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Previous few lectures we have been discussing about the dynamic balancing of rotors. 

We started with balancing methods, which are available for rigid rotor case. Then we 

explained one of the method for balancing a flexible rotor; that is the modal balancing. In 

modal balancing, we saw that the method is quite cumbersome, in the sense that we need 

to balance the rotor mode by mode from fundamental mode to the higher mode. When 

we are balancing the higher mode, we need to ensure not only we are balancing that 

particular mode, but also we need to ensure that the lower modes should not get 

disturbed, because of the correction in the higher modes.  

So, that makes that particular method quite tedious. In that particular case, we have seen 

that mainly the balancing, which we do is based on the observation of the response. 

When we balance a particular mode, we always look into the response and some kind of 

trial and error we need to do in selecting the correction mass. Now, in today’s lecture, we 

will be dealing with more advanced method, that is influence coefficient method. In this 

influence coefficient method, we already discussed in the rigid rotor case also.  

But this method is slightly different, because once the rotor is having the bending and 

especially due to crossing the critical speed, the shaft deforms. Because, of that whatever 

eccentricity is there in the system, in that particular case whatever the centrifugal forces 

are there in the system. They either will be decreased or increased along the length of 

shaft depending upon the, which mode we are considering. Like, we have seen in the 

flexible mode case, there are nodes in between the shaft length and in those places. We 

will see the centrifugal force will be minimum, but at anti nodal point where maximum 

displacements are taking place, the centrifugal force will be more.  

So, accordingly in this particular case, whatever the concept of the influence coefficient 

we described earlier will be slightly different. In this particular case, the influence 



 
 
coefficient will depend up on the speed of the rotor, especially at what mode we are 

operating. We need to obtain these influence coefficient for all the speed at which we 

want to operate the rotor. That means in a particular speed range, if you want to operate 

the rotor and we want to balance the rotor in that range.  

We need to obtain first this kind of influence coefficient for those speeds. Then, we can 

be able to use them for finding the correction mass. In this particular case, as we 

described in the modal balancing case, that if you want to balance a particular rotor up to 

n th mode, so that many number of planes are required to balance that. So, that is still 

valid in the present case and we will see that through some case study, how this method 

can be illustrated. That will give more clarity into the method. 

(Refer Slide Time: 04:24) 

 

The overall overview of the lecture will be describing the influence coefficient method of 

for the flexible rotor balancing, especially the dynamics balancing of rotor. In this, apart 

from the concept of the coefficient for flexible rotor, which is slightly different as 

compared to the previous rigid rotor case, we described that some of these are the 

terminologies. We will be using also, that residual unbalance and corrective unbalance in 

the present analysis. 
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Now, coming to the influence coefficient, especially for the flexible rotor we can be able 

to see that earlier. We defined rigid rotor in which the deformation is less as such. The 

shaft is not getting bent. What were the forces we are applying for that case? The shaft is 

getting deformed from its static equilibrium position. So, this is valid for when we are 

operating the rotor much below the critical speed of the rotor. If you are near the first 

critical speed as for simply supported case, we expect the shaft will be having 

deformation like half sin wave.  

Now, if we want to apply some force here, you can be able to see that whatever the 

deformation will further take place, because this is slightly different as compared to this. 

This will be more clear in this particular case, in which we are operating the rotor around 

the second critical speed in which we expect the full sin wave. Now, we can be able to 

see that there is a node here, where the displacement will be 0. Now, the same amount of 

force if we are applying here which we applied, here the deformation will be entirely 

different.  

They will be entirely different. Because of this, the influence coefficient of the shaft of 

this particular mode, the speed will be different as compared to this. So, this figure 

illustrates that how the influence coefficient will be different for different speed, 

especially when we are at different modes. We need to calculate these influence 



 
 
coefficients for all such speed of operation or all such mode of operation in which we 

want to operate the rotor. 
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So, for the balancing purpose, let us say we have a route system in which we have p 

number of balancing planes. So, that means we need to we want to balance p number of 

modes. This balancing plane, we have chosen arbitrarily here, but even the choice of the 

balancing plane is important. Obviously, that should not fall in the place where the nodes 

are present. Otherwise, whatever the mass we will keep on this plan will be ineffective. 

We can be able to choose conveniently the measurements locations also. The 

measurement location will see that generally in the actual rotors the measurement will be 

available at the end of the shafts where the bearings are there.  

So, wherever bearing is there, we will be having access to the rotor. There we can able to 

measure the response in very few cases. We could be able to measure the response in 

between the span of the rotor. But, this particular figure is more general in which we are 

assuming that there are q number of sensors by which we are measuring the response. In 

this analysis, we are showing one of the plane that is the y z plane, but by this analysis 

we can be able to on the same line, extend for the other plane, that is the x z plane. 
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Now, once we have defined the balancing plane or the correction plane and the 

measurement locations along the shafts, now we need to relate the magnitude of the 

correction mass. So, once we are keeping the correction mass in these p number of 

planes, basically they are some kind of force. So, they are giving input to the system. The 

magnitude of the vibration, that means the output we will be measuring at the location of 

the sensor. So, whatever the response or the magnitude of the response is there, that is 

the output for a given input. Those correction mass will be keeping on to the balancing 

plane; that will be known to us.  

So, basically we are trying to relate the input and output for this particular case, when we 

have p number of balancing plane and q number of measuring planes. Generally, this 

balancing plane when we are talking about the flexible mode should be greater than 2. 

Generally, we will be having access to the router at the ends where we can be able to 

remove the material or we can be able to add the material in the form of correction mass 

to balance the rotor.  

The number of measuring plane, also as I mentioned, there is a subcritical limitation. 

Generally, that is also at the bearing location. That means generally it will be for a 

simply supported shaft, which will be having only 2 measuring planes to measure the 

vibration. But in general if there are multi support or of the rotor system, then we can 



 
 
have more number of access to the vibration response. Now, let us assume that rotor is 

having residual unbalance, which is distributed along the shaft as e z.  

So, a continuous rotor will be having this kind of variation of unbalance. Now, we are 

replacing this particular unbalance to equivalent concentrated unbalance that is p number 

of unbalances. Basically, we want to find out corresponding to this distributed unbalance 

which is actually present in the rotor, what is the equivalent of that if you want to keep 

those in the correction planes which we have chosen, so that we are able to balance the 

rotor.  

So, obviously this will be approximate because the flexible rotor cannot be balanced 

perfectly for all the modes. So, we need to limit ourselves to some few modes. Here, we 

have chosen up to p th mode. So, that many number of planes we have chosen. So, that 

many number of correction mass we need to find out. So, basically these concentrated 

unbalance will be unknown to us, which we will be finding through this procedure which 

we are describing now. 

(Refer Slide Time: 12:03) 

 

So, in this we have this is unbalance as we defined earlier which is nothing, but mass into 

eccentricity. In these planes, the balancing planes let us say U 1, U 2, U p, these are the 

unbalance which we want to find out. These are the corrective unbalances, which we 

need to find out. Now, these are the equivalent unbalances corresponding to the 



 
 
distributed unbalance present in the system. Now, we are relating the response, that 

means the vibration of the rotor with these unbalances through influence coefficients.  

As we described earlier, we can be able to relate the displacement and force with the 

influence coefficient. These kinds of things we already discussed for the case of rigid 

rotor in which these are the locations. The measuring plane locations response, that is q e 

number. So, this response basically, we are writing in terms of the influence coefficients 

multiplied by the forces. So, you can be able to see that this particular influence 

coefficients matrix which we have obtained which is of size q into p is the number of 

balancing plane and q is the measuring plane.  

So, this particular influence coefficient is the function of speed, because we have already 

seen that how the influence coefficients changes with speed. So, we are expressing this 

influence coefficients matrix as a function of speed. These responses, obviously if we 

change the speed, we expect that the response will change with the speed. This is the 

unbalance. Unbalance is defined as mass into eccentricity. So, basically they will not 

change with speed. Unbalance force will change, but this unbalance will not change with 

speed. 

(Refer Slide Time: 14:18) 

 

So, this is U. It is the vector which is not a function of speed. So, here we have response 

and influence coefficients as function of p, but this is independent of the speed, because 

this is the previous relation we have written for one speed. Now we can have the 



 
 
measurements at number of speeds. So, we can be able to vary the rotor speed from 

omega 1 to omega n, in the range of speed in which we want to operate the rotor.  

(Refer Slide Time: 14:44) 

 

We can be able to write the previous equation for that many speeds. We will be having 

these equations for various speeds. So, that many number of the equations we will be 

having corresponding to these speeds. Those all equations we can be able to combine 

like this. 

(Refer Slide Time: 15:00) 

 



 
 
Now, this response is not the function of speed. Basically, you can be able to see here 

that it is not function of speed. This influence coefficient matrix, the size got changed. 

Now, I will be showing the expanded form of these here. So, basically this vector is the 

displacement vector. So, this is the displacement vector corresponding to speed 1 and 

this is on q number of measuring planes. This is called speed 2, speed n. So, that means 

first 2 responses are corresponding to speed 1.  

Next is corresponding to speed 2 and last is corresponding to speed omega n. So, you can 

be able to see the size of this is now q, which is one of the set of the measurement for 

one particular speed into n cross 1. So, this is the total size of the v matrix. Similarly, the 

influence coefficients, because now they are changing with the speed, and earlier the size 

of the influence coefficients was p into q. 

(Refer Slide Time: 16:28) 

 

So, everyone is q into p. So, you can be able to see that the size will be q into n into p. 

So, that means q n times into p, because there are n such influence coefficients. In this 

the number of rows will be n times as one of the influence coefficients. Here, we have 

written in the expanded form. So, you can be able to see that the first is corresponding to 

this alpha omega 1 speed. Some of them I have shown here. So, these are corresponding 

to the n eth speed omega n and these are for omega 2 and this is for omega 1. So, the size 

of these influence coefficients and the arrangements of these displacement vectors are 

not clear. 
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Now, we can be able to see that we could be able to write these equations for all such 

possible speed of operation of the rotor speed.  

(Refer Slide Time: 17:57) 

 

That particular equation, now we are using to obtain the unbalance. So, basically this 

particular equation, we can be able to use to obtain the residual unbalance which are 

there in the p number of planes. 
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So, for this obviously we need to invert this matrix, but this is not a square matrix. This 

is the rectangle matrix. 

(Refer Slide Time: 18:23) 

  

So, we are following this procedure to make it square. So, first to that particular equation 

we are multiplying transpose of the alpha matrix both sides. Now, we can be able to see. 

Earlier the size of this matrix was q n into p. So, transpose will be p into q. So, this will 

be size of p into p. Now, this is the square matrix and this is written here. This is the p 



 
 
into p. This can be inverted now. So, to get U we need to invert this particular matrix. So, 

we have inverted here and we multiplied by alpha this one and v.  

So, we can be able to get what is the residual unbalances in p number of planes by this 

equation. But here at present only the response is known to us. But, these influence 

coefficients are not known. If we can find out these influence coefficients, the correction 

mass required in p planes we can be able to obtain it by using this. Now, let us see how 

we can be able to obtain these influence coefficients, because now our aim would be to 

obtain this first. Then, the correction mass can be obtained. 

(Refer Slide Time: 19:52) 

 

So, we will be obtaining these influence coefficients using the experimental method. 

That means, using the measurements only. So, this is the equation of the previous, there 

is a relation in which we related the influence of the response with the unbalanced force 

and the influence coefficients. The only difference here is we are keeping here the 

additional mass in the plane 1. So, these are the residual unbalances which we do not 

know. We want to find out these, but the procedure, which I am explaining here is to 

obtain the influence coefficients first.  

If we can get this from the previous equation, we can be able to get these unbalanced 

responses. This is the residual response. So, this trial mass we know magnitude and 

orientation of that. We have kept in the first plane. Because, of that we expect and let us 

say we are operating the rotor at one of the speed. Let us say omega 1. So, corresponding 



 
 
to omega 1 we define the influence coefficients like this. So, they are belonging to the 

super script, representing these influence coefficients, which are corresponding to omega 

1 speed. 

These responses are also at speed 1, but when the second subscript is representing there 

is the change in the response due to the trial mass. So, earlier it was v 1 only when the 

residual unbalance was there. Now, we are keeping the additional trial mass. So, we 

expect that there will be some change in the response. That particular response we are 

differentiating here, as representing 2 subscripts 1 1 and 2 1. So, the second subscript is 

representing that we have kept the trial mass in the first plane. So, this is the relation 

which we had earlier for influence coefficients, but now the only thing is this trial mass 

is added here. 

(Refer Slide Time: 20:02) 

 

Now, you can be able to see we will go back to the previous equation.  
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This equation basically, here v is W 1. Corresponding to this, these are the displacements 

and corresponding to this, these are the influence coefficients. These influence 

coefficients are same in the subsequent equation I showed. We expect that when we are 

keeping the trial mass, these influence coefficients will not change. They change only 

with the speed, but now if we keep some small trial mass, we showed that we do not 

expect that they will not change. So, this particular first set of q equation of this one in 

which we have only the residual unbalances, we are taking that expression and this 

expression.  

(Refer Slide Time: 23:02) 

 



 
 
Basically, we are subtracting the first set of the previous equation with this.  

(Refer Slide Time: 23:10) 

 

If we subtract it, we will see that this is the response corresponding to the trial mass. This 

is without trial mass. So, because we have taken only first q number of equation from 

that, so we will get these differences. This is common because influence coefficients is 

not changing with the trial mass. Here, all the residual unbalances will get cancelled 

because only the trial mass will left out. So, that means once we are taking the difference 

of these two equations; one with trial mass and another without trial mass, we will get 

this equation in which all the residual unbalance will be cancelled out. Now, if we 

expand this equation, let us see the first equation. So, this will give us the first influence 

coefficients alpha 1 1.  

So, for script 1 this is divided by T r. So, these influence coefficients can be obtained 

using this expression. We have measured these responses, both the amplitude and phase 

of these responses. Also, the trial mass, we know the magnitude of that and at what 

orientation we have kept. These influence coefficients can be obtained from first 

equation. Similarly, these influence coefficients can be obtained from the second 

equation. If we expand the second equation, most of the term will get cancelled. Only 

this will be remaining. So, we can be able to get these influence coefficients. 

Now similarly, we can be able to obtain all others up to this. So, when we kept the trial 

mass at the first plane, we saw that we could be able to get the first column of this 



 
 
particular influence coefficients for first speed omega 1. Now, in the second step what 

we will be doing is that we will be keeping the trial mass in the second plane here. Then, 

we expect that we will be getting the influence coefficients corresponding to the second 

column for the same speed omega 1. Similarly, we can be able to go up to n th plane. So, 

if we keep the trial mass in the n th plane, we will get the influence coefficients of the 

last column.  

So, this is the procedure by which we can be able to get the influence coefficients for one 

particular speed. The similar procedure we need to follow for the other speed, that means 

omega 2, omega 3 up to omega n, that is the speed of operation of the rotor. So, in this 

whatever the influence coefficients we are obtaining, this is based on purely the 

measurements. So, based on measurements we can be able to get these influence 

coefficients.  

(Refer Slide Time: 26:13) 

 

So, once we obtain these influence coefficients for all the speed, then we can be able to 

get the residual number of p number of planes by using this expression for all the speed, 

because this is independent of speed. Once we know, what is the residual unbalance in p 

number of plane, we can be able to balance the rotor by putting those correction masses 

just opposite to the residual unbalance in p number of plane. So, like this we can be able 

to do the balancing of the flexible rotor using influence coefficients method.  So ok, how 

much time? 



 
 
Student: 27 only, 27. 

Now, we have described the method of influence coefficients for flexible balancing. 

Now, through some case study we will try to understand and illustrate this particular 

method. In this influence coefficients method we observed that the influence coefficients 

depends upon the speed. So, when we are trying to balance a particular rotor, we will be 

having some operating speed of the rotor. When we want to reach up to that particular 

operating speed, then we want to traverse several critical speed in between or sometimes 

may be we need to change the speed of the rotor continuously from one speed to another.  

In that, in between we may encounter some critical speed. So, obviously in this particular 

case we can choose the speed at which we want to find out the influence coefficients and 

how we can be able to balance the rotor up to that particular mode. It is not necessary 

that we should try to balance the rotor for all the speed, but what was the bind of speed 

or range of speed in which we want to operate the rotor? We should try to balance them. 

In this, we have seen that all the calculation or the stimulation of the influence 

coefficients is purely based on the measurement. So, in this the measurement quality is 

very important. Once we ensure that, then we can be able to get the better balancing of 

the rotor. 

(Refer Slide Time: 29:24) 

 



 
 
Now, through a simple case study, we will try to see this particular method in more 

detail. So, first let us see, what is the problem, which we are taking for balancing of the 

flexible rotor as we have? 

(Refer Slide Time: 29:39) 

 

Shown in this particular figure, is the simple rotor in which the simply supported end 

conditions are there. In this, we are considering the shaft is having distributed mass 

property. Apart from that, there are 2 rigid disc mounted on to the rotor, on to the shaft. 

In this case, because the shaft is having the distributed mass property, so we will be 

modeling this particular motor using finite element method. In this case, basically 

because we are doing some kind of numerical simulation of the influence coefficients 

method, so what we will be doing is that we will be obtaining the response of this 

particular rotor system using the numerical study.  

So, instead of the experimental set up, we want to illustrate the method using a numerical 

model. So, generally to test any particular method instead, sometimes we need to test that 

particular using numerical model itself as an initial trial. Once we get the testing of the 

method with the numerical responses, then we can be able to apply the thing for the 

actual element response. But, in this particular case we will be showing only using the 

numerically generated response. With that, we try to illustrate the method. As I 

mentioned, we will be modeling this particular rotor using finite element method.  



 
 
All the responses which we require, that also will be generating with the numerical 

simulation. Because, we need some kind of residual to unbalance, some assumed residual 

unbalance we will be keeping in this disc and through response we will try to stimulate 

them. So, that we will be showing 2 case studies, 1 is only the residual unbalance will be 

keeping in this 2 disc. We will try to balance this particular rotor up to the second critical 

speed because we have chosen only two planes for balancing. So, this correction mass, 

this residual unbalance which we will be keeping, that will be used for generation of the 

response.  

But, again re estimation of these we will be doing with the influence coefficients 

methods. We will try to see whether we can be able to balance the rotor to the second 

mode. In this second case study, we will be extending the method when we have residual 

unbalance in the shaft also, along with the residual unbalance in the disc. That means, we 

will be choosing some distributed, that is the residual unbalance of the shaft in the form 

of sin function. Then, we will try to balance that particular rotor up to second speed 

using these 2 as balancing plane. So, that will be the second case study. For illustration, 

we always will be using the numerical responses. So, in this particular rotor which is 

flexible and having distributed mass property, even we have tabulated the various rotor 

in a table. So, let us see the table. 

(Refer Slide Time: 33:23) 

 



 
 
So, in table this is the diameter of the shaft, the property of the shaft, that is Young’s 

modulus of the shaft and disc, the total length of the shaft, distance between the bearings, 

distance between two discs, and various other geometry. 

(Refer Slide Time: 33:44) 

 

Apart from that, we take the mass property of the disc and density of the shaft, because 

we are considering the distributed prop mass property of the shaft, so this will be 

requiring in finite element of the formulation of this. These are the trial unbalance. We 

have seen in the influence coefficients methods, we need to keep some trial mass in 

plane 1, in plane 2, plane 3 alternately. So, this trial mass will be keeping one by one, 

because we have only 2 balancing plane.  

We are aiming at balancing up to second mode. So, we will be keeping the trial mass 

first in the first case in the first plane and in the second plane, the phase of that is given 

the unbalance. At what orientation we should keep this is? The is the eccentricity on the 

trial mass of the disc 2. This is basically the radial position of the trial mass, because we 

need to keep at certain radial position. So, that is the eccentricity we are calling. These 

are the other geometry of the shaft. The speed range of operation is up to 4000 radiation 

per second. In this, may be third or fourth critical speed of the rotor system may fall, but 

we aim only to balance the rotor of the second critical speed. 
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So, this is eccentricity of the unbalance in the shaft. So, this is regarding the residual 

unbalance and this is the trail mass. So, there are 2 different things. So, this is the 

residual unbalance basically and we have 2 planes, left plane and right plane. So, mass in 

grams of the residual unbalance are given here. The orientation is given. The eccentricity 

is given here. Now apart from this, some more information regarding the simulation we 

will be getting. 

(Refer Slide Time: 35:54) 

 



 
 
So, we will be generating the response above the second critical speed and we will be 

showing the response at the location on the shaft which is 5 centimeters away from the 

bearing. So, near the bearing the response we capturing from the finite element 

formulation, we will be plotting this to show, to illustrate the influence coefficient 

method. These are the trial masses, which we will be using, which is given in the table. 

Also, now let us come to the finite element formulation of this. 

(Refer Slide Time: 36:33) 

 

So, this is the rotor. So, we divided this into 10 elements and various nodes and the 

elements are mentioned here. All geometry of the rotor we know. So, we can be able to 

obtain the elemental equation for a rotor. 
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So, elemental equation of a motion for particular element is given by this. So, in general 

we already obtained earlier, discussed this kind of formulation. For one of the element, 

the typical elemental equation is like this, in which this is the external force, this is the 

reaction force and stiffness matrix, mass matrix and this is the placement vector. This 

mass and stiffness matrix, which we derived earlier was having this particular form. 

Now, with the help of this representative element matrix, we will be writing the actual 

mass and stiffness matrix for various elements. 

(Refer Slide Time: 37:35) 

 



 
 
Like, for element 1 and 2, which are identical, the mass and stiffness matrix will be of 

this length of the element is this. One other property of the shaft element, we have 

already given in pre table. So, that can be used to obtain the mass and the stiffness matrix 

for element 1 and 2 of the shaft. So, element 1 and 2 mass stiffness matrixes are like this. 

(Refer Slide Time: 38:03) 

 

Now, from the element 3 to 7, there is between 2 discs, the element is having this. The 

length, the mass and stiffness matrix will be like this. These are only corresponding to 

shaft and in this we are not considering this particular inertia. They are 0. Now, you can 

be able to see that this are corresponding to the element 3 to 7 and next is from 8 to 10. 

So, from second disc right hand side, there are 2 more elements. Corresponding to that, 

these are the mass and stiffness matrix and the disc mass; that we can be able to write 

either in one of the elements. So, as we have discussed earlier the disc mass is a lumped 

mass, so we can be able to write that with element 2 in this node or this particular 

element in this node. 
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So, we need to add this one of the node. So, similarly this side also, once we have 

obtained the elemental mass and stiffness matrix of various elements, we can be able to 

assemble them. 

(Refer Slide Time: 39:23) 

 

That assemble procedure, we have already discussed. Even, you can be able to apply the 

simply supported boundary conditions in this. Then, the force response can be obtained 

like this. This also we discussed earlier. Because, of the forced vibration and the main 

force is unbalance, so we expect this omega will be the spin speed of the rotor. This is 



 
 
the unbalanced force. So, this we have obtained by the global equation motion. After 

application of the boundary condition, this equation can be use to obtain the response.  

So, that means whatever residual unbalance we have chosen corresponding to that, we 

can be able to a write the force. Then, we can be able to obtain the response 

corresponding to the various speed of the rotor system and forcing the vector we will be 

having, because we have 2 discs only where this unbalance will be there. 

(Refer Slide Time: 40:28) 

 

So, these are those corresponding forcing terms. Now, we are coming to the generation 

of the ... ((Refer Time: 40:42)). 
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Apart from this, we are adding the damping in the system, so that the response are more 

realistic. So, here we added this proportional damping. So, the Rayleigh damping also we 

described, while discussing finite element and finite element analyses of the rotor 

system. So, this is the mass and stiffness element a naught and a 1 is the Rayleigh 

damping factor, which we can be able to obtain using this expression, in which this is the 

damping ratio and these are the natural frequency for particular mode, 

(Refer Slide Time: 41:17) 

 

  



 
 
So, if we take two different modes, we can be able to get the these particular factors. 
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Like this, we already described. So, I am not describing this in more detail. So, when we 

are discussing the finite element formulation for the transfer vibration, we will describe 

this particular kind of damping. So, using this in this particular case for free vibration, if 

we want to solve this we found the natural frequency of system was 149 and 373 radians 

per second. So, corresponding to this, because we are trying to balance this particular 

rotor for 2 critical speeds, so will be having that.  

This factor will be calculated corresponding to those particular modes. So, we have 

chosen this damping ratio for first mode and second mode. Like this, correspondingly we 

can be able to get these two factors. So, once we get this factor, we can be able to 

generate this damping matrix in terms of the mass and stiffness matrix. So, this also we 

can plug with this. So, this is damping matrix for 1 and 2 elements. This is for 4 to 6 and 

this for 8 to 10. So, these are the damping matrix.  
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That also we include in the equation of motion, for this forced vibration response, we 

will change like this. So, this will be the additional term which will be coming, because 

of the damping. The other analyses will remain same. 
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Now, apart from this, because whatever the response we are simulating from the 

numerical model, they will not having any noise. But, in actual test rate when we take 

measurement, we find that measurement noise to limit that we are adding random noise 

into the numerically generated response. This we will be using for estimation of the 



 
 
residual unbalance. So, this is the procedure in which we have added the random noise. 

So, if response is let us say A i, n number of response are there and R i is a random 

sequence which is also n number. The value of this, we have scaled down from minus 

0.5 to plus 0.5, because we can be able to generate any random number. We can scale 

that into this range. So, the noisy response we can be able to get B as A i plus 0.01 A i 

into R i. So, this 0.01 is corresponding to 1 percent random noise into the system. If we 

are adding 2 percent or 3 percent noise, this factor will change. Otherwise, this 

expression will be same. 

So, just to limit the actual experiment, we added some noise also into the system. Now, 

we have to describe the problem completely and also the finite element formation of that. 

Now, I will be showing various responses, how we can be able to use that for calculating 

the influence coefficient? How we can be able to reach to make the residual unbalances, 

which we have used for generating the numerical responses? 
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So, this is the typical plot of the unbalanced response in which we have shown this is the 

amplitude versus speed and this is the phase verses speed. In this, we changed the speed 

of the rotor beyond the third critical speed, so this is the third critical speed, first, second 

and third and in the phase plot you can be able to see there is a change in the phase 

wherever there is a change in the phase. Here also, these changes are basically because 

the phase is cyclic. 



 
 
So, if it is 0, here the 361 be here. So, basically this line should have been here itself. As 

such there is no phase change here. The phase changes are only at the critical speed 

locations. So, one of that is a left side and this is the other side of it. So, this is the rotor 

response and we expect the similar critical speed in all the responses. So, in this 

particular case, we have not considered damping. Also, noise is added in this particular 

response. You can able to see this one is for the left measuring plane and another is for 

the right measuring plane. At two bearing locations, we have shown the responses. 
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Similarly, this is a similar response, but we have considered the damping. We can able to 

see that, because of damping these peaks are getting blunted slightly, but noise is not 

there in these particular responses. So, initially I am just showing typical response of the 

system. This is with the damping and some noise also we added. So, you can be able to 

see some haziness of the response, which is because of the 3 percent noise added to the 

system.  
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In this, an addition of the 5 percent noise; you can be able to see the change of the signal 

because of the more noise on the system. So, basically this addition of the noise will 

show, what is the effect of this particular noise on to the estimation of the residual 

unbalance or to balancing of the rotor? 
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So, then we estimated for all these cases, what is the correction mass in left plane, not 

only the magnitude, but also the phase. Eccentricity is same for all. So, this we 

estimated. So, you can be able to see this estimation for 0 noise. When we are adding the 



 
 
noise, slight change estimation are there, but not much. This estimation, if we compare 

with the assumed one which is in the next line, so you can be able to see for 5.3, 286 

around. it is 6 around, so 5.53. So, basically these are all 10 raise to minus one is there 

So, all are 5.3, 4.3, like this. So, they are matching quite well with the assumed value.  
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So, these are the assumed. These are residual unbalance left plane and the right plane of 

the disc.  
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These are estimated using the influence coefficient method directly from the responses. 

So, they are telling quite true value. 
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Now, when we are comparing the responses, this is without a correction mass and this is 

without balancing. So, this is after balancing. So, whatever this estimated correction 

mass we calculated, we kept into the balancing plane. Then we found that the responses 

are drastically reducing in both the plane. Here, also you can be able to see the response 

drastically reducing. 
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In all the cases, the response are drastically reducing with the noise. 
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We can be able to reduce the response at the third critical speed, because in this 

particular case the residual unbalance was discrete in nature only as the disc was there.  
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In the second case study, we took not only the concentrated unbalance, but also 

distributor unbalance was there.  
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In this, we took the eccentricity variation like this of the unbalance and we assumed that, 

because the shaft was having unbalanced variation something like this.  
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When we are taking the elements, so we assumed that in between the element, the 

variation of the eccentricity is linear and the amplitude of the that particular eccentricity 

is at two ends of the elements which are known, which are f 1 and f 2. They are based on 

the linear variation. We could be able to get the consistence force factor. We have shown 

the calculation of the consistence force factor when we discussed this FEM analyses of 



 
 
the transfer vibration. So, I am not repeating this. So, this directly we used in the 

formulation for calculation of the unbalanced force, because of the distributed 

eccentricity. 
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So, in this particular case, we will see that now the distributed and unbalance will be 

there in all the nodes because of this one. 
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This is the typical response. Now, in this particular case, we have shown higher mode 

also. Similarly, as we discuss various cases of the previous one, so here there is no 



 
 
damping. But, no noise is there. This is the response generated with some noise in the 

system with the damping. 
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These are the responses due to the residual unbalance, which is there in the system. 
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Then, the estimation of this using these responses, using influence coefficient we did the 

residual balance calculation. So, these are various estimation in for various cases. There, 

the consistence we are obtaining this, basically plane in left and right. So, basically this 

is the effective correction mass, we are obtaining normally for the concentrated residual 



 
 
mass, but also distributed residual mass over the length of the shaft. There consistently 

similar values are there even at the higher value at the noise. 
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Now, when this is the concentrated one, but apart from this we will be having distributed 

one. But, the value of that is less, so they are deviating this only. 
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This is the comparison of the main important plot that you can be able to see. We focus 

on balancing of the 2 modes. You can able to see in the distributor case, the third mode 

and higher mode are not getting balanced. Only the first and second modes are getting 



 
 
balanced. These are not getting balanced. So, this with unbalance, this is without 

balancing. So, first two modes we could be able to balance, but higher modes are not 

getting balanced, because we have used the distributed residual unbalance in the system 

in the form of spiral. 
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Similar plots we will see for different cases; that is with noise and without noise. So, in 

every case you can see that we could be able to balance the second mode, but third and 

higher modes are not getting balanced.  Today, we describe one very advanced flexible 

rotor balancing method, that is a influence coefficient method. In this particular case, we 

have seen that influence coefficient changes with speed. Especially when we are 

operating at different modes, then influence coefficient changes.  

For this case, we need to calculate the influence coefficient for all the speed of the range 

in which we want to balance the rotor. We saw that this influence coefficient can be 

simulated purely based on the measurement. The only thing is we need to keep the trial 

masses in various balancing planes, which we have chosen from that, without a trail 

mass responses, if we take the difference these two, we could be able to estimate the 

influence coefficient. Then, this influence coefficient can be used to obtain the residual 

balance in the descript plane. 

So, in this we illustrated the method with two case studies. In one case study, we chose 2 

balancing plane and only discrete unbalance we kept. We could be able to balance the 



 
 
rotor perfectly in this particular case. In the second case, we considered not only the 

discrete residual and unbalance, but also distributed residual and balance in the shaft. In 

this, we focused on balancing up to the second mode. We saw that other modes were not 

balanced, because of the distributed eccentricity in the shaft. So, this is very important 

observation that, if we have discrete residual unbalance, then we can able to balance all 

the modes of the shaft.  

But, if you distributed unbalance we could be able to balance to finite number of modes, 

up to which we are trying to balance the rotor. In subsequent class, we will see other kind 

of faults apart from the unbalance. How they can be identified? How they can be 

corrected? Most common fault is unbalance, we will see other kinds of fault? They are 

difficult to remove. It is not like unbalance, in which we could be able to balance the 

rotor, so that we will see in the next class. 


