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In the last lecture, we analyze a rotor with a single mass system, and we will consider 

single degree of freedom system and in which the difficulty is that we can able to get the 

response, but as we know that in a rotor the motion take place into two planes. In two 

orthogonal planes, the whirling motion which takes place we cannot able to represent 

with this single mass rotor system. So, today we will see another model that is called 

Jeffcott rotor model in which we will be considering two degree of freedom system by 

which we can able to analyze the orbit of the shaft, also in two transfers direction. 

Subsequently, we will be analyzing some other variant of the Jeffcott rotor in which we 

will be considering four degree of freedom system. 
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So, let us see the overview of the lecture the Jeffcott rotor model with two degree of 

freedom, then Jeffcott rotor model with an offset disc that will be having four degree of 

freedom system. In the previous first case, will be considering only the linear that is 

translationary motion of the disc.  



In second case, not only the translation motion, but also the rotational motion, that is the 

wobbling motion will be considering of the disc when it is especially offset in this simply 

supported case. So, some of the concepts like wobbling of the motion and this avoidance 

of the critical speed, these concepts will look into this particular lecture, now is Jeffcott 

rotor model. In the previous lectures, we have come across regarding this particular 

model in which there is a elastic mass less shaft and the disc is there at the middle and 

bearings are rigid.  
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So, if we look at this particular rotor model this is the bearing axis and we have a disc 

which is attached with a shaft and the disc at the middle of the shaft span and the 

bearings are rigid. They are allowing the rotor to have rotary motion that no transverse 

displacement takes place. If you see axis, this is x axis horizontal direction, vertical axis 

y direction and accordingly we have z axis and this direction. According to the positive 

convection, the rotor is having spins p omega and this whirling about its bearing axis 

there deflected shaft at a new frequency, but we are consider the synchronous whirl 

condition. This means we are considering the whirling frequency is equal to this spin 

speed, because main force which is causing here is the unbalance.  

Now, if we see the free body diagram of the disc in x y plane this is the disc, the shafts 

will exert plastic force, let us say k y k x that these are the displacements x and y and this 

is the centre of rotation of the disc that is the centre of gravity is offset. So, we have if 



about time reference is x axis then this particular angle I am representing that as the theta 

which is function of time. Theta is equal to omega t for constant speed, but at present we 

are not considering that as a constant, so let this is not equal to omega t. So, basically in 

this particular case we have x y and theta as the generalized coordinate to define the 

position of the disc.  

Now, we can able to obtain the equation of motion by equating the force balance in x 

direction y direction and theta direction. In this particular case let us see the position of 

the centre of gravity which is here C G, let us take it as e. So, you can able to see that 

position of the disc, the position of this centre of gravity of the disc will be in x direction. 

As x plus e cos theta and y direction it is position will be y plus e sin theta, so this is the 

position of the centre of gravity. If we derivate this twice that will give acceleration of 

the disc in x and y directions and if you multiply by mass these are the inertia forces. 

Now, we need to equate this with the external forces, if we have damping also in the in 

the system will be having damping forces also along the x and y direction like this. 

So, if we want to balance the forces in x direction will be having elastic force and 

damping force similarly, in y direction will be having elastic force and damping force 

and right hand side is the inertia forces. I perform this; we will see that because of centre 

of gravity mass m g is acting, so that will also come in the force in the y direction that is 

in this particular case it will be minus m g. Not only it will give force, it will give 

moment about the centre of rotation.  

So, if we take the force moment balance in the theta direction that is, m g will give us a 

moment m g into e cos theta that is horizontal component of the eccentricity. There is a 

momentum and it is acting opposite to the motion that is motion in the counter clock 

wise direction, theta direction. This couple is opposite direction clock wise, so it will be 

negative should be equal to the inertia of the disc mass moment of inertia of the disc and 

the angular acceleration. 

So, these are the three equation of motion corresponding to three generalize coordinates. 

In this particular case of Jeffcott rotor model initially we started with three degree of 

freedom system that is the two translational motion x and y and one theta that is the 

torsional oscillation. Generally, this torsional oscillation and the transverse vibration 

coupling, we neglect in this particular analysis also we will see will be neglecting this by 



assuming the speed of the rotor is uniform so that we can able to write the theta equal to 

omega t for uniform velocity of the spins rotor speed. Now, these equations can be 

simplified by taking the derivative of the terms here and here and let us see what it takes 

the form so in this particular case. 
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The first thing I am taking is omega is equal to omega t so that we have this as constant 

speed of the rotor. So, the third equation is having no meaning, now the first two 

equations will give us equation of motion of this form and in y direction from y double 

dot plus c y dot plus k y is equal to m e omega square sin omega t. So, we can able to see 

these equations or representing transverse vibration in x and y direction as such. These 

two equations are independent of each other; there are not coupled equation, so we can 

able to solve the equation separately.  

If you recall in the previous lecture for single degree of freedom system the second 

equation, we solved it and those solutions are valid here also. For second equation also, 

because we can able to see rotor is symmetric, their properties are same, so from the 

previous analysis we can able to write even the x displacement as m omega square e, that 

is the amplitude in the x direction. It will be same as y it will be same as y because rotor 

is symmetric is equal to y. So, the response which we write in the form of like this there 

will be some phase also, damping you will see that these can be written as, and since x 



and y are same in this particular case. So, basically it is representing an equation of a 

circle because these two are same equal to let us r.  
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So, this will represent the orbit of the shaft which is circular, so if we plot the orbit of the 

shaft let us say x in direction there is these will be circular, where this amplitude in the x 

direction and y direction. Basically, they are same equal to r, so this is the orbit of the 

shaft centre these two equations we can able to combine in the rotor. Again, I am 

repeating, the equations of motion in which we have obtained in x and y direction, they 

can be combined and they can be solved in a complex form and this particular approach 

is quite popular in rotor dynamics. So, let us to understand that approach, we solve these 

two equations simultaneously.  
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So, in this particular case we have two equations again I am writing of this form and y 

direction of this form. Now, we defined a complex vector R which is x plus j y and this 

can this particular vector, complex vector we can use in the two equations by first 

multiplying second equation by j and adding it to the first one, so we would get these a 

combined equation in complex domain. Here will get cos omega t plus j sin omega t and 

they this can be simplified as e j omega t.  

Now, the response can be assumed as an amplitude and is having some frequency that is 

coming here and the phase also phi is the phase and R is the complexion amplitude. If we 

take derivative of this, we will get j omega R j omega t minus phi t another derivative 

because in the equation of motion we have two derivatives. We get omega square minus 

omega square R j omega t minus phi, these assume solution and its derivative we can 

able to substitute in the equation of motion.  



(Refer Slide Time: 16:26) 

 

If we substitute we will get equation of this form, that is m then omega square R, I am 

taking some of the terms common plus c j omega R plus k R. I have taken j omega t 

minus phi as common and there is equal to right hand side, we have we obtain earlier m e 

omega square e j omega t. So, this was from the unbalance force, I can able to see that e 

omega t both side will vanish and will left with this particular equation, I can able to 

simplify this.  

Also, I can combine the real part in one place and the imaginary part in other place and R 

is common j minus phi is equal to m e omega square. Time dependent terms will vanish 

now, so this is separate, now we can able to expand this so that we can able to separate it 

of the real part and imaginary part. So, this will give us this is expansion of the 

exponential raise to j, phi is equal to m e omega square. Now, if we equate the real part 

and imaginary part, we will get expression that is in the from the real part equating the 

real part represent c. 

I am equating their real part right hand side we have m e omega square then imaginary 

part am equating both sides of the equation and in the right hand side there is no real 

imaginary part so it will be 0. We can able to see that second equation this is first, this is 

second, second equation can be solved to get the phase, tan phi can be obtained from 

second equation. So, this is c w by k m omega square and this we can able to substitute 

in first to eliminate the phi terms from, where we can get the r, then because r and phi are 



unknown. This can written as if you recall similar expression we obtain when we did the 

analysis with single degree of freedom system, let us see these equation more carefully 

we can able to non dimensionalize these terms. 
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Let us say, I am defining a frequency ratio as spin speed divided by natural frequency, un 

damped natural frequency, where un damped natural frequency is root k by m. I am 

defining the damping ratio, which is damping factor divided by the critical damping; 

critical damping itself is defined as 2 root k into m. So, using this we can able to write 

the tan phi which was in the terms of the various parameter like k n c it can be written as 

a non dimensional form and similarly, the response ratio I am defining as the actual 

complex amplitude divided by eccentricity. This can be written as frequency ratio square 

divided by this expression, these expressions, now we can able to plot then now this non-

dimensional complex amplitude and the phase will be plotting and this is the plot of 

those particular responses. 

 

 

 

 



(Refer Slide Time: 21:36) 

 

You can able to see the horizontal axis is the frequency ratio of the first plot and non 

dimensional amplitude, complex amplitude is in the second and you can able to see it has 

been plotted for various damping. At zero damping it will be at very high amplitude will 

occur and the frequency ratio 1, but as the damping increases this peak across that will 

less than this frequency ratio, because this frequency ratio has been defined with respect 

to the undamped natural frequency.  

With damping the damp natural frequency will be slightly less than the undamping one, 

so that is why these peaks are before the ratio 1 especially when the dampings are high. 

We can able to see that as we are increasing the frequency this amplitudes are going 

towards the value 1, because this for that particular case this our particular amplitude 

becomes equal to the eccentricity. The rotor tries to rotate about its centre of gravity 

instead of centre of rotation c and this is the phase plot in which various damping ratios 

having chosen.  

You can able to see that they all meet at 90 degree phase where there is a frequency ratio 

1 even at zero damping or very high damping case as the damping increases the 

asymptotically. So, there is a change in the phase that particular speed we can able to see 

the of the order of 180 degree the meaning of that is the response and response changes. 

It is phase with respect to the force, and look there is a change of 180 degrees that means 

the unbalance force with respect to the force and there is a change of 180 degree. This 



means the unbalance force, which was outside it becomes inside toward the centre of 

rotation of the shaft.  

And because of that it tries to pull the rotor towards the bearing axes and because of that 

we have smaller displacements as we are going towards the high frequencies. This 

particular Jeffcott rotor model which we derived for two degree of freedom system we 

analyze them using complex variable approach. Now, the same problem will be 

analyzing using a matrix method because we will see that as we as the degree of freedom 

of the rotor increases the matrix form is more convenient to handle. So, let us see in a 

very simple form how this matrix method is useful for handling these kinds of equations.  
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So, these equations we can able to write in matrix form we can able to combine them 

which we derived earlier like this because we had two equations. So, this matrices are 

two by two, this is velocity vector, then we have stiffness term as such these equations 

are in coupled. But to show the matrix method more detail I am showing this for a this 

particular simple case, but this analysis will be valid for more complex cases also. So, 

this is the unbalance force, this also we have kept in a matrix form, so basically this 

particular matrix we can able to represent in more complex form like this as a force 

vector.  

So, first one is the mass matrix, then we have damping matrix, and then we have stiffness 

matrix, and these are the inertia velocity displacement and this is the external force. 



Now, this particular force vector let us simplify them, so I am writing this particular 

vector separately. Now, this can be written as let us say real part of m e omega square e 

cos omega t plus j sin omega t, so that means we are interested in the real part only, the 

imaginary part just we are adding for our convenience.  

Then second is sin omega t and here we are writing j cos omega t, now here I am writing 

minus we will see what is the advantage of this, but basically we are interested in the real 

part of this. We can add the imaginary part re value or here we are looking into the real 

part we are not considering the imaginary part. So, this can be written then as real part 

and m omega square first term can be written as j omega t m, the term, which is below.  

We can able to take out the minus j outside and this can be simplified as minus j e j 

omega t, so if we take minus j out from this will become cos omega t plus j sin omega t. 

So, we can able to write this particular expression, so if we take minus j from here we 

will get this expression and now you can able to see that we writing this as a real part. 

Now, let us say F unbalance in x direction and F unbalance in y direction and j omega t 

is common, so I can take outside now we know that we are interested in the real part 

only, because in left hand side of the expression all are real quantity.  

So, even we can drop this term from this and it will not make any difference and where 

this F unbalance in x direction is m e omega square and f unbalance in y direction is 

minus j m e omega square. Now, you can able to see that this is nothing but, minus j 

equal to minus j into F unbalance in x direction.  
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So, we have this relation for this particular case and this is valid only for one particular 

direction of rotation of the relation which we obtain in the previous slide that is in y 

direction is equal to minus j F unbalance in x direction. This is valid for a particular 

direction of the axis and the direction of the rotation, so in this particular case this is x in 

y direction, rotor is having whirling in counter clockwise direction. So, this is centre of 

rotation, this is centre of gravity, this is the reference axis, so in this particular case 

omega t is in this direction.  

So, you can see in this particular case y axis is lagging behind x axis for this particular 

direction of whirling so this expression is valid. If our whirling direction is opposite, that 

is clockwise direction then we will be having this relation valid. In this particular case 

our x axis will be when in this particular case whirling direction is let us say in this 

direction, so x axis will lag the and the y axis by 90 degree which is taken care by the j 

and minus j is the for the first case.  
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Now, with previous slide analysis we can able to write the equation of motion in matrix 

form like this and F amplitude and j omega t. The time dependent term is outside, where 

we have a mass matrix earlier defined as like this stiffness matrix or damping matrix as 

this and stiffness matrix k diagonal terms are there in all the unbalance force. This 

particular unbalance force we have as unbalance in x direction and minus j unbalance in 

x direction because this is taken care of the 90 degree phase. 

Now, we able to be assume the response as complex amplitude and the same frequency 

as the force. In this particular case the phase is taken care inside the capital x, if we are 

considering let us say phase separately, let us say x R is the real quantity and if we are 

taking the phase inside here, then this can be written as minus j phi this can be brought 

inside and j omega t. So, you can see now x bar is real, but this quantity is complex, so 

they can be combined and written as a complex displacement and e j omega t.  

This particular thing we have written here where x capital x is the complex displacement 

and this is the frequency of excitation, which is coming from the unbalance force now. 

Once we have chosen the solution of this form, now we can able to take the derivative, 

first derivative. So, we will get this and for second derivative we will get this and these 

solutions and it derivatives we can able to put in the equation of motion which is there in 

the matrix form. 
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So, we will get summation like this, we can able to take the common the complex 

displacement vector and the force the time dependent terms e j omega t will vanish from 

both sides. If we are defining this as let us say a matrix then we can able to write this as 

simple equation, like this our aim is to obtain the response of the system for a known 

unbalance force. So, this can be obtained by inverting this particular matrix to get the 

response, so you can able to see that we are getting the response using this equation 

which is in matrix form here, sorry this is capital, this is a complex displacement.  

These particular displacements will be having this form x real part plus x imaginary part 

and y component real part and its imaginary part. So, when we solve this equation we 

will get two quantities that is first one corresponding to the x displacement second 

corresponding to the y displacement and amplitude in x direction. We can able to get 

from these components of real part and imaginary part by squaring it, adding it; I am 

taking this square root. 

Similarly, at the y we can able to take, we can able to obtain from this complex quantity, 

so these will be the displacement amplitude in x and y direction their phase can be 

obtained, let us say phase of x displacement tan inverse x i divided by x r. Similarly, 

phase of the y direction displacement can be obtained as tan inverse y i by y r. So, we 

have obtained not only the displacement amplitudes also the using matrix method we 

have seen that it is very convenient specially if we are using some kind of a matlab 



which can handle the complex matrices, we can able to solve the amplitude of vibration 

and its phase easily. Let us see because at present we have illustrated the method using 

simple two by two matrixes, so I will show in more detail how these can be interpreted, 

if you are trying to solve by hand calculation using the matrix using the matrix method. 
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So, for illustration I am taking the equation of motion in more simpler form that is, I am 

taking the mass matrix and I am neglecting the damping at present and this is the forcing 

and the these are the complex force amplitudes which take cares of the phase also. 

Excitation frequency is omega, which is corresponding to the spin speed, now we can 

able to solve this. If we assume the solution I am writing, the expanded form if we are 

assuming the solution in this form where x and y are complex displacement. 

We can able to write the equation of motion with this assumed solution of this form and 

so your time dependent terms are getting vanished, they are getting cancelled out. Here, 

we can able to write this as we can able to combine these two terms the left hand inside 

and this will be something like this equal to the forcing in x and y direction. Now, we 

want to inverse this particular matrix to get the x and y, if we want to inverse this matrix 

and multiply with the F x and F y inverse, inversion is simple just we need to put this in 

this form.  

So, this is the inverse of the matrix, this particular matrix. Now you can able to see that 

we have x is equal to F x divided by K m omega square and y also we can able to write 



here F y divided by K m omega square, so this kind of expressions where we obtained in 

which effects was m e omega square. So, we can able to see that how the matrix method 

works very conveniently, only thing is when damping is there, these matrices will be 

complex and need to be inverted in complex form.  

We have seen the simple Jeffcott rotor model that is the two degree of freedom model, in 

which we neglected the torsional and the transverse vibration coupling. In this particular 

case as we see from in this particular model this the shaft is very flexible, the bearing are 

rigid there at the two ends and the disc is at the mid span of the shaft. So, when the 

whirling is taking place in vertical and two planes, this particular disc always remains 

vertical because this is at the mid span and the slope of the shaft elastic line is always 0, 

that means no mid span.  

So, there will not be any tilting or the wobbling of the disc plane take place, but if same 

disc is at the upside it is not at the centre now, you see that when it is at the mid span, 

when it is at the equilibrium the disc will be vertical. When the shaft is wobbling the disc 

tilts, we can able to see during whirling it tilts about its diameter and this particular 

motion is taking place in two plane, so continuous wobbling this kind of wobbling will 

take place of this particular disc.  

In the previous case when we considered the disc at middle, we could able to define the 

position of the disc by just x and y position that is the translation motion. But when it is 

at the offset position, now we need to define the orientation of the disc also because of its 

wobbling. So, not only we need to define the two linear or the two translational 

displacement x and y also we needs to define the tilting of the disc about two axes that is 

x and y axes.  

So, here we will be having four degree of freedom or four variables to define the position 

of the disc and this is the variant of the Jeffcott rotor in which disc is offset from the 

centre. In the subsequent topics, we will see this particular kind of wobbling not only 

introduces additional degree of freedom, but also it introduce it introduces the gyroscopic 

coupler. Also, because this particular disc is spinning about its own axis not because of 

this it starts wobbling, so there is a precision of the disc also along with the spinning and 

because of that we find that the gyroscopic couple will also be there. 



In subsequent lecture we will try to derive the equation of motion of this kind of disc 

without considering the gyroscopic couple. Initially, we will take the four degree of 

freedom system and we will obtain the corresponding four equation of motion that is two 

in the translational direction and two tilting. This particular tilting is the different which 

we considered initially in the case of the Jeffcott rotor and that was the torsional 

displacement theta we considered.  

So, in the present lecture we have analyze the Jeffcott rotor model in detail even it is a 

solution procedure by a complex method and matrix method, we have seen so that we 

can get more insight into the method how it works. Apart from this, I defined the 

wobbling motion when the disc is upside from the centre, how additional angular 

displacements introduces in the model and this particular model will be analyzing in a 

subsequent lecture.  

Thank you. 


