also, we are assuming that we do not have any coupling of the translatory motion 

and the rotary motion. 

They are uncoupled that means, if you are giving a shaft a vertical motion or a vertical 

force. There will not be any tilting there can be displacement in other direction or are not 

coupled and if on the same line, we can if we are giving a tilting motion to the velocity in 

other direction. That will be translatory in nature, but translatory and rotary motions rotor 

it will give tilting in two planes, but it will not give any linear displacements or 

translatory displacement. So, with that assumption we are analyzing this and.  
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So, I am giving a pure translatory motion. So, I am giving a displacement in the y 

direction. So, this is the displacement in y direction and we except because of this there 



will be displacement in x direction also in the other orthogonal plane and earlier we had 

both the radial and the axial eccentricity of the rotor. 

So, this is the axial eccentricity in the z direction and because it is rotating we have this 

centrifugal force, which is offset from the centre of the shaft. Now at ends bearing are 

there they will give forces. This time the forces will be not only from the spring, this was 

the term which we used in the previous analysis, but not because of the cross coupled 

term, we will be having some more terms like due to the displacement in x direction. 

Because, cross coupling is there now between two displacement linear displacement 

direction apart from that we have damping term also and we have the cross couple due to 

the damping.  

So, these are the forces which are acting at the left hand same force because I am 

considering in this particular analysis same bearing. So, the same force will act in the 

other end also due to the damping and stiffness. So, this is the free body diagram of the 

shaft this dotted line represent, the shaft centre line and is acted up on by a centrifugal 

force and bearing reaction forces because of displacement are in the x and y direction. 

Because, now this x and y displacement we cannot able to separate it out. So, both the 

forces will be coming in this particular model.  

So, now we can able to write the equation of motion by putting the equilibrium equation. 

So, we can able to write the equation of motion like this, so because centrifugal force is 

acting in positive direction. So, that will be positive quantity then these bearing reactions 

there, we can able to add them because 2 bearing forces are there and from damping and 

that should be equal to mass into acceleration in the y direction. So, this is one of the 

equation of motion, now we can able to write similar equation of motion, if we give a 

motion in the x direction or the equilibrium in the x z x plane. 

So, that will be the centrifugal force will be m e omega square cos omega t minus the 

subscripts would change here. And here, it will be 2 x y and for damping we will be 

having C x x x dot because of velocity and C x y due to velocity in y direction this 

should be equal to mass into acceleration due in x direction. So, this is the second 

equation of motion these 2 equations, you can able to see that there, we have in both 

equation x and y terms. But the tilt motion is not there, because we are not considering 



this particular model the coupling between the translatory and the linear or the angular 

motion. Now on the same line we can able to go for the tilting of the this particular rotor.  
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So, I am drawing the free body diagram in y in y and z direction in y and z plane. So, the 

tilting positive tilting direction is from y to z and this is the tilting angle phi x. Because, 

that tilting above x axis. Now, because of this tilt, we have this much deformation of the 

shaft. So, that is phi x, if length of the shaft total is l. So, this will be l by 2 and this side 

also. So, you can able to see that here the spring is getting compressed.  

So, force will be upward here it is getting extended. So, this will be downward and 

values of these the forces will be the displacement. This we wrote in the previous 

analysis in the previous lecture. Now apart from this force there will be forces due to the 

cross coupled stiffness, this is due to the cross coupled stiffness. So, this is x and this is y 

because this particular force will come due to the displacement and a tilt in the about the 

y axis similarly, we will be having damping terms. 

So, in this particular case we will be having instead of displacement derivative of this 

and additionally due to coupling we will be having another force term that will be due to 

velocity in the about the y axis this one. A similar force will be there at this end also 

because we have considered this particular bearing same as other end apart from that we 

will be having the centrifugal force which is e z.  



So, now, we can able to see, we can able to write the normal equation. This particular 

force is acting this side also and the moment due to the centrifugal force, we can able to 

balance to the end that is rotary inertia. So, we can able to write let us say a moment m e 

omega square sin omega t into e z, this is the moment. This is giving moment in the 

counter clockwise direction, that is opposite to the angular displacement, that will be 

negative and these force will give a moment again opposite to the displacement angular 

displacement direction. 

So, they will also be negative. So, this will give us 0.5 K y y l is the momentum. So, we 

will be having l square. So, these are the moments now they are negative because 

directing opposite to the angular displacements. So, here we are getting 4 terms from the 

fluid filling forces earlier. It was only single term, this should be equal to the diameter 

mass momentum of inertia of the rotor into acceleration angular acceleration in the y 

direction, that is in the this particular plane the tilting is about x axis.  

So, this is another equation of motion, on the same line we can able to write another 

equation of motion in other plane. That is in x z plane where cos omega t will come and 

where subscript would change angle subscript will also be changing x y l square phi y 

0.5 C x x, this will be x x l x square phi dot y and minus 0.5 C x y and phi y not should 

be equal to I d this will in the above the y axis. 

So, this is the fourth equation of motion. Now we have seen that, we could able to get the 

equation of motion in four direction, that is in the x y phi x and phi y direction and these 

form of the equations are similar to the previous one in now we can put these equations 

in a matrix form and we can able to analyze for the unbalance response. 
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So, these equations we can able to put in a matrix form like this. Mass matrix, stiffness 

matrix, damping matrix and then stiffness matrix is equal to the external force, which is 

due to the unbalance force and the form of the mass matrix, for this case will be like this 

it depends upon how you have stacked the displacement vector.  

So, in this particular case the displacement vector x, we have a step like x y phi y and phi 

x. The ordering of this stacking, we can able to change without any problem, but only 

thing is these coefficients will change it is position, if you are changing the ordering on 

this. Similarly, the damping stiffness damping coefficients will be now because of the 

cross coupled terms, now we are getting four terms earlier, one single only this direct 

damping terms were there earlier damping term was not there totally. But now we are 

having this all four components and also due to the velocity of corresponding to the 

moment balance. So, we have 0.5 l square C x x 0.5 l square C x y and that is C y x and 

this is C y y, now the stiffness matrix will be in similar form I will give you that in the 

next slide. 
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Earlier this stiffness matrix had only diagonal terms. Now because of cross coupled 

terms we have off diagonal terms also and the these terms are corresponding to the 

moment balance. These cross coupled terms were not there earlier only direct stiffness 

terms were there. So, in the previous analysis previous lecture we had these diagonal 

terms, now these of turning terms are coming into the picture. Basically, if you see these 

off diagonal terms because they are getting multiplied by the linear displacement, so a 

translatory displacement so they are coupling the motion in two directions. 

And these are coupling the motion tilting motion in two directions. But these terms are 0, 

that represent that there is no coupling between the linear motion and angular the motion. 

So, here you can able to see these are 0. So, the linear motion and the angular motions 

are not coupled for this particular analysis. 
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So, once we have defined all the matrices only the force is left out the force, we can able 

to write here the force will take the shape of because we have I am taking something 

common here, m e omega square that is common. So, apart from that we have sin omega 

t cos omega t in the at that is sorry, this should be cos omega t and sin omega t in x and y 

direction. These are the forces and then moment will contain e z also apart from cos 

omega t and sin omega t. So, this is the force external force vector. 

(Refer Slide Time: 39:30) 

 



Now this can be solved using the procedure described earlier, we can able to assume the 

solution of the response as complex amplitude and j omega t. So, this will give as x dot 

as j omega capital X e j omega t and acceleration double dot of this will give minus 

omega square X e j omega t. This can be substituted this solution can be substituted in 

the equation... 
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… of motion these and we can able to get... 
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Minus M minus omega square M x i will be taking common then j omega C plus K, I am 

taking x common e j omega t. The force vector we can able to write the this particular 

force vector, which for unbalance was there we can able to write amplitude and the this 

time dependent term, which we earlier defined how this cos omega t and sin omega t can 

be written in this form.  

So, this will give us j omega t. So, this will get cancelled. So, we have if we define this 

particular matrix as A. So, the unbalance we can able to get as inverse of A into force. 

So, this is the solution for unbalance we can able to solve this unbalance response X 

which is having four components in linear displacement and angular displacement in two 

directions. 

So, you can able to see here omega spin speed of the shaft is variable, we can able to 

solve this particular response for various spin speed and we can able to plot how this, 

these are varying with speed. So, wherever we coincide the natural frequency with the 

speed, the resonance will take place, those are the particular speeds. Now this particular 

problem of rotor supported on anisotropic bearing, we will see through one numerical 

example, how this unbalance response can be obtained for various speeds for this.  
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I have taken one problem in which we are obviously, and interested in the transverse 

critical speed of a rotor bearing system, which is, this is a rigid shaft which is supported 

on 2 anisotropic bearing the shaft is symmetric. So, and the length of the shaft is one 



meter the diameter of the shaft is 0.05 meter mass density is given. This the shaft is 

supported by a flexible bearings and we are considering motion both in the vertical and 

horizontal plane, because we are considering the bearing property with 8 coefficients. 

That is four for damping and four for stiffness. So, these are the stiffness property K x x 

K y y, these are direct stiffness, these are cross coupled stiffness. They are generally little 

to be smaller in magnitude as compared to a direct stiffness and similarly the damping 

terms, when cross coupled damping terms are there and in this particular case not only. 

We are considering the bearings, which are there at the left hand and right hand we are 

considering the different bearings, so that we can able to generalise in this particular 

method. So, this is the other end bearing the right hand bearing. So, it is having another 

four coefficients of damping and stiffness. 
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So, this is the shaft rigid shaft supported on two different bearings and some more details 

are there we need to get the unbalance response. So, what we are doing, we are obtaining 

the natural frequency of the system. This system and also through unbalance we have 

obtained the critical speed and we are cross verifying whether, we are getting the same 

values through free vibration and force vibration here. So, in this particular unbalance 

response, we will be having this particular eccentricity of the unbalance. 



(Refer Slide Time: 44:57) 

 

So, we already defined earlier the mass matrix. So, we can able to calculate the because 

we have all the geometry and material property of the shaft, we can able to get the mass 

diameter, mass moment of inertia of a cylinder, which is a rotor is given by this, where r 

is the radius l is the length of the rotor. So, m is the mass of the rotor, which we can able 

to get from here rho is the density of material l is the length of shaft. 

So, from this we can able to form the mass matrix, the stiffness coefficients which we 

have which is given can be this is the stiffness matrix. So, we can able to see this two is 

stiffness’s at two different bearings are getting added up here. So, there is small change 

in the stiffness matrix, which we have obtained earlier it was symmetric. So, we had two 

K x x now they are different.  

So, we are adding them separately similarly this. So, if we substitute those given value of 

the stiffness in the length. We can able to get the stiffness coefficient like this stiffness 

coefficient matrix like this in this particular case as I told there is no coupling, only the 

coupling is there in the translatory motion or in the tilting motion. 
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So, and this is the damping coefficient and if we substitute the value we can get this 

particular damping matrix. This force vector is given by this in which force and moments 

are there this is the stacking of the response vector. 
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So, the equation of motion, which is like this, for free vibration an un damped system, 

we can neglect the force and damping, and so we will left with this particular equation. 

And we can able to solve the Eigen value problem of this and this will give us the critical 



speed, these are the four critical speed, we will get from the Eigen values basically, these 

are natural frequency.  

So, the Eigen value problem will give this natural frequency. Now for force response we 

can able to use this directly without damping with damping. So, this is the unbalance 

response where d is this whole matrix, we can able to solve this particular for various 

values of speed and we can plot the response like this. 
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So, this is the speed variation at one of the amplitude, we have taken here of the 

displacement. And this is the phase of the displacement, these are the linear plot in the x 

direction and y direction, you can able to see we can able to get two critical speeds here, 

corresponding to the resonance and there is a change in the phase also in the other page 

also we are getting the same category speed. Because these two motions are coupled and 

these are corresponding to you can able to see they are around or between 4000 to 6000.  
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 They are corresponding to the this first two.  
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Similarly, we can able to plot the corresponding to the tilting motion in one plane and 

other plane here also we will be getting two critical speeds. These two are same and we 

can able to see they are, between around about 7000 and below 10000.  
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They are corresponding to the this one, this to... So, you can able to see that through free 

vibration analysis or Eigen value problem and through unbalance response, we are 

getting the similar.  

(Refer Slide Time: 49:11) 

 

Critical speeds, today’s lecture we have seen initially the basic concept of the 

hydrodynamic bearing. How this particular bearing fluid filling forces imparts stiffness 

and damping and we have defined the stiffness and damping both. The direct stiffness 

and cross coupled terms, which coupled the motion in two planes with this concept. We 



have then analyzed one rigid rotor which was mounted on this kind of fluid filling 

bearing and we derived the equation of motion. Even we solved a numerical example and 

we have seen that the free vibration analysis, un damped analysis and the unbalance 

response, they give critical speed calculations nearly same. 


