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That is the last lecture we have been doing the analysis of rotor bearing system in great 

detailed for torsional vibration and transverse vibration. Mainly those analysis we are 

concerned with the finding natural frequency mode shape and unbalance force response 

or forces due to the other sources, how to get the response for force response for that? 

From today we will start another topic on instability on the rotors system, but before 

going in to the actual subject of instability I would like to introduce the fluid film bearing 

concept and the rolling element bearing concept. Specially, the fluid film bearing their 

main source of instability in the rotor system, like force response always will be there in 

the system due to unbalance. On the same lines this instability is the main cause of the 

instability due to the fluid film bearings. So, in some detail we will try to see, how the 

rotor dynamic coefficients of these bearings can be obtained? And how it will be 

affecting then stability? That will be lending in the subsequent chapter. 

(Refer Slide Time: 01:47) 

 



So, basically in this lecture we will concentrate on the bearing, hydrodynamic bearing 

and rolling bearings and how we can able to get the rotor dynamics coefficients from 

this? Like for bearing will introduce the Reynolds equation for hydrodynamic bearing 

and for short bearing approximation are long bearing approximation. How we can able to 

solve this particular partial differential equation? In close form will see and also we give 

brief idea about if the bearing is finite. How the Reynolds equation can be solve using 

finite difference method? Brief of the rolling element bearing stiffness is generally 

rolling bearings are very highly in rolling bearing are highly non-linear in nature in 

stiffness, but we will try to obtain the stiffness linearized stiffness is in simple procedure. 
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So, cutting with the hydro dynamic film lubrication in particular bearing, there are three 

category of bearings we have in the industry. Is a very abstract definition of the three 

kind of bearing like, hydro dynamic bearing; in which once surface is stationery another 

is moving tangential to it. In between this there is a fluid and generally we will be having 

some kind of converging area and because of this motion the pressure will develop in the 

converging area due to.. Due to that this particular body will be lifted up from the there 

will not be metal to metal contact between the moving body and the stationery body. 

Another kind of is this squeeze film. So, in this squeeze film lubrication generally the 

force is in this direction or the motion is in this direction and whatever the lubricant is 

there in between the two body will these getting squeezed out during the motion. This 



generally gives some kind damping in to the system, but not the stiffness as search apart 

from that we have hydrostatic lubrication. In this generally the separation of the two 

bodies take place because of the pressurized fluid from all sides. So, because of this 

pressure this body will get lifted and will be having no metal to metal contact between 

this two body, between which the motions we expect. So, this is the three basic concept 

by which we separate the two bodies, so that there is no metal to metal contact them.  
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Focusing on the hydro dynamic bearing, hydro dynamic bearing the most simple hydro 

dynamic bearing is the cylindrical plane cylindrical bearing, in which the bearing cavity 

is circular and if you see from side it will be cylindrical in shape. So, shaft goes inside 

this and there is a small clearance between the shaft of the journal and the bearing. So, 

main important thing in this is this particular journal bearing the shape is circular. As 

search the lubrication comes and goes from the sides or some time we provides some 

kind of group on to the this bearing. Another kind of bearing is if the longitudinal 

bearing the shape is circular, but generally we provide the group at this. So, you can able 

to see the whole actual length of the bearing there will be groove and the lubricant will 

go form that side.  

There is another kind of bearing in which the shape is again circular, but there is a 

circumstantial groove which is there at mid around midpoint of the length of the bearing. 

So, all over the circumference they will be groove which will give lubricant inside the 



bearing. So, that there is a enough lubrication between the journal and the bearing. Apart 

from that we have partial arc this bearing in which generally you can able to see this 

basically if a circular bearing, we have cut some portion of this and some portion of this 

and the remaining arc we have join together. So, this is that partial are and the lubrication 

groove are here on the top surface of the circumference not at the bottom, because 

generally the pressure develops at the bottom. So, if you provide lubrication grooves 

there that chances are there that lubricant will go out from the bottom grooves rather than 

coming inside the bearing.  

Then we are lemon bore bearing in which there are two nodes, we can able to see there 

are two arc. Basically this elliptical shape and grooves are there at the and these two 

places from that the lubricant go inside the this bearing. Then there are three lobe 

bearing, so you can able to see three lobe, three bearing arcs are there and the lubrication 

is provided through this a portion of that grooves. Extension of this is four lobe, so four 

arcs are there and at each corner there is a tangent for the providing the lubrication to the 

a, then there is offset halves. So, you can able to see this particular two arcs are there, but 

they are they will offset by some amount and there is a grooves here, so that the 

lubrication go can go in this.  

In this particular case you can able to see that the rotation can take place of the journal in 

one direction, but opposite is not visible otherwise this will abstract on the motion. Why 

we provide different shapes? Is a question revive we are going form cylindrical to 

various shapes. So, generally in a stability point of view the plane cylindrical bearings, 

general bearings are most sensitive to instability. To avoid that generally we provide 

different kind of shapes, in most stable bearings are the tilting pad bearings. So, you can 

able to see that these are the pads which can tilt about it is pivoting point and general 

rotates here. So, depending up on the requirement this pads can take different orientation 

and this is the most stable, highest is instability of the rotor system will be there with the 

tilting pad journal bearing. 
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So, now will be looking to the Reynolds equation before looking in to at the junctions of 

this, let us see how the journal and the bearing occupy the position at some operating 

position operating speed. So, this is the journal this is basically circular shape. So, this is 

the bearing which is fix let us say and this is the journal and this clearance is generally 

will be very less of the order of microns, but I have just exaggerated here. So, that I can 

show various parameter on this, so this gape will be between the journal and the bearing 

lubricant will be there and this gape will be of order of microns. You can able to see this 

B is the journal the bearings center, which is the journal center between this two distance 



is a eccentricity. The angle if we join this line bearing center and the journal center line 

with vertical that angle is called attitude angle.  

So, basically the eccentricity radial eccentricity e r, which is nothing but B J and this 

altitude angle defines the position of the journal. In this particular case we can able to see 

the journal is a rotating and this direction and basically it is pumping the fluid which is 

here because the fluid will get trapped here and it will pump in this narrow region. 

Because of this continuously converging shape will see that the pressure will developed 

and that will allow the this two the bearing. The journal to separate and they will be very 

high pressure in this region and that will basically sustain the weight of the journal or 

any other force, which is their all to the journal.  

At any position the film thickness is given by this, so this h is the film thickness use the 

velocity of the journal at and capital r is the radius of the journal. This particular line, 

which is joining the bearing axis in the shaft text is or this will be the reference position 

when we want to measure this circumferential and then or may be circumferential length 

S. If we want to measure what is the distance in circumferential direction this will be the 

reference line for us reference position for this. 
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So, basically now we can look in to the Reynolds equation will not derive, but we will 

just show the Reynolds equation and what are the terms in it has. So, basic assumptions 

of this particular while deriving the reveal equations are; film thickness is small as 



compares to the journal dimensions. Journal is cylindrical and bearing surfaces without 

local distortion, journal axis is parallel to bearing axis, inertia of fluid in film is 

negligible. So, is another important assumption which we make inertia of the fluid we 

neglect, fluid film unable to sustain sub-atmospheric pressure. So, where ever negative 

pressure is there this will not be a cavitations may take place so we are not considering 

cavitations aspect here. 
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Fluid pressure is atmospheric in supply, drain and at region where the fluid film is 

broken or cavitated. So, where ever cavitated, cavitaion possibilities are there we are 

assuming that is atmosphere pressure is there. Laminar flow in the bearing fluid film, 

viscous shearing loss in the clearance region outside the pressure field and this space is 

taken as a partly filled with fluid. No frictional loss from the fluid in the groove or drain 

spaces the adjoining journal. So, these are the some of basic assumptions. Fluid is simple 

Newtonian fluid with viscosity independent of the shear rate. The viscosity and the 

density of the fluid is constant throughout the bearing.  

So, these are the basic assumption deriving this Reynolds equation, this is basically 

partial differential equation. We can able to see, these the pressure inside the fluid and S 

is the circumferential direction and z is the axial direction. So, axial direction is the z 

axis direction. So, pressure variation contain be there in the axial direction or the 

circumferential direction. rho is density of the fluid, h is the film thickness, mu is the 

viscosity, here velocity journal velocity is U, also… So, all the terms this is time 

derivative. So, if there is some dynamic force in this so this term will be there, we are 

considering the study state condition then this term will be we can neglect.  
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Then once we have this Reynolds equation, let us see the concept of the linearized 

coefficient. Basically, this Reynolds equation gives the pressure from which we can fluid 

film pressure, from where we can able to get the fluid forces by multiplying this pressure 



with the area of the surface of the bearing. So, this particular plot is basically plot of the 

center of the shaft with speed how it changes? So, at 0 is speed, this is the bearing center, 

this is the shaft center at 0 speed, but when the speed is increasing the shaft occupies 

some incline position and this is this is the point where at a particular speed journal 

occupies at some incline position.  

In the previous figure we have seen that that position we are describing by the radial 

eccentricity and the altitude angle. So, this is the equilibrium position of the shaft for 

study state force. So, if there is a dynamic force then shaft will be oscillating about this 

point. The linearized stiffness are define the disturbance of the journal from this 

equilibrium position when we are disturbing by small amount. Then what ever the 

change in the fluid pressure will define the this linearized coefficients. 
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So, basically earlier we have shown the previous lectures this kind of linearized 

coefficient. So, this is the fluid pressure and these are the static forces in the vertical and 

horizontal and vertical direction. These are the terms basically for Reynolds equation, 

because we are not considering the fluid inertia. So, these terms are generally present 

when we have very we very high velocity of the rotors. So, these are called mass 

coefficients, so this stiffness damping and mass coefficient. So, Reynolds equation does 

not take care of this particular property of fluid. So, in this particular case you can able to 

see how the stiffness damping and mass coefficients have been defined. So, basically 



changing the fluid pressure for a given displacement disturbance or velocity or 

acceleration disturbing this property have been defined. 

(Refer Slide Time: 16:52) 

 

So, this is basically because in the Reynolds equation is having two variables, there is 

one is the circumferential direction, another is in the axial direction. So, we can able to 

see that if we have this cylindrical shape of the cylinder and if we cut this in one portion, 

if we cut form here and if we unwrap it like this. So, you can able to see that will be 

having we will get a rectangle R shape if we unwrap this. Let us say this is 

circumferential direction that is s and this is axial direction z. So, this particular inside 

surface of the bearing, generally we will seek the solution of the pressure at each and 

every point on this two dimensional space.  

Because, the partial differential is differential equation is two dimensional, one is in the 

axial direction and other is in the circumferential direction. So, unwrap portion of the 

bearing surface is this in which this is the circumferential direction from 0 to 2 pie r and 

this the axial direction of the bearing. In the Reynolds equation defines the pressure in 

this region, which is function of s and z, if in the previous figure here, if we see the film 

thickness, film thickness is where maximum here and minimum here.  

If we cut the film thickness here and if we unwrap this we will get something like this. In 

which this is the maximum film thickness h, which is the reference point for angle 

angular is displacement 0 theta is equal to 0 and then is minimum here and then it again 



become maximum. So, were basically this point on this points are at same point, because 

after 2 pie again this 2 will meet. So, this is the unwrap the film thickness along the 

angular position, how it changes with the angular position, this film thickness? So, now 

we will try to solve the Reynolds equation using final difference method in this region. 

So, basically we need to put various grids and will seek the solution of the pressure and 

various grids.  
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So, before that let us see if we want to solve the partial differential equation in close 

form. So, using two basic assumptions one is short bearing a approximation, another is 

long bearing approximation, we cannot simplify that Reynolds equation. For short 

bearing approximation, short bearing means this is the actual length of the bearing is 

short as compare to this one. So, if bearing length is short we will see that the pressure 

because, here it is atmospheric pressure, here also it is atmospheric pressure. So, at the 

center up to center there will be continuous variation of the pressure will be there. So, 

that means the variation of the pressure in the axial direction will be there in the short 

bearing. But if you see in the circumferential direction the pressure variation will be 

relatively less and this can be ignored.  

So, for short bearing the circumferential direction pressure variation we ignore it. So, the 

Reynolds equation will be containing only derivative with respect to z. So, that will be a 

ordinary differential equation and that can be solved. Another approximation is the long 



bearing approximation and this you can able to see we get the length of the bearing is so 

long that the variation of the pressure will not be there in the axial direction, slight 

variation will be there at the end only. But if we see in the circumferential direction lot of 

variation will be there as compare to the axial direction.  

So, in this particular case we can able to neglect the variation of the pressure with respect 

to z. Again in this particular case the Reynolds equation will be will be only 

differentiation will be respect to circumferential direction s and again it can be solved in 

the close form solution. I will be providing the final solution of the this stiffness 

coefficient and the damping coefficient for the short bearing approximation, which we 

can get from the pressure as discuss in the previous slide. That once we know the 

pressure we can able to get the fluid forces and changing the fluid forces defines these 

coefficients.  
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So, they can be obtained using this simplified Reynolds equation. So, we have already 

seen the sort bearing approximation how… so these are… So, apart from the equation 

obviously when we need to solve the partial differential equation boundary condition 

need to be satisfied. So, the previous slides are basically description of these boundary 

conditions. So, I am explaining the boundary condition in the figure itself rather than 

going in to the text. So, we can able to see the first boundary condition, which is full 

sommerfeld condition, full sommerfeld condition is this is the lubrication pressure and 

this the circumferential direction.  

So, at 0 that means where the maximum thickness of the film is there pressure is 0 this is 

the assumption. When we are going up to the other end of this again it will become 0, but 

in between this around pie again there is a pressure 0. So, this is this full sommerfeld 

conditions, but this negative pressure will give cavitations. So, this boundary condition is 

not feasible ones. So, sometimes are most of an we go for the half sommerfeld condition 

rather than the full one in which we take the boundary condition up to this only, we do 

not go up to this. So, where ever the pressures are negative we take them as 0.  

So, only half sommerfeld conditions is considered, another condition is or alternative is 

the Reynolds condition, which is more practical. In this particular case at theta is equals 

to 0, where the maximum thickness of the film is there pressure is 0, but here after phi 

wherever the pressure gradient is 0, we take p 0. So, you can able to see where ever the 



pressure gradient is 0, p 0. So, this particular whirl condition we need to use in the 

solution of the Reynolds equation, either is in sort bearing approximation or long bearing 

approximation or even for this finite bearing approximation, which I will describing 

subsequently.  
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So, for short bearing approximation I am giving the linearized coefficient directly, 

without solving the equation as such. Here this is the clearance radial clearance, this is 

the weight of the journal, this is the stiffness coefficient. So, basically this is a non 

dimensional stiffness coefficients are defined this is damping, non dimensional damping, 

again this has been defined like this. In this particular case this particular expressions we 

have taken from Smith’s book. 

 (Refer Slide Time: 26:22) 

 

So, you can able to see that we have explicit form of these stiffness coefficients. So, you 

can able to see this epsilon, I will be defining what is the epsilon? Function of epsilon? I 

will be defining. So, basically the if we know the epsilon these stiffness coefficients can 

be calculated. Similarly, the damping coefficients they can be calculated, the one point is 

at that the this stiffness coefficient the cross couple stiffness coefficients are equal, but 

not the this stiffness coefficient, only the damping coefficients are equal. Generally the 

instability comes in to the rotor because of this cross couple stiffness this and this one.  

So, they are not same and mainly the instability come because of this coefficients. So, 

here I have defined the Q capital this is function of epsilon and epsilon is eccentricity 

divided by the reveal clearance. So, you can able to see if we know the epsilon we can 

able to calculate these coefficients, that means if we know they are a eccentricity of the 

rotor we can able to calculate these coefficients. 



(Refer Slide Time: 27:01) 

 

Generally, we obtain these bearings property in terms of the sommerfeld number, which 

is defined like this. Where D is the diameter of the bearing, where is the length of the 

bearing and is the revolution per minute that is s, this is the RPS and this revolution per 

second. This is weight of the journal, this is radius of the journal, this is the radial 

clearance between the journal and the bearing. So, this is basically revolution per second 

N is the revolution per second, this is the capital N. 
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Now, this sommerfeld number we can able to express in terms of the, this epsilon which 

is nothing but the non dimensional eccentricity. Now, you can able to see that this 

sommerfeld number is depend up on the bearing operating conditions, as well as the 

dimensions of the bearing and the property of the bearing lubricant. Now, for a particular 

bearing at a particular speed we know the we will be knowing the sommerfeld number of 

that. From this equation we need to find out what would be the epsilon value for that 

particular sommerfeld number.  

So, basically if we plot these two sommerfeld number with epsilon we will get a curve 

like this. So, sommerfeld number and eccentricity ratio epsilon, so this is the curve, so 

for particular bearing we can able to calculate the sommerfeld number and this plot we 

can able to interpolate what will able be the epsilon value for that particular bearing. 

Once we know the epsilon we can put in the stiffness and damping coefficient 

expressions to get the property of that. So, this the procedure generally we follow for 

calculating the stiffness and damping coefficient of the bearing. 
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Basically, this is the same procedure which I described, how we can able to get the 

bearing property using sommerfeld number and the expressions which are given 

previously. These are the plot of the sommerfeld, the stiffness variation and the 

sommerfeld number. So, for various sommerfeld number we have summarize this non 

dimensional or dimensional less stiffness coefficient. So, you can able to see the 

variation of various k x x, k y y, k y x, this particular k x y it becomes negative. So, it has 

been shall in this region is dotted line, so this is the negative because this is the lobe log 

lock, semi lock plot. So, then there we cannot able to plot the negative value. So, we 



have taken absolute value of that and I have located by dotted line is these are the 

negatives value of the stiffness.  
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Similarly, the damping c x x, c x y and c y y and these two are same cross coupled 

stiffness damping are same, but not the stiffness as we are seen in the previous plot. 

Now, we will see how we can able to solve the partial differential equation, this 

Reynolds equation using finite difference method. So, brief outline of the method will be 

explained and for this particular case as we as explained previously this is that, once we 



cut the bearing and un wrap it this will be the bearing linear surface. So, in finite 

difference method we need to make a grid and we will be seeking the solution at how 

this nodes.  
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So, basically you can able to see if we take one particular node this is that particular i j 

node and neighboring nodes are like this one is i plus j, i minus i comma j minus 1, this 

is i plus 1 j and this is the i minus 1 comma j. So, will be predicting the node displace 

node pressure here with the help of this neighboring nodes. If we require further points 



we can able to considered in between and for that particular case we node description 

will be like this. 

Now, the Reynolds equation we can able to write is in the partial differential equation 

like this. So, each and every term because this was second derivative, so we can able to 

express the derivative with respect to S of the pressure like this, this is the film thickness. 

Similarly, the other variation with respect to Z, which also second derivative, so that will 

take this form, right hand side we had remove the time independent term we are 

considering the study state condition. So, that is the variation with S was there of the 

second derivative, first derivative. So, only this term will be there. So, this equation are 

now can we can able to arrange such that we can able to club the terms containing like a 

pressure variation at i j in one place, i comma j plus 1 at another place like that. So, all 

five node positions pressure terms we have collected and we express like this.  
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This can be written now in a more regression way. So, the pressure at the i j we are 

predicting with the help of neighboring four of nodes. This various constants are known 

quantity either a film thickness or the circumferential distance or radial distance for axial 

distance, so with this equation is very important. So, you can able to see that we are 

predicting the pressure at the central node by four neighboring pressures and we can able 

to write i j for the whole domain, so starting from one corner to another corner of the 



whole grid. So, basically will be getting several equations like this they will be 

simultaneous equations and we need to solve them one by one. 
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So, we are predict at this pressure with the help of the neighboring pressures. So, 

basically these recreation equations we need to solve iteratively that will see the 

procedure. But let us see this particular point, which is there in the unwrap position. If 

you want to see that particular point in the bearing this is the point the position of that 

angular position we had representing by xi. So, this particular pressure if we multiply the 

area this particular area.  

So, we will get the force how much it is exerting onto this bearing, because this is the 

pressure at this point if we take half of this also it multiply by this area. So, that will give 

how much force, which it is giving in the radial direction this particular fluid. So, this the 

way we will be obtaining form pressure the force value and then we can able to take the 

component of these forces, which are in different direction in the horizontal direction 

vertical direction and then we can able to see they are force balance. 
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So, you can able to see this is the force balance the horizontal direction. So, component 

of that pressure in to the area and this is the force and this is the component in the 

horizontal directions. Similarly, if we take sin of that xi than will get the horizontal 

direction, vertical direction force. Basically, in this the journal weight which acts in the 

downward direction, but there is as such known there is a horizontal force. So, basically 

we need to find out the, this pressures iteratively using the previous recursion relation. 

Such that this force is equal to the weight of the journal, but this should be 0, because 

there is no net force in the horizontal direction. So, this is the basically outline in which 

this I already explained.  

So, basically this particular case we need to obtain the pressure at each and every node 

and we need to and we are obtaining from neighboring nodes. Once we have obtained at 

that we can at switch over to a next node. In this particular case one important thing is if 

we are predicting the pressure negative at any point of time then because Reynolds 

equation does not take care of the negative pressure. So, we need to put that pressure 

equal to 0 and proceed. So, we will see that iteratively we will be solving the pressure at 

each and every node from one end to another and once we have done once again we can 

come back to the original position.  
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So, we will be keep repeating this till we will get no variation in the pressure that means 

in the subsequent iteration the variation in the pressure is negligibly small up to the 

desired decimal point. Once we get the this particular pressure variation that we have 

seen that we need to check that the horizontal component is 0 or not or the whole 

bearing. The vertical component of the pressure is equal to the weight of the bearing or 

not. If that is the case then we are use the solution part and from there then we can able 

to, we can able to get basically position of the eccentricity and the altitude angle.  
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 So, for that let us see; so, basically we need to follow this procedure and for various 

values of the epsilon. That means we need to once we have chosen, once we have got the 

convergence. Then basically we will be getting the equilibrium position of the journal 

that means eccentricity and the amplitude angle. We can able to find out various 

combinations of this that means the amplitude angle and the eccentricity. So, in this 

particular plot we can able to see that the sommerfeld number and this eccentricity ratio 

variation have been provided for different L by D ratio. So, for finite bearing you can 

able to combine this kind of non dimensional parameter, because for a particular bearing 

we can able to calculate the sommerfeld number from there we can able to predict the 

eccentricity ratio.  

So, this basically gives the equilibrium position of the bearing. So, you can able to see 

here even if we want to plot the variation of the path for different L by D ratio. So, this 

contain both the eccentricity as well as the this altitude angle. So, this is having more 

information regarding the bearing equilibrium position. So, this was this was again I am 

repeating, this was very brief description of, how we can able to solve the Reynolds 

equation using finite difference method or using shaft bearing approximation? How we 

can able to get the coefficients? Now, I will introduce very briefly the rolling element 

bearing and how we can able to get the linearized stiffness coefficient from this.  
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So, in this particular case you can able to see this is a ball bearing, this is a roller bearing 

and this is the shape of the rolling element is cylindrical, here it is in the spherical shape. 

The close view of the bearing is that this is a rolling element ball and there is a inner race 

ring, outer race ring, there is a groove on which this particular rolling element role. So, 

you can able to see this groove and this rolling element bearings are totally a case kind of 

thing that is called separator or retainer. So, this separate this ball with each other. So, 

that they should not collide and other dimensions like bore where the shaft will go over 

the outer diameter. So, the housing dimensions we need to make up the size, so that the 

bearing can go in the housing, this is the width of the bearing, it is a basic nomenclature 

of the ball bearing.  
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More close view of the this particular ball bearing you can able to see, if we join this 

circle this ball centers, this is a circle imaginary circle, which we called it as a pitch 

circle. Diameter of that is pitch diameter and this is the ball and these are the grooves and 

this ball the roll over inside this groove and this grooves are having different radius as 

compared to the ball. Generally, this radius is more, so that the ball can freely role on 

this grooves. Apart from that some of more dimensions are there this is inner groove 

diameter outer groove diameter.  
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Now, let us see various kind of now ball and roller bearing types. So, that means this is a 

deep groove ball bearing, this is angular contact ball bearing. In this particular case the 

angle of contact of the ball bearing is large, we will see, what is the contact angle in the 

subsequent slide? Double row angular contact ball bearing, so two rows are there, this is 

self aligning bearing. So, in this particular case the inner ring, inner ring can tilt with 

respect to the outer ring by large amount. Then this is a thrust bearing generally the load 

comes in the vertical direction, so that they take the load here. 

So, load comes like this in this particular case, this is cylindrical bearing, cylindrical 

roller bearing. So, shape of the roller is as cylindrical, double roll cylindrical bearing, 

tapper roller bearing. So, this is first stem of cone, double row spherical bearing. So, the 

shape of the this contacting surface are spherical in shape, similar to the cylindrical 

bearing, but curvature are more at the on the contacting surface. This is the middle 

bearing in which the length is relatively long as compared to diameter of the bearing. 

(Refer Slide Time: 42:58) 

 

So, this is the basically load zone in rolling bearings. So, this is the ring let us say and 

when we apply the load into the inner ring or outer ring, generally not the all the rolling 

elements take the load. Partly some of the rolling elements take load and how much is 

the load zone is defined by the clearance. So, if clearance is positive then we will see that 

the node zone, which is defined half of this total angle will be less than 90 degree.  



So, only the rolling elements, which are within this area, will be loaded. If there is no 

clearance then this load region is 90 degree that means total 180 degree, here whatever 

the rolling elements are there they will take part in the load, they will be free they will 

not take any load. Here also the rolling element, which are here they will not take any 

load. But if we have neglected clearance or the preload if ball are preloaded then we will 

see that the contact zone is more than 90 degree and most of the rolling element take the 

load. So, generally if we are providing the preload we will find that we have more 

number of rolling element taking part in the load sharing. 
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So, generally using the Hertzian contact theory, we define the load versus deformation 

relation between two contacting bodies and for point contact that means two spherical 

contacts we have this relation. So, you can able to see this is the load, this is the 

deformation at the contact point or point load, this is the exponent 3 by 2 for ball bearing 

that is point contact. This is the load deformation constant, which depends upon the 

geometry of the bearing and material property of the contacting bodies this can be 

written like this. 

 Now, this is for single point contact at one of the contact, if we have in the ball bearing 

we have two point contact; one at the inner ring and at the outer ring. So, these two 

deformations the total deformation can be defined as summation of this two and the 

previous expression can be substituted for inner contact and outer contact. So, it can be 

simplified like this because load is same, so because load transmitting the same, so we 

will get this expression. 
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So, basically this is some kind of equivalent the load deformation constant for the two 

point contact, which is defined like this for inner contact and outer contact this. Now, 

this particular approximately has given by a palindrome like this where D b is the 

diameter of the ball. f is given as the curvature ratio, which is given like this and r is the 

groove radius, in this figure you can able to see the groove radius clearly. So, it is the 

radius of the groove, which is groove radius this is the deep groove ball bearing if we 

apply axial node this inner ring and outer ring they shaft relative to each other.  

Now, you can able to see the points of contact of the ball with the races are here. So, this 

is the line where the load will be acting in this direction, because point of contact is here 

and the angle of this with respect to the vertical is called contact angle. This distance is 

the end play P is the end play, so this happens because of the clearance in the bearing. 

So, this contact angle is important because it defines how much axial load it can take. 
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Similarly, for roller bearing similar expressions only the exponents are different and for 

two point contact this will be defined like this. Approximately this is given as this only 

the effective length of the roller is incorporated in this. This is the roller and you can able 

to see at the ends we have chamfering. So, effective contact will be in this region and 

that is we need to consider in the calculation of this. So, this is the deep groove bond 

bearing, we are applying a external load here, let us say to the inner ring also bond are 

getting compressed.  



So, this is the load zone, because of clearance the load zone is less than 90 degree. Now, 

one particular bond which is at the xi angle this will, in this particular case this particular 

rolling element, which is let us say just below the direction of the load is having, let us 

say x m displacement. So, you can able to see the inner ring is getting displaced in the 

direction of the load by x m. So, this particular rolling element, which is at the xi angle 

will be having displacement x m into cos xi. Similarly, this xi can be this bearing or this 

ball or any other angle. 
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So, basically you can able to see that the actual deformation of the bond will be 

displacement of the ring with respect to the let us say, inner ring with respect to the outer 

ring minus the clearance, because the clearance we cannot define that is a deformation. 

So, displacement of the inner ring with respect to outer ring center minus clearance will 

be the deformation of the deformation. As we have seen in the previous slide the 

deformation at an angle xi of the bond will be x m cos xi minus clearance, because in 

that direction also radial clearance is c r. So, this is the deformation at any angle of the 

ball and if we keep that deformation equal to 0 that means deformation will be 0, only 

when the ball is outside the this inner zone here.  
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So, basically putting this equal to 0, we are trying to find out what is the angle xi for 

which there is no deformation. So, this will give us a load zone relation and this load 

zone relation we can able to see for 0 clearance we will be having pi by 2, pi by 2 load 

zone. Now, we can able to take the equilibrium of a ring that means all such forces 

because of the ball at various angular position xi. We can able to sum up for all the 

rollers if this rollers are outside the contact zone these terms will be 0. So, that should be 

equal to the external applied load where z is the number of rolls.  
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So, basically for a given bearing we can able to chose this particular displacement from 

that we can able to get various displacements at various ball locations. From there we 

can able to get the contact forces, because once we know the this deformation we can 

able to its additional contact and relations to get the contact forces. These contact forces 

then we can added up we can add the component of that in the radial direction and check 

whether that is equal to the external load or not, if not then again we need to give a we 

need to the another displacement.  

Basically, here totally we are try to find out what should be the displacement for that 

particular given radial load. If this displacement is not equal to the actual one this will 

not satisfy then we need to repeat this iteration till we get the close value of the x m for 

which this the bearing is having that much displacement. In rolling element bearing, for a 

given force, obtaining the displacement of the inner ring with respect to outer ring is 

iterative procedure. If we if we are we can able to obtain for a particular load, how much 

the deformation? And if we vary the load and again, what is the change in the change in 

the deformation? Then basically what we are obtaining we are obtaining a variation of 

the load with displacement and from this we can able to get the stiffness.  
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So, for this I am giving the expression of the stiffness of the rolling element bearing, the 

first one is from ball bearing. So, this particular stiffness expression is this one. So, you 

can able to see this is a number of rolling element, this is the load displacement 



constants. This is the deformation or displacement of the inner ring with respect to outer 

ring, this is the clearance, this is a factor which we have used for ball bearing. Basically, 

it gives a relationship between the actual force, which is we are applying like if we are 

applying to the bearing F r force. So, what is the force F m that the ball which is just 

below the in the direction of the radial load is taking this particular factor defines that. 

So, let us see that particular expression. 
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So, this is the force which a particular ball, which is just below the radial direction of the 

load is there. c 1 is the constant, which is given as 4.37 for ball bearing and 4.08 for the 

roller bearing, z is the number of roller. So, this expression have we have used in this 

calculation of the stiffness and this is coming from the exponent of the, at zonal contact 

for ball bearing and roller bearing. So, these two expressions can be used to obtain the 

linearized coefficient of the stiffness. So, these two expressions can be used to obtain the 

stiffness coefficient for the ball bearing and the roller bearing directly. For more detailed 

calculation of these load deflection calculation. 
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People can refer the Harris that is 2000 book on rolling bearing analysis rolling element 

bearing analysis book, so because a detailed is not possible to cover in this particular, in 

single lecture. So, I am referring this particular book, which itself is 1000 page, for more 

detail analysis of the rolling element bearing. In today’s lecture we cover very brief idea 

about the fluid film bearing and the rolling element bearing.  

It is not possible to cover the concept of these two bearing in a single lecture. But just to 

have idea of; what kind of bearings fluid film bearings are there? What type of rolling 

element bearings are there? Specially, how we can approach the calculation of the rotor 

dynamics coefficient? That was important that I try to outline in this, but for more detail 

obviously there are dedicated books on ((Refer Time: 55:37)) that can be referred for 

calculation more detailed calculation of the this kind of bearings. 

For bearing designed to carry a vertical loads only, for example; the gravity load. The 

relation between the eccentricity ratio and journal attitude angle phi may be determined 

by investigating different value of phi for a given a value of epsilon until the value of F h 

that is a vertical horizontal force is found to be 0. So, if gravity is the only load on to the 

rotor. So, F h if it becomes 0, then we can have the combination of the eccentricity ratio 

and phi for the rotor for that particular operating condition. For example, once we choose 

an arbitrary value of epsilon and phi then corresponding film thickness can be obtained. 



Since, phi and epsilon and phi determines the position of the shaft with respect to the 

bearing bore. 
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Using iterative procedure or using all simultaneous solution procedure by solving the 

finite difference equation simultaneously the pressure distribution is obtained by putting 

negative pressure equal to 0. So, whenever we are obtaining negative pressure we are 

keeping that equal to 0. Because, resultant forces of the journal is obtained by using 

previous equations for horizontal force equal to 0 and vertical force is equal to weight of 



the journal. If the above force conditions are not satisfied then different value of phi 

could be chosen until the force conditions are satisfied up to the desired accuracy. So, 

basically here we are trying to find out for a particular epsilon value what should be the 

phi value to satisfy these two conditions. 
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When this process is completed it is found that because the Reynolds equation is a 

continuous function. The final pressure distribution correspond to Reynolds boundary 

condition with the constraint of this gradient is equal to 0, which we described earlier at 

trailing edge of the lubricant film automatically, which is catered for. Above procedure 

can be repeated for different value of epsilon to get relationship between epsilon and phi 

for a particular bearing at different operating conditions. This trial and error method 

enables corresponding value of epsilon and phi and sommerfeld number S to be found. 
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So, with this we can able to plot the eccentricity ratio with sommerfeld number, which 

we defined earlier. So, basically it depends up on various operating parameter of the 

bearing including speed for various geometry we can able to plot these relations. Even 

we can able to plot the epsilon and the altitude angle for various geometrical conditions 

of the bearing like for L by D ratio 0.5, this is the curve and the second curve is for L by 

D, L by Dis equal to 1. If the fraction of net radial load applied that is transmitted 

through the rolling element directly in line with the applied load is known than the 

resulting inner ring displacement may be calculated directly.  

So, we have that is the bearing we having, then let us say this is the rolling element 

which is here. So, if we are applying a radial load on to the inner ring and this particular 

roller or ball which is just below this particular radial load. So, if you can find out what 

is the load shared by this particular rolling element as because, this load changes with the 



angular position of the ball. So, if let us say the load shared by this particular rolling 

element is F m. So, if we can obtain what is the load shared by this particular bearing 

load element, then it is easy to obtain the load distribution also the stiffness of the 

bearing.  
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So, this is the total displacement of the bearing or the displacement of this particular ball 

also they will be same. So, this is the deformation plus the radial clearance and this 

deformation is of the ball is due to the load shared by that particular rolling element. So, 



we can able to get using the axial relation in which the exponent will be 2 by 3 and in 

this particular case this C r is the clearance radial clearance of the bearing. 

Similarly, for the roller bearing we will be having a relationship between the deformation 

of the maximum loaded roller often like this in which the exponent will change it is 

radial clearance of that particular roller bearing. The same relations is given by Palmgren 

these are the approximate relationship in which neglected the bearing clearance and 

geometry. So, the similar relation is provided based on the experiment. So, this can also 

we used, where D is the ball diameter, l is the effective length of the roller. So, this is for 

ball bearing and this is for roller bearing. 
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The relationship between F m the maximum load in which a particular rolling element is 

carrying. The net radial force F r, which we are applying to the bearing is approximately 

related as like this. This is also approximate formula in which the c 1 constant and Z is 

the number of rolling element. c 1 constant is basically it depends upon the number of 

rolling element, load deformation constant and bearing clearance. Approximately it can 

be taken as 4.37 for ball bearing and 4.08 for roller bearing. So, this relation gives 

directly what will be the a particular roller or ball, which is just below the radial direction 

share that particular load. So, once we have obtained this particular load from previous 

relations we can able to obtain the differentiation also. 
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So, for ball bearing; so, in place of F m we have substituted this 4.37, F r by Z in the 

previous relation for ball bearing, similarly for the roller bearing. Now, for particular 

load F m the deformation of that particular which is just below the radial direction of the 

external load is given by this. They are related by Hurwitz relations like this for ball 

bearing and roller bearing. So, when this is for one particular ball or roller, so once we 

have this relation. 
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Now, we are defining the stiffness bearing stiffness, which is non-linear in nature. So, 

that bearing stiffness is defined as the change in the radial load applied and the 

deformation of the that particular roller or ball, which is getting maximum deformation. 

Even that is equal to the deformation of the of the rolling element that is a inner raceway 

or outer raceway also. So, basically displacement is the relative displacement between 

the inner raceway and outer raceway.  

So, we can put the F r from previous expression. So, we will get the stiffness term like 

this and F m again we can able to put from previous relations, which we have here. So, to 

get the ball bearing stiffness in terms of various parameter of the bearing like clearance, 

this is the maximum loaded roller deformation and this is the number of roller, this is the 

load deformation constant for point contact. Similarly, for roller bearing we can able to 

obtain the stiffness, in this the exponents got changed and even this load deformation 

constant will be different 
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So, this is the animation for translatory forward whirl. So, we can able to see that in this 

particular case shaft is rotating clock wise also it is whirling in the clockwise direction. 

So, again we can see the shaft is rotating clockwise and also the whirling direction is 

clockwise. So, this is a forward translatory whirl, this is the animation for transverse or 

translatory backward whirl and this the shaft is rotating clockwise but, the whirling is 

counter clockwise direction. Again we can see once the shaft is spinning about its own 

axis in the clockwise direction and this whirling in the counter clockwise direction. so, 

this is a backward translatory whirl.  
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This is the animation for forward conical whirl and this shaft is rotating about its own 

axis in clockwise direction, but if you see end of the shaft that is also whirling in the 

same clockwise direction. So, that is why it is forward conical whirl again we can see 

this animation. So, shaft is rotating clockwise about its own axis also it is spinning 

whirling at both ends in this clockwise. This is the animation for backward conical whirl, 

in this again shaft is having same direction clockwise, but it is whirling in the counter 

clockwise direction. So, again you can able to see this shaft spinning and the whirling 

directions are different. So, whenever this is the case we will be having backward conical 

whirl.  
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This is the animation for, this is the animation for pure whirling of the disk about its 

bearing axis. So, here disk is not spinning, but the pure whirling is taking place. This is 

the animation for the long rotor in which the whirling in the forward whirl direction is 

taking place. So, in fact when we are having synchronous whirl the shaft bends in 

particular configuration and remains in that position and the whirl take place. So, you 

can able to see this is a pure rotation of the shaft is taking place, because we assumed 

here it is having titling about its centre of gravity. 
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This is the animation for the motor and the shaft whirling. So, this particular motor is 

whirling, because this is mounted on some spin which is covering torsional stiffness and 

the spinning is very fast. So, here we will see the whirling and the spinning frequencies 

will be different. So, generally the this particular shaft will be rotating at very fast speed, 

but the whirling of the whole rotor system will be along with the motor will be slow. So, 

again you can able to see once more this animation. So, here we can able to see the 

whirling frequency and the spin frequency will be are different. 
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This is the animation of a Jeffcott rotor in which the disk is at the centre and the this 

particular unbalance, which we have shown here is away from the bearing axis that is 

that means we are operating below the critical speed. Because, the shaft is at the centre 

the titling of the shaft is not taking place in this particular case, this remains vertical 

during motion, but if we so… This one is another case in which we have cross the 

critical speed and in that particular case unbalance will come inside toward the bearing 

side. So, animation this is for synchronous whirl, so this unbalance remains and try to 

rotate about the bearing axis.  
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In the third case this particular case in which we are at the critical speed and at that 

position the unbalance is in the 90 degree with the response and basically, this will give a 

tangential force. So, we can able to see this unbalance is always ahead of the or toward 

the disk direction of motion. So, this is the critical speed condition in which the response 

is in this direction and the force in this. So, they have 90 degree phase difference. 
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This is the Jeffcott rotor, which is mounted on bearings simply supported bearing, it is a 

the disk is at the centre. So, here we will try to see the motion of the disk in which there 

is no titling of the disk is taking place. So, titling of the disk is not taking plate. In this 

particular case that particular disk is offset by it is not at the centre and we will see that 

there will be titling motion of the disk also as it will is whirling. Because, of this we 

except the gyroscopic couple will be acting on this particular disk, because spinning 

about the shaft axis at high speed and also it is whirling. Because, of the precession of 

the disk about its diameter there will be gyroscopic couple. So, this animation we can 



again able to see when the shaft disk is offset from the centre the tilting of the disk take 

place along with the spinning and because of that gyroscopic couple act on to the disk. 


