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In previous lecture, we have seen how the fluid film bearing imparts instability in the 

rotor bearing system. Today, we will take up two another kind of damping; one is 

internal damping, and another is asymmetric shaft. Because of these two cases, how the 

instability comes into the rotor system we will try to study. In this internal damping, we 

will see how it comes into the system. Initially and then we will with simple 

mathematical model, we will try to analyze this instability in which we will find that 

there will be a threshold speed above which instability can occur. And for asymmetrical 

shaft case, we will see there will be a band of instability zone where the rotor can be 

unstable and below and above these bands; we will find that there will be stable system. 
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So, before going into detail, just let us see what we will be covering here; so instability in 

rotor system with internal damping and with asymmetrical shaft. We will see that 

internal damping or material damping or sometime we call it as hysteretic damping, how 



 
 
it comes into the system. This asymmetrical shaft’s stiffness rotor model, we will see 

how we can able to analyze with this, the instability in the rotor system.  

(Refer Slide Time: 02:13) 

 

So, coming to the internal damping, which comes from various sources like elastic 

hysteretic of shaft material. Due to fractural vibration of the shaft, the intermolecular 

interaction takes place within the shaft material. That gives some kind of heat generation 

within the shaft material. So, basically this kinetic energy converts into the heat in the 

form of hysteresis. Even in the shaft during the fractural vibrations; the shaft fiber shear, 

it takes place during whirling, because of tension and compression of the fiber. 

Apart from this frictional forces between two mating parts with in interference fit can 

have this kind of internal damping. So, in this particular case all such damping sources 

can impart a common damping which we call as internal damping. This internal damping 

is having slightly different characteristic as compared to the viscous damping.  
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So, like now, let us understand the internal damping when we have one shaft and there is 

a hard disk. This is ring fit all this. So, during vibration or whirling, this shaft bends 

because of the compression here, already onto the shaft because of interference. During 

the binding, we will see that the upper fiber of the shaft will elongate and the lower one 

will get compressed. These forces will resist that particular motion; extension of the shaft 

or contraction of the shaft and this case internal damping between two mating parts 

having some kind of interference fit. 
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Now, coming to the difference between the hysteretic damping and viscous damping. 

Internal damping force, which is nothing but hysteretic damping is proportional to the 

rate of shaft deformation. But, the viscous damping is proportional to the absolute 

velocity of the rotor. So, one is rate of shaft deformation. Another damping force is 

proportional to the absolute velocity of the rotor because of this internal damping 

direction changes along the shaft rotation.  

It is convenient to analyze the internal damping in rotating coordinate system. Now, we 

will analyze the internal damping with a very simple mathematical model of rotor 

system. In this particular case, we will derive the equation of motion in rotating 

coordinate system. Once we have obtained the equation of motion in rotating coordinate 

system, we will introduce the hysteretic damping or internal damping at that stage.  

So, initially the equation of motion; we will be deriving only with the internal that is only 

with the viscous damping. Subsequently, we will be introducing the hysteretic damping. 

So, before going to the equation of motion, let us see the rotating coordinate system and 

its transformation. 
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So, x y is stationary coordinate system. Psi and eta is rotating coordinate system. We 

want to transform the equation of motion in x y, x’s coordinate system to the rotating 

coordinate system. Before that, we can able to relate these two coordinate system. So, 

with elementary geometry, we can able to relate that. Here, you can able to see. This is 



 
 
the centre of the shaft. Here, OD is the x distance. OF is the y distance. Similarly, OH is 

the xi. OE is the xi distance. OG is the eta distance. 

We need to relate these two coordinates. That means, we have x and y. The geometrical 

centre of the shaft is the coordinate of the geometrical centre of the shaft in x and y 

coordinate. Another is xi and eta. We need to relate this two. So, we can able to see with 

simple geometry. We can able to write x is equal to xi omega cos omega t minus nu sin 

omega t. This omega t is the angle at particular time t of the rotating coordinate system. 

At t, time is equal to 0. We can assume that both coordinates are in the same position. 

But, as time passes, this rotating coordinate rotates with the spin speed of the shaft. 

Similarly, y can be related as xi sin omega t plus eta cos omega t. These are standard 

trigonometry relations. 
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Now, we are defining a complex displacement s which is defined as x plus j y. j is the 

complex quantity that is root of in the rotating coordinate system. Similarly, we are 

defining zeta is equal to xi plus j eta s. xi are the complex coordinates in stationary 

coordinate and rotating coordinate system. Now, this two in place of x and y; from 

previous expression, we can able to write this in terms of zeta xi and eta. Similarly, y we 

can able to write in terms of this two.  

This we can able to rearrange by taking common of xi term and eta term. We can able to 

see within this bracket is e j omega t. This if we take common, this can be converted into 



 
 
j e j omega t. If we are, we can able to see this when this e j omega t is common. So, that 

can be taken out. So, xi plus j eta and xi plus j eta is nothing but zeta here. So, that can be 

substituted. So, this is the transformation basically in complex domain on stationary 

coordinate system to rotating coordinate system. This will be using to transform the 

equation of motion of the rotor system. 
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Because we will be having derivatives of this complex displacement in the equation of 

motion, so we can able to take the derivative with respect to time. Zeta and this, both are 

time dependent. So, once we differentiate, we will get two components; two parts. So, 

first is derivative and then derivative of the second term. This can be clubbed like this. 

Similarly, if we take another derivative of this, we will be having derivative of this. Then 

we will be getting basically four terms. So, these are the four terms after differentiation 

of this, which can be simplified as this because two terms are common. So, they will add 

up to give this. So, we have complex displacement in stationary coordinate system and 

its derivative we have already obtained. 
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Now, let us see the equation of motion of a simple rotor system in which we have mass 

of the rotor, viscous damping which may come from bearing or any other source. k is the 

stiffness of the shaft. So, this is the equation of motion in the horizontal direction. 

Similarly, this is the equation of motion in the vertical direction. In this case, we have not 

considered any cross coupling of the stiffness or damping. Only simple direct stiffness 

and damping we have considered. CV is the viscous damping.  

At present, we have naught introduced the hysteretic damping. As I told earlier once, we 

will transform this equation of motion in the rotating coordinate system. Then we will 

introduce the viscous damping, because it will be convenient to introduce at that stage. 

Now, we are multiplying the second equation by j, adding it to one first equation. So, we 

can able to get the equation of motion in a complex wobbling in stationary coordinate 

system. So, m S double dot plus CV S dot plus k x is equal to 0.  

Now, we can able to substitute the transformation, which we developed in the previous 

slides. So, S double dot we obtained earlier. So, this is the S double dot. S dot two terms 

was there. So, this is the S in terms of zeta. So, basically this equation of motion after 

substituting the transformation. It has come into the rotating coordinate system. Now 

here, it is in the terms of zeta that is in the rotating coordinate system complex 

coordinate. Because zeta is defined as xi plus j eta, so we can able to split this equation 

in real part and imaginary part with the help of this expression.  



 
 
So, in the direction of xi, we will get this equation. We can see that j term is there. So, 

that will give basically after multiplying this eta term here otherwise, xi terms will be 

there at any other place. Wherever j is there, we are getting the eta term and plus and 

minus sign. You need to take care of that. This is as it is only real part, we have 

considered. So, this is the real part. This is the imaginary part of this complex equation. 

So, this equation is in the direction of xi. This is the equation of motion of the rotor in the 

eta direction. 
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Now, coming to the hysteretic damping; here, this is the xi direction. This is the eta 

direction. We have earlier noted that the hysteretic damping or internal damping; it acts 

proportional to the rate of deformation of the shaft. Because this coordinate system xi 

and eta is attach and is rotating with spin speed, so the rate of deformation of the shaft 

will be xi dot and eta dot.  

If you multiply with hysteretic damping coefficient; this will give the damping force, 

hysteretic internal damping force in the direction of xi and in the direction of eta. Now, 

you can able to see that because we have already resolved the equation of motion in the 

xi direction and eta direction. If we want to include the hysteretic damping, just you need 

to include these two terms in the previous equation of motion. 

So, this equation of motion is exactly same. Only thing, now we have added this 

hysteretic damping in this model. So, this equation is exactly same. Only thing, now 



 
 
additional term of the hysteretic damping CH we added. CV is already there. In this now, 

this equation is ready for doing the stability analysis of the system. So, again we will 

combine these two equations. That means, the second equation will multiply by j and I 

add it to one first equation. 
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So again, we can get the equation of motion in the rotating complex coordinate system 

that is zeta. All other terms are similar. Only the additional term you can able to see is 

coming due to the hysteretic damping. This was already there. Now, we can able to 

because we have some terms of zeta dot and zeta. So, we can able to rearrange this 

equation so that we have terms of zeta double dot in one place, zeta dot in another place 

and zeta in other place.  

So, now we can able to assume the solution of this in this form in which zeta naught is 

complex whirl amplitude in rotating coordinate system. j lambda naught t lambda naught 

is the relative whirl frequency or Eigen value of the system. This is relative because we 

assuming the solution in the rotating coordinate system. The absolute whirl frequency is 

will be and the relative frequency will be defined like this. That means, because the 

differences at which this particular rotating system is rotating; so relative whirl 

frequency or the Eigen value is defined as absolute whirl frequency minus the speed. So, 

with this you can able to get with this relation. We can able to get the absolute whirl 



 
 
frequency also. So, the assumed solution, we will be substituting in the equation of 

motion in the rotating coordinate system itself. 
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For that, we need derivatives of the zeta and zeta double dot. So, we can able to 

substitute this in equation of motion and with that we will get a polynomial in the lambda 

naught square. So, you can able to see this is a polynomial lambda naught square. This 

square with a quadratic polynomial and the form of this polynomial, because this is 

slightly different as compared to the previous case of the damping, a fluid film bearing 

damping case. We can able to see some complex terms are also there. So, basically more 

general form of this quadratic equation could be like this in which the real part and 

imaginary part of the epsilons where this is lambda square term is there. Similarly, for 

lambda naught term and for the constant term, so this is the more general form of this. 

So, stability criteria for this equation are provided in the next slide. 
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So, this is the stability criteria; Routh-Hurwitz stability criteria for a polynomial with 

complex coefficients. So, this is the determinant should be minus of this should be 

greater than 0. So, if we compare these two equation, you can able to see that a naught is 

minus m and b naught is 0. So, like that we can able to compare these two equation and 

we can able to get these a and b coefficients. If you substitute this here from first 

determinant, we will get C H plus V is equal should be greater than 0. This is the one 

condition, second criteria is this one.  

(Refer Slide Time: 18:41) 

 



 
 
So, if we substitute various coefficients and if we simplify this, we will get expression 

like this in which we have defined the omega n f square as k by m. In turn, this can be 

written as omega square less than this quantity. Because this ratio is generally small, so 

this can be neglected. So, if we neglect this, we will get. Basically, if we take the square 

root the speed when it is less than this quantity, we will be having system stable. That 

means when there is no damping in the system.  

So, when the speed is less than the natural frequency, undamped natural frequency of the 

system, we will be having stability. But, if there is a viscous damping in the system and 

this then the stability because this factor will be positive; so the total factor will be more 

than 1. So, we see that with the damping the stability the speed below which the system 

is stable increases. Especially if we increase the viscous damping in the system, we can 

able to increase the stability of the system by some amount. 

So, from this, we can able to see that the system is always stable even in the presence of 

hysteretic damping below the critical speed. So, that we have already seen that if below 

the critical speed there is no instability and the presence of viscous damping. This one 

has the effect of raising the speed at which the system become unstable. So, if we can 

provide more viscous damping in the system, by in the form of the damper or the in the 

bearing or we can have this instability speed, we can able to raise up to certain level.  

Now, through a simple example, we will see that how we can able to analyze by a 

numerical integration, this kind of instability. So basically, we will be integrating this 

kind of equation of motion for various speeds. We will try to see the response how it 

changes especially if you giving some small disturbance, how the response changes. We 

will be solving this for without any external excitation. 
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So, this is the problem in which we are considering a Jeffcott rotor of mass is given. 

Diameter of the shaft is given. Length is given. The viscous damping and hysteretic 

damping ratio let us say we are assuming as just 0.2 and viscous damping ratio of the 

system that zeta is 0.01. That is the damping ratio for the shaft material property like E is 

given here. Now, we want to obtain the response in time domain or the orbit plot for 

some initial condition at various speeds. This is the undamped natural frequency. So, at 

various speeds, we will be obtaining these plots and we will see how it behaves. 
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So, coming to the equation of motion in the rotating coordinate system; this was the 

equation of motion with a hysteretic damping. We choose where here the transformation 

from the rotating to the stationary coordinate system will be just opposite. So, if we take 

the derivative of this, we will get this. The second derivative will give this. If you 

substitute this in equation of motion, we will get back the equation of motion in the 

stationary coordinate system like this. 
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So, you can able to see. This is the additional term which is coming because of the 

hysteretic damping. Other terms were there in the equation of motion. Now, we can able 

to take the real part of this and imaginary part of this to get these two equations because 

we define the s is equal to x plus j y. So, this is the equation of motion in the x direction 

and this is in the y direction. Now, you can able to see there is hysteretic damping terms 

coming in these places. Not only it is coming here but here also it is coming. These two 

equations are now coupled because in x direction, y term is also coming because of 

internal damping. Also in this, we have x term in the y direction. So, to solve this 

equation by direct integration method, obviously we need to solve these two equations 

simultaneously. 
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We can use any numerical integration method. This is the displacement with time when 

we are considering the speed is equal to 0.2 of the natural frequency of the system. 

Because there is no excitation in the system, so we have given some initial condition, so 

that once we have disturbed the system, we will see that it stabilizes after some time. 



 
 
(Refer Slide Time: 24:20) 

 

This is the orbit plot that means, x direction and y direction displacement plot with 

respect to time. So, we have given some initial disturbance. So, this is the initial 

condition. From here we have leave we are leaving the rotor. So, it is going like this. It is 

trying to stabilize. So, this is for very short duration of time.  
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But, if we take more time, we can see that we started from here and gradually it is 

converging toward this point. So, because here clarity is not there, so initially we showed 

this for very short duration how to it goes. But, it after sometime it goes to here as we 



 
 
have seen in the very first slide also. After some time it goes to the stable solution. So, 

this is for one of the speed.  
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Now, when we are close to the natural frequency; this is for that given disturbance. This 

kind of here again it is going toward the lesser amplitude. So, it looks the system is 

stable. 
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 This is the orbit plot. So, this is for very short duration.  
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But, if you take long time then gradually you will see that it is going toward the stable 

zone. Similarly, you have different speed you are tried like 1.6 times the natural 

frequency. So, in this case also it stabilizes. 

(Refer Slide Time: 26:01) 

  

So, it is for short duration. This is the initial condition. Then it comes like this but for 

long duration.  
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So, gradually it is converging to steady state solution. Then if we take omega is equal to 

1.6 then we found that the system is unstable. 
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For a given initial disturbance, the amplitude grows with time. 
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Here also, you can able to see it is gradually increasing. So, this is the orbit plot. So, this 

condition is giving us the instability when we are operating the rotor at 1.2 times this. So, 

we have seen that this particular instability is always occurs above the natural frequency 

of the system and not necessary at all speed above the natural frequency. But, at some of 

the speeds, this instability can occur that we have demonstrated here. Now, we will take 

another case in which the rotor is having the shaft is having asymmetry.  

That means, it has shaft stiffness different in two principle direction. Generally, in rotors 

especially in generators, we find that we cut some kind of groves for providing the 

windings. Those are not symmetrically placed onto the rotor and because of that, we 

have two principle directions. The stiffness varies in this two principle direction and 

continuously. Basically, it varies when we rotate the rotor.  
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So, this is a one particular a typical rotor of the generator, in which you can see there has 

slots which are running axially. These are provided generally for providing windings in 

the generator. Here also it is, but some part of the rotor is solid. So, we can expect that in 

this particular case, the effective area of the shaft will be something like this because we 

have removed the material. So, it will be something like this.  

We expect that now because of this effective area here that and here are different, so 

when rotor is having this orientation and this orientation. First case and second case the 

stiffness let us say; about one of the axis XX, this will be different as compared to this 

axis which is YY. So, here we expect the about this axis the stiffness will be less as 

compared to this one. So, we expect because of its own weight, the rotor will deflect 

more in this configuration than this configuration.  

Generally to compensate the decrease in the stiffness, some kind of slots are provided in 

the solid part which is called stiffness compensating slots; so that we can able to reduce 

the stiffness in this direction also. But, even with that we have variation of the stiffness 

where the shaft rotates. So, you can able to see that it is having some different 

orientation; we will be having change in the stiffness. So, basically for such system, the 

stiffness changes with time. This particular behavior gives the instability into the rotor 

system. 
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Now, let us see this. If we attach a rotating coordinate system along the two principle 

direction of the rotor and if we analyze the equation of motion in this rotating coordinate 

system then it will be convenient to analyze. So here also, we will be choosing the 

rotating coordinate system. We will be obtaining the equation of motion in the rotating 

coordinate system itself. In fact, we will be defining the stiffness of the shaft in these two 

directions in the rotating coordinate system itself. 
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This is the equation of motion. So, basically this is m x double dot. We have seen that x 

and zeta, xi and eta, how they are related earlier. We have defined. So basically, this is 

the S double dot term. This, sorry, this is x double dot term. This one is the stiffness in 

the xi direction. If you multiply by the xi displacement, we will get the elastic force. So 

basically, this is the Newton’s second law of motion, in which this is the sum of external 

force. In this particular case, only the stiffness force, we are considering is equal to the 

inertia force. 

So basically, this whole term is x double dot. But, it has been transformed to the rotating 

coordinate system. This, we can able to write like this. This is the rotating coordinate 

system equation of motion. Similarly, in the eta direction, this is the force. This is the 

elastic, the shaft stiffness in the eta direction. Now, you can able to see. There is the 

stiffness in two directions, two principle directions are different; is eta xi and eta. This is 

basically y double dot transform into the rotating coordinate system.  

So, this is the equation of motion in the rotating coordinate system in the eta direction. 

So, we have two equations; this and this in the rotating coordinate system. Now, we can 

able to assume the solution of this. This is the amplitude and the frequency part. Here, 

the lambda naught is again relative whirl frequency or the Eigen value of the problem. 

Eta naught and xi naught; they are the complex amplitude in rotating coordinate system. 

So, these equations which we assumed, we need to substitute in these two equations. So, 

for that, we need to take derivative of this with respect to single derivative and double 

derivative. So, those things if we do it, we will get the equation in this form.  
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So because this will be common, so this can be taken out; similarly, in the second. So, 

this is in the xi direction and this is in the eta direction. So, these are the two equation of 

motion. Now, it has been converted into the basically frequency domain. They cannot be 

0. So, this they can be eliminated. So, the remaining term, we can able to put in A in this 

form. So basically, we are writing this in a matrix form, in which that is xi naught and eta 

naught is this particular vector. All the coefficients of these equations are. 

So, this is coefficient of the eta naught. In the first equation, this is zeta naught of first 

equation. This is for the eta naught. Similarly, this is for the zeta naught, the sorry, xi 

naught in the first equation and eta naught in this equation. So, basically, these two 

equations, I have put in a matrix form. This is a homogenous equation. For non trivial 

solution of this, the determinant of this matrix should be 0.  
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That gives us a polynomial of this form; quadratic polynomial in lambda naught square; 

in this particular case because this is a now polynomial with the real coefficients. So, we 

know Routh Hurwitz instability criteria. First criteria were that all the coefficients should 

have same sign. So, here we have 1. So, this is a positive. Here, these terms are all square 

terms. So, they will be positive. This term should be positive. Then only, we can have the 

stability. 

So, if this is positive that means this should be basically, this is the instability. For 

instability, this should be 0. If it is below, if it is less than 0, that means the system this 

will be negative. That means system will be instable or unstable. So, this is the condition 

that for instability. We will be having this condition. Now, in this we have defined this 

lambda naught, sorry, omega xi S root of k x i by m. This terminology, it is a naught, an 

initial frequency.  

Similarly, this is another terminology. So, we have defined like this. The stiffness is such 

that omega xi is less than omega eta. So, the choice of the coordinate system is such that 

that we have this condition let us say. So, that means this is less than this. So, in this 

particular case if we see, there are three conditions possible. When we have the speed, if 

first case is when speed is less than omega xi. So, if this is the case, we will see that this 

is less than this. So, this positive and this also be positive.  



 
 
So, this will be this will naught be satisfied that means system will be stable. If this is 

satisfying, we will be getting the unstable condition. So, when both are positive, this one 

quantity is positive, so that is naught less than 0. So, we will be having stable solution. 

Second case; when omega is more than omega xi. But, omega is less than omega eta. In 

that case, this is more than this. So, this quantity is negative. But, this is less than this. 

So, it is positive. So, negative and positive becomes negative that means for this case the 

system will be unstable because now it is satisfying this condition. This is the condition. 

So, when omega is in this range, we are finding that this is becoming negative. The third 

condition is when speed is greater than omega eta. Then this is positive. This is also 

positive. So, it is not satisfying this instability condition. So, that means only rotor will 

be unstable when it is operating between this two ranges. Otherwise it will be stable. So 

here, we have seen that basically we are getting a band of frequency ranges at which the 

system will be unstable, but beyond that band the system will be stable. 

(Refer Slide Time: 38:14) 

 

This particular analysis we did by assuming that whatever the vibrational frequency is 

there, that is same as the spin speed of the shaft. But, vibrational frequency can be 

different as compared to this spin speed of the shaft. For that particular case, the band 

which we obtained earlier; we took in this vibrational frequency is equal to spin speed of 

the shaft. But, if we generalize, so this vibrational frequency whenever is between this 

two bands, we will be having instability. For a case of such system in which we have 



 
 
asymmetrical shaft in two principle directions, we find that during one rotation, they will 

be twice the change at the stiffness would take place so that it is rotating.  

We will find that the speed equal to twice of the speed. We will be having vibrational 

frequency because of this asymmetric shaft property. Because of that, this nu will be 2 

omega because vibration frequency is twice for this case. Earlier case, when we took nu 

is equal to omega, that could be because of may be unbalance in the system; because of 

that, that kind of frequency of vibration can take place. But, this 2 omega will take place 

in this particular case when we have the symmetrical shaft.  

So, from this we can able to see that we can divide throughout by 2. So, we will get this 

band also. When omega is between these two ranges, also we will be having instability 

zone. So, apart from the previous one which was this band, we have additional band in 

which we have unstable vibrations. That is due to asymmetric part of the shaft and 

because of that, the whirling frequency itself is twice the spin speed of the shaft. So 

basically, we are finding that this is one of the band in which a system will be unstable.  

There will be another band on which a system will be unstable. We may find that these 

two bands may be independent of each other or sometime they may overlap depending 

upon the values of this omega. So, we will take up one example in which we will show 

this particular case; in which we have asymmetrical shaft how the instability zones can 

be obtained.  
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So, in this particular case, we have taking an elliptical shaft with a length of 1meter. The 

major and minor axes of the shafts are this. So, this may be due to the manufacturing 

defect. This kind of geometry we may get or sometimes may be the requirement of the 

system. The shaft carries a disc of this mass. The material property of the shaft is this. 

We need to find out the zone of instability in the rotor due to asymmetrical cross section 

of the shaft. Because of this asymmetrical cross section, we will be having asymmetrical 

stiffness of the shaft.  
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So, various geometrical property, we can able to obtain. So, this is the second moment of 

area for an elliptical shaft. We can able to get in two principle directions and with that 

we can able to get for the boundary condition of the problem. The stiffness in two 

directions, two principle directions, we can able to obtain. So, there is high variation 

because of the elliptical cross section in this two. 
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Now, this two parameter omega xi and omega eta can be obtained from as it has been 

defined. So, the range is this one. The omega xi is this, sin omega eta is this much. So 

now, as we analyze already that if the rotor is operating below this two speed range, we 

will be having unstable operation. So, one band of unstable operation will be from here 

to here. Another one because of the twice speed of the whirl frequency, due to the 

asymmetric nature of the shaft stiffness half of this.  

That means, this will be additional zone where the system will be unstable. So, in the 

whole range, if we want the amplitude versus this, so we will be having two parameters 

this. So, this is 633 and this is 667. So, in this range system will be unstable. Similarly, 

we will be having another band, so 317 and 334. This will be another band, in which the 

system will be unstable.  

So, and if we are operating in this region or in this region or above this, you expect this 

system will be stable. In the previous lecture, we did a instability analysis of fluid film 

bearing that was linearized case. If we want to consider the non-linear bearing fluid film 

fluid film forces then we need to use the Reynold equation to obtain that.  
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So, here briefly I am outlining how the instability analysis can be done for fluid film 

force. If non-linearity we want to consider so in this particular case, this is the rotor. In 

this, we have fluid film forces in two directions; radial direction and the tangential 

direction. Weight of the journal is here. This could be unbalance force which is rotating 

with some speed. The position of the rotor is given as eccentricity and the altitude angle.  

Now, if we want to write the equation of motion of this; obviously, we can able to 

balance the force in the radial direction and tangential direction. So, this is the force 

balances the radial direction. So, this is the fluid film force in the radial direction. This is 

the unbalanced force. Component of this in the radial direction will be cos x i. Then 

weight, component of that in the radial direction because that angle is phi; cos phi is 

equal to the mass and the radial acceleration. 

So, this is due to the radial motion and this is due to the angular motion. So, this is the 

radial acceleration. This is centripetal acceleration. Similarly, we can able to write the 

force balance in the tangential direction. So, this is the fluid film force in tangential 

direction. This is the unbalance force. This is the weight component. This is the mass and 

the acceleration in the tangential direction.  

So, this is due to the rotation. This is basically; this is cartelized component of 

acceleration because of radial motion and the angular velocity. So, this is equation of 



 
 
motion. Only thing is this radial force and the tangential force from the fluid film need to 

obtain from the pressure of the fluid like this. 

(Refer Slide Time: 46:25) 

 

So, over the inside the surface of the bearing from 0 to 2 pi angle and from the length of 

the bearing, we need to integrate this pressure, which we can obtain. This pressure, we 

can able to obtain from the Reynold equation, so component of these pressures in the 

radial direction.  

This cos theta we are measuring from this. So, this will give the force in the radial 

direction and then in the tangential direction. This equation of motion can be integrated 

with respect to time for e r, the eccentricity pressure, which is time dependent and from 

the altitude angle. We can plot let us say, eccentricity ratio. So, if for stable system, if we 

had an initial condition is somewhere here.  

After sometime, it stabilizes to this solid line. We can call the system is stable or even if 

we disturbing the rotor inside of this orbit to come to the solid elliptical path. Then the 

system will be stable for whatever the initial condition. The system will stabilize. For 

unstable case, the response v r will increase like this. This kind of thing was having seen 

in the case of hysteretic damping also. 

So, by direct integration of the response; the differential equation to get the response will 

give us this kind of whether the system is stable or unstable. So, this is another way by 



 
 
which we can able to obtain the instability of the system especially when the fluid film 

forces are non-linear in nature. So, in today’s lecture we considered two three aspects. 

Initially, we started with the internal damping. We saw that how the internal damping 

can provide the instability in the rotor system; especially we saw the role of viscous 

damping when the internal damping is also there.  

The internal viscous damping basically stabilizes the system. So, if we are providing 

more viscous damping the system, the speed of threshold stability threshold can be 

increased. In another, when we consider the shaft asymmetry, we found that naught a 

single speed. But, a band of speed at which the rotor can become unstable. That band of 

speed below or above those bands in the rotor will be stable. But, that kind of bands may 

be there at other reasons. Also as we have seen, when we considered the two, twice the 

speed of the rotor; if some vibrational components are there. 

So, a certain band of unstable zone can also be there. Apart from that, we have seen that, 

if we want to consider the non-linearity of the fluid film bearing how we can can able to 

obtain the system stability. Basically, we need to in time integrate the equation of 

motion. If the response is increases continuously for a particular disturbance, we can able 

to conclude that the system is stable unstable.  

If it is stabilizing to a particular orbit then we can able to say the system is stable. In the 

next class, we will take up some more kind of instability, in which we can have the rotor 

can go into the unbounded response. That means the system may become unstable 

because of other kind of. In the next class, we will see some other sources of instability. 

We will try to analyze; how these instability can give some kind of unbounded response 

to the rotor system. 


