
 
 

Theory and Practice of Rotor Dynamics 
Prof. Rajiv Tiwari 

Department of Mechanical Engineering 
Indian Institute of Technology, Guwahati 

 
Module - 6 

Transverse Vibrations 
Lecture - 31 

Finite Element Method 
 

Previous few lectures, we have been dealing with the finite element method for 

transverse vibration of the rotor system. Today’s lecture also we will continue with the 

finite element method. In this particular lecture, we will be incorporating two important 

aspects in rotating machinery; one is the gyroscopic couple. We will see that because of 

this, even for very small rotor system, the size of the matrices becomes large. We need to 

solve the Eigen value problem of force response using some kind of software like mat 

lab.  

Apart from this, we will see how we can able to incorporate the bearing stiffness and 

damping into the finite element formulation of the shaft system. So, basically we will see 

that if rotor is mounted; if flexible rotor is mounted on fluid film bearing, how we can 

able to handle with the finite element method. We will see that generally, the especially 

the fluid film bearings, they are speed dependent. Because of that, we may find that the 

property of this stiffness and damping will change with the spin speed of the shaft. So, 

that also can be incorporated if the bearing property is speed dependent.  
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So, let us see what are the things, we will be covering. So, we will take; continue with 

the transverse vibration with finite element method. Both free and forced vibration can 

be done with the procedure described here especially; we will be incorporating the 

gyroscopic effect of thin disc. We will not be considering the shaft gyroscopic effect. 

Only the gyroscopic effect of the thin disc will be considered. But, whatever the property 

of the shaft we considered earlier, the distributed stiffness and mass that will incorporate. 

But, we will not incorporate the gyroscopic effect of the shaft as it is.  

But, only of the thin disc we will be considering. Then, rotors flexible rotors mounted on 

fluid film bearing; how we can able to analyze such system we will try to see. In both 

cases as I mentioned and we know that gyroscopic couple changes with speed and fluid 

film bearing property also changes with speed. So, we can able to draw campbell 

diagram. That is nothing but variation of the whirl frequency with the speed. From there, 

we can able to obtain the critical speed of the system. 
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So, let us consider a simple rotor system. In this particular rotor system, this is a 

cantilever shaft with a thin disc at the free end. We will consider the gyroscopic couple 

of this thin disc. But, the gyroscopic of couple of this particular shaft, we will not 

consider. As I mentioned earlier, we develop the finite element in the previous lecture for 

Euler Bernoulli beam element. That particular model does not take into account the 

gyroscopic couple of the shaft itself. 

Now, for that we need to have a attenuation could be modeled that we have not 

considered here. So, we will consider the gyroscopic couple of this. Now, because of 

this, we obviously the motion in two planes will be coupled. So, we need to write the 

element in both the planes. So, let us say for simplicity we are considering for illustration 

purpose only single element we are considering. This is the element 1 in z x plane. This 

is same element in other plane, that is y z plane because mass will be there at node 2. 

This is a node 2. At each node, there is 2 degree of freedom.  

So, in this particular plane, which is horizontal plane, this will be a displacement and 

angular displacement. Here also, at node 2, the similar linear and angular displacement. 

In vertical plane that is y z plane, we will be having these two displacements, which will 

be defined as compared with the horizontal plane. So, v 1 phi x and here phi y is there. 

So, basically in this, we have 8 degree of freedom of the system because 2 at each whirl 



 
 
in at 1 node position. But, if you consider in both plane at 1 node, we have 4 degree of 

freedom. For 2 node, we have 8 degree of freedom. 
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Now, we can able to write the elemental equation. First we are considering one of the 

plane motions. We are not considering the gyroscopic couple of the disc. Later on, we 

will at this particular gyroscopic couple effect. So, let us write the elemental equation in 

z x plane which is horizontal plane. This is the mass matrix. You can able to see that is a 

disc, which is there at node 2. We will contribute not only in the mass but also in the i d. 

This m is been divided m bar because this is common.  

So, if we multiply this; basically this will be m and i d where m bar is this one, which is 

coming from the shaft mass matrix. This is the stiffness matrix of the shaft. Similarly, we 

can able to see the staking of the vectors u 2 phi y 2 u 1 phi y 1 u 2 phi y 2. So, this is the 

staking in one of the plane. Now, in the y z plane similar equations we can able to write. 
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That is also without gyroscopic effect. In this also, a mass matrix is exactly same. Only 

thing, these variables got changed. Now, here it is v 1 phi x 1 v 2 phi x 2. The mass and 

diametric mass moment of inertia of the disc will appear here also because; they will be 

there in the same element in this vertical plane motion also. This is the reaction of the 

sheer force and binding moment. This two plane motion we can able to couple. 

(Refer Slide Time: 07:35)  

 

So, before coupling, let us see the gyroscopic effect and how we can able to add it. So, 

earlier, when we dealt with that is the gyroscopic effect of mass less shaft and the thin 



 
 
disc, we use dynamic approach; even we use quasi static approach. After that we discuss 

the dynamic approach with influence coefficient method. So, in that particular case, we 

develop the elemental, we develop the equation of motion of a simple single mass rotor 

system like this in which the mass of the shaft may neglected. So, this was the equation 

of motion which we derived earlier. In this, this is a mass matrix. This is the stiffness 

matrix, which in turn we can able to get in terms of influence coefficient matrix.  

That will be the influence of the influence coefficient matrix. This was the gyroscopic 

matrix. Now, we will be using this particular gyroscopic matrix in the finite element 

formulation. So, we are taking this separately. But, we will see that the staking of the 

displacement vectors are different here; two linear displacement and then angular 

displacement. But, infinite element formulation we have one linear angular; then, linear 

angular for node 1 and 2.  

(Refer Slide Time: 09:13)  

 

So, let us see that particular gyroscopic matrix in our finite element elemental, this free 

variable staking. So, in place of x, we are using u. In place of y, we are using v. So, you 

can able to see that the previous equation of the gyroscopic matrix, we will be taking this 

form. So, the change of this will take place, because of the change of the order of these 

variables. Now, this equation we can able to expand. So, what I am doing now? I am 

writing this for a node 1 and node 2 both.  



 
 
So, we can able to see same. These are for node 1 and this is for node 2. So, basically 

this particular 4 by 4 matrix has come here. All the other terms are 0. So, this particular 

matrix has directly come here because these variables are corresponding to this variable. 

So, just we expanded this, so that we can able to couple this gyroscopic matrix with our 

shaft elemental equations. So, with this now we are we are coupling both plane motion. 
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So, this is the mass matrix for that. So, you can able to see earlier, we develop for 

horizontal plane and vertical plane. But, now we have clubbed them. So, in this first 4 is 

corresponding to the node 1. So, first two is for horizontal displacement. These are for 

the vertical displacement at node 1; similarly here for node 2, horizontal displacement, 

vertical displacement. So, accordingly on the positions of these mass matrices, which we 

developed earlier, we will change. Now, the similar thing will be there. 
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Here, this is the gyroscopic matrix, which we taken from the dynamic approach because 

now, order of staking is same as the finite element formulation. So, if this directly, we 

can plug in this is the stiffness matrix. So, the two plane motion elemental equation; we 

have now assembled it in this form. So, depending upon the order of this free variable, 

the relative positions of the mass stiffness matrix terms will change. There is no external 

force. These are the reaction that is shear force and binding moment. Now, let us see the 

boundary conditions of the problem. 

(Refer Slide Time: 12:17)  

 



 
 
So, we have two elementary elements, one element and this node one is fixed. So, all the 

displacements linear and angular displacements will be 0 there. This is free end. So, we 

will be having shear force and binding moment at node 2 is 0. 
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So, these boundary conditions we can able to apply here. So, we have all these shear 

force and binding moment at node 2, 0 and displacements at node 1 are 0. So, these 

displacements are 0. Similarly, we can able to equate the velocity terms at node 1 is 

equal to 0. Even for mass matrix, we will be having these as 0. Now, we can able to see 

that we need to take that because is in the right hand side. 

Only the last four are having 0 values; these are unknowns. So, we need to eliminate 

them from the final reduced form of the equation. So, basically we need to eliminate the 

first four columns and first four rows of each of this. So, all these will get cancelled. First 

row first four equations, we will eliminate from everywhere, from here also. So 

basically, all these we need to eliminate. 
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Similarly, for mass matrix, this mass matrix and stiffness matrix are symmetric. Only the 

gyroscopic matrix is skew symmetric. So, first four rows and column of these matrices 

are eliminated. The remaining one, we will write it separately. 
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So, this is the reduced form of the equation of motion after boundary conditions. We can 

able to see corresponding to node 2 only. We have the field variable corresponding to 1 

have been eliminated. So, this is the reduced form of the mass matrix, gyroscopic matrix. 

Still it is skew symmetric.  



 
 
This is also asymmetric. This is symmetric. So basically, the form of this matrix is M eta 

double dot. That means this vector minus omega gyroscopic matrix eta dot. So, single 

derivative with respect to time and this is stiffness into eta is equal to 0. So, you can able 

to see this particular equation is having this form, in which now because of gyroscopic 

couple, we have additional term which is coming here. 
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This particular when in the equation of motion, we have the field variable, first 

derivative term. Then the Eigen value problem, which is there earlier will no longer be 

valid. We need to convert this particular equation of motion in a standard eigen value 

problem that is the state space form. So, let us see how these particular equations of 

motion in which there are certain terms are also there. How we can able to convert into a 

standard Eigen value problem.  

So, this is the state space form we will be converting. Basically, at present our equation 

of motion is in that is second derivative with respect to time. In the state space form, we 

need to convert this equation into the single derivative terms. So obviously, the number 

of equations will get doubled. But, derivative with respect to time will reduce by 1. So, 

let us see how we can able to do it. So, let us define the eta dot as V vector. If we 

substitute this in the equation of motion, we can able to see this will be M V dot. So, we 

will be having MV vector V dot because acceleration can be written as V dot minus 

omega G. 



 
 
This can be written as V because this is a velocity plus K eta is equal to 0. Now, I can 

able to express this in terms of V. So, that means I need to put all these in the right hand 

side. So, that means this will be equal to this; will become negative. This will not be 

there. Then, I need to do the inverse of M throughout. So, I will get this expression; so 

omega inverse of M into G into V minus M inverse into K and eta. Now, this equation 

and this equation is required equation of motion. Now, you can able to see this equation 

and this equation. Now, they are single derivative terms.  

But, number of equations will get doubled because earlier whatever the size of the eta 

was there. Now, we have this is also eta dot. So, the number of equation got doubled 

here. These two equations may can able to club like this. So basically, this particular 

equation is we have clubbed this. So, you can able to see h we are defined as eta vector 

and V vector. So, you can able to see that and once we are stacking this two, one over 

another; this will be h dot. That means velocity of these two. D will be this form. So 

basically, you can able to see this is in one vector.  

This is identity vector. This is the term which is corresponding to this. Sorry, this is 

corresponding to this one. This gyroscopic term is corresponding to this one because this 

is velocity term and this is eta term. So, that is in the second place. So, it is coming this 

side and this one. So basically, if we expand this equation, we will get these two 

equations back. So, this is the standard Eigen value problem now we have. 
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The solution of this; we can able to assume is some amplitude and e lambda t where 

lambda is an eigen value. So, if we substitute this because only single derivative is there 

in the previous equation, we will get lambda h naught is equal to D h naught, which we 

can able to pick. We can bring in one side take and we can take the amplitude as 

common. So, basically, this is the higher standard eigen value problem, where if we 

obtain the eigen value of D matrix; we will get the eigen values, m number of Eigen 

values. 

Basically in this particular case, because we do not have a damping in the system so 

basically, this particular Eigen value should have real part plus imaginary part. The real 

part is corresponding to damping. Imaginary part is corresponding to natural frequency. 

Because there is no damping in the system, so we expect this real part will be 0 because 

this is corresponding to damping. Even we have velocity dot term in the equation of 

motion but that is due to the gyroscopic couple which is not a damping.  

So, this we will find that eigen value will be pure imaginary. The magnitude of that 

particular term will be the natural frequency of the system. So and obviously, we will get 

any complex conjugate form. But, they will be pure imaginary Eigen values. In case 

when we do not have the gyroscopic couple, so we will find that we will get two pair of 

same complex Eigen values. Their magnitudes will be same if we are not considering the 

gyroscopic couple. But, if we consider the gyroscopic couple, what will happen among 

these two.  

One of the magnitudes of the Eigen value that is the imaginary part will be reduced 

value. Another will be having some higher value. So, one will be alpha plus that is let us 

say, higher value alpha minus super script is lesser value. So, if this is the condition, so 

that will be alpha will be in between. But, alpha plus will be more than this and this will 

be less than this. So basically, what is happening when we are considering the 

gyroscopic effect? This natural frequency, which is corresponding to two different planes 

because once we are not considering the gyroscopic couple, these two plane motions are 

uncoupled. 

So, we expecting two planes the natural frequency will be same. But, once we have the 

gyroscopic couple because now the two motions are coupled, so we will not be having 

the concept of the natural frequency in horizontal plane and vertical plane. But, we will 



 
 
be getting a system natural frequency which will be basically splitting with respect to 

this. So, we will be getting, having the splitting phenomena of the natural frequency 

because of the gyroscopic effect. One will be less than this. Another will be more than 

that. The lesser one will coordinate backward whirl. The more one will coordinate as the 

forward whirl.  

Now, through a simple example, let us see this particular illustration. How we can able to 

obtain the Eigen values and from there how we can able to get the natural frequency of 

the system? Even we will see the eigen vectors, how what is the form of that and how we 

can able to extend the eigen mode shapes from that. 

(Refer Slide Time: 23:58)  

 

So, basically we have, we are taking the same cantilever shaft and with a disc. Various 

properties are given here. So, even we have given all the property a mass, stiffness. In 

this, basically we need to obtain the Campbell diagram and obtain the critical speeds. If 

these are the property of the shaft and initially we are taking the single element for 

illustration purpose. But, we will be showing the results for more elements. So, these are 

the property. 
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So, these we can able to calculate based on the data given.  
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Now, the elemental equation; so this is the elemental equation. Basically, this is the 

directly, we are, we have taken the reduced form of the equation of motion. Because in 

the previous discussion, we have already shown that how we can able to apply the 

boundary condition. How we can able to get the reduced form of the equation of motion? 

So, this is directly, we are using that particular expression, in which we already applied 

the boundary condition.  



 
 
So, corresponding to node 2 only, we have the field variable 1 corresponding to 1 already 

eliminated because of the fixed end boundary condition. So, this is the reduced form of 

the equation of motion, which is of the form of M eta double dot minus omega G eta dot 

plus K matrix into eta is equal to 0. So, this is the final form of the matrix. Now, if we 

want the state space form of this, we can able to write like this where D is this matrix. 
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So, we need to multiply all these matrices to get the D matrix. Now, you can able to see 

that D matrix will be double the size of the K matrix. K matrix is 4 by 4. So, D matrix 

will be 8 into 8 and whereas the state vector variables are given like this corresponding 

to node 2, only they are appearing. 
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Now, this mass matrix gyroscopic matrix K matrix in the reduced form; we earlier wrote 

it. So, this is the same one. So basically, we will be multiplying and will be because the 

size will be bigger. So, I am not showing this. But, these matrices we can able to 

substitute. We can generate the D matrix; from for which we can able to obtain the eigen 

value. If we are operating at 0 speed that means gyroscopic couple will not be there.  
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G matrix will be 0. In that case, the earlier standard eigen value problem itself will be 

valid because gyroscopic term is not there. That eta dot term is not there. So, whatever 



 
 
the eigen value problem was there earlier; that is valid. In that case, this eigen value will 

be square of the natural frequency. But, in the state space form, that is equal to the 

natural frequency.  
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So now, I am giving directly the natural frequencies. So, this is the variation of the whirl 

frequencies we will be showing in the tabular form how this has been extracted. So, you 

can able to see this for a single element. So, we are getting here. We can able to see as 

we are increasing, the speed slight splitting of the natural frequency is taking place. So, 

one is corresponding to the forward whirl the lower one is corresponding to the 

backward whirl. This is more predominant splitting in the second this one.  

So, we can able to see. This is the forward whirl. So, initially where 0 split is there; there 

is no splitting. But, as we are increasing the speed the splitting is more. So, this is 

forward whirl. This is a backward whirl. This particular line is the line. The spin speed is 

equal to the natural frequency. So, wherever this line will intersect the curves, they will 

be the critical speed. So, here we will be having critical speed corresponding to the 

forward whirl and backward whirl. Similarly, here we will be having corresponding to 

the backward whirl.  

But, we found that for second, there is no intersection. So, the second natural frequency 

is not feasible. This phenomenon we already seen while discussing the gyroscopic 



 
 
couple; that this gyroscopic couple certain form of critical speed is not feasible for the 

discrete system. 
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But, the same thing if we obtain for more number of elements because we can able to 

divide the shaft into more or number of element; we can able to get the natural 

frequencies more accurately. So, this lower whirl is corresponding to the first forward 

and backward whirl. This is second; this is corresponding to the second whirl. In this 

particular case, as we are increasing the number of elements. Now, because shaft modes 

are also coming into the picture; so basically now the shaft is having consistent mass 

matrix. So, these even for the second mode; now, we are getting the intersections. But, 

we can able to see that the third mode.  

Now, it is more. This t, this curve is more straight. So and likely, this will intersect that 

for particular mode. So, this is we expect the more accurate because of more number of 

elements we have chosen. We can able to see these are corresponding to the 0 speed. So, 

there these all this curve meet. But, as we increase the speed, the splitting is more and 

more. So basically, this is a Campbell diagram. 
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So, now let us try to summarize this. So, critical speed this is without gyroscopic couple 

that means when the speed is 0. For element 1, we want this. For element 20, we want 

quite close value. But, for second there is a difference. But, we expect this will be more 

accurate. For 1 element, we could able to get even third mode. But, if you take more 

number of elements, we can get the third mode critical speed also. This is with the 

gyroscopic effect for element 1 and element 20, number of element 20 y. So, in this 

splitting was there.  

But, we can able to see small splitting is there and always it this will enclose the value of 

this 1 because you can see one is less than another is more than this. When we took one 

element, there was no intersection of the second forward as we have seen in the graph. 

Only the backward second was present and higher we are not getting because only one 

element was there. For more number of elements, we are getting intersections. You can 

able to see they are increasing these particular values, so because splitting will take place 

around this. Similarly, for this is the splitting; so one will be lower than this and another 

will be higher than this.  
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This is the mode shape. So, this is the amplitude of their mode shape, because eigen 

vector also we will be getting as complex. But, only real part or imaginary part will be 

there. If you take the amplitude and plot it with respect to the shaft length, this will be for 

first mode. This is for the second mode and higher modes also we can able to plot it. 
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Let us see that how a eigen value generally we will get it. So, this is for one element. So, 

we can able to see that for one element. Then, we are considering the very lower speed 

that is the omega nearly 0, so you can able to see the eigen values. Four sets of eigen 



 
 
values are same. So, these are complex conjugate. But, another set is there having same 

value. So as we discussed, we will get two sets of similar eigen values. They will be 

same magnitude. This is because the coupling between two planes is not present. But, so 

this is for high speed. 
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So, for high speed, we expect that now this eigen value. So, this is one complex 

conjugate this is another. Now, they have different values. We can able to see one is less 

as compared to the previous one and another is a more. So basically, the splitting of the 

natural frequency is taking place. So, we can able to see that it was 1927. Now, one of 

the pair has smaller value another is a higher value. So, as we discuss earlier, so we will 

get one is the less which will be higher than the without gyroscopic couple. This will be 

higher and this will be lesser. So, one is higher. 

This is higher and lower one is this one. If we see the eigen vector, so you will get 

because the reduced form of the eigen vector had this form. The state space form of the 

eigen value had 8 by 8 size that means we had staking of this eigen vector is eta and eta 

dot. So, the eight values of the eigen vector these are very small. Some of the values are 

shown here. That is more important. So basically, corresponding to one eigen value; we 

will get 8 number of eigen vector for one element and staking will be first four will be 

this. Next four, will be velocity of these. 



 
 
So now, we can see that here, first is the horizontal displacement. The third is the vertical 

displacement. First is horizontal displacement. Third is vertical displacement. Now, you 

can able to see because they have 90 degree phase difference. So, they are like this. So 

basically, if we multiply minus j with this, we will get this. This is because they are 

corresponding to two different planes; one is horizontal plane vertical plane. They have 

90 degree phase. So, we expect them to be 90 degree phase. Then, Eigen vector also. 

Another observation is we are getting the purely either imaginary quantity or real 

quantity because there is no damping in the system.  

So, that is why we have this particular typical behavior of the eigen vector. But, when we 

will consider the damping especially like, fluid film bearing; we will see that both 

quantity will be complex. Then, plotting of the mode shape will be more difficult in that 

case. Now, we will take up another case, in which we will be mounting a flexible rotor 

on fluid film bearing. Through one example directly, we are explaining how the fluid 

film bearing elemental equation can be clubbed with the finite element equation of the 

shaft system.  

As we have done in the previous case, this gyroscopic coupled matrix. We developed 

separately and we clubbed with the finite element original shaft elements. So likewise 

only, we will be developing the equation of motion for the bearing separately. Then, we 

will club with the elemental equation of the shaft. 
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So, for this we are considering a simply supported shaft like this.  

(Refer Slide Time: 37:28)  

  

This is flexible shaft. In this particular case, we will be considering the Euler-Bernoulli 

beam model. So basically, we will be treating this as finite. We will be discretizing. This 

will be one element for illustration. But, we can able to increase the number of elements 

using. These bearing are basically fluid film bearing. They each of them are described by 

four stiffness and four damping torques. So, total eight properties are there for each of 

the bearing. So, we have coupling of the motion in both the plane because of this 

particular fluid film bearing. 
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The properties of these bearings are given here. So, let us say left hand side bearing is A. 

So, this is the property and bearing B this is the property. In the subsequent class, we will 

explain how we can able to get this property for a typical fluid film bearing especially, if 

we have some kind of approximation like shaft bearing approximation. So, this is the 

various other property of the shaft and metallic property of the shaft. So, for illustration 

we will show only one element. But, that can be extended for high level high elements. 

Now, let us see how we can able to model this. 



 
 
(Refer Slide Time: 39:07) 

 

So, we have taken one element. So, this is the shaft element in one of the plane because 

now, both plane motions are coupled. So, only one element we have considered. So, 

similar to the gyroscopic couple case, we need to write the elemental equation for both of 

them. Then, we can combine them in the two planes. 

(Refer Slide Time: 39:32) 

  

So now, let us take the bearing model. So earlier, we know that the bearing fluid film 

forces in horizontal and vertical direction. For one of the bearing, we can able to express 

like this. These are the property of the stiffness or damping and stiffness of the bearing. 



 
 
Now, this we can able to expand like this because this is for node 1. Bearings, we have 

defined in terms of the linear displacements only. So, we are not considering their 

stiffness and damping because of the tilting of the disc tilting of the shaft. Only the linear 

motion we were we generally consider.  

So, if we introduce the tilting also, so corresponding terms will be 0. So basically, we 

expanded these equations in the 4 by 4 by introducing some variable. So basically, if we 

multiply these four equations finally, we will get this only. So, this is the expanded form 

of this for node 1. So, it is for bearing 1. On the same line, for bearing 2, we can able to 

write. Only thing with the bearing property, the superscript is representing the. So, this is 

representing the bearing 2. It is not the square. If we expand this, we will get similar to 

the previous one. Only thing is here, subscript is coming. Here, free variables are 

corresponding to node 2 because this is attached to the node 2. These are the fluid film 

forces. 
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Now, governing equation for the both the bearing. So, what we have done? We have 

combined both bearing equation motion. Now, you can able to see the staking of the 

vector is for node 1 and node 2. So basically, for node 1, we have the first four this 

equation. For node 2, this was the equation. These two are the null matrices. Similarly, 

for stiffness the first four rows and columns are corresponding to bearing 1, which is 

multiplied by this. The last four row and columns are corresponding to the node 2. These 



 
 
are the bearing forces at node 1 and 2. So, this is the equation of motion for bearing 

alone of both the bearing. 
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Now, we can able to; now, this is the equation of motion for the shaft alone, so you can 

able to see. Now, we have clubbed the two plane motion as we did for the gyroscopic 

case. So, this is the mass matrix. This is the stiffness matrix. These are the reaction shear 

force and binding moment. So, this is the equation of motion of element of the shaft. 
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Now because both the equations are having similar staking of the free variable; now, we 

can combine them. So basically, this is the mass matrix as we had earlier. This is the 

bearings damping terms. So, you can able to see just we have added because now order 

of these free variables are same as this one. So, we added this. Similarly, the stiffness of 

the shaft as well as of the bearing, we have combined here. 
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So, you can able to see contribution of the bearing to the shaft element stiffness are 

these. So, these are the contribution from the bearing 2 and these are from bearing 1. So 

basically now, we could able to get. These bearing forces will obviously cancel the shear 

force because once we have at the end of the shaft.  

Once we are joining the bearings, there will not be any net force there; moment will be 

there. But, net force will not be there. So, they will cancel each other. So, these terms 

will get cancelled to each other. Bearing force and the shaft projection force, they will 

cancel each other. So basically, if you see this equation of motion is now basically of this 

form.  
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Here, because this is a free end, so moment will also be 0 here. So, you can able to see. 

These are also 0 because it cannot, the bearing cannot resist any moment. So, this 

moments are will also be 0. So, this is the form of the equation of motion. So, now as 

compared with the previous case earlier, it was minus omega minus omega G was there 

for gyroscopic couple case. Now, in place of that, C has come.  

So, the straight space from formulation will be exactly same. Only thing will be, in this 

particular D matrix that minus omega G will be replaced by C. So, this will become 

positive. Omega will not be there and C. So, C is now a damping matrix. It is not the 

gyroscopic matrix. The eigen value now, we expect to be complex. Even eigen vector, 

we expect to be complex in this particular case. 
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So, the complex eigen value of e be of this form; both real part and imaginary part will 

be there. Second will be corresponding to the natural whirl frequency; the real part will 

indicate the damping in the system at a given speed. It is associated with each whirls 

frequency; so because this damping will be corresponding to that particular natural whirl. 

If bearing properties are changing, the speed, so they will change with the speed both. 

So, for this present illustration, we have not taken the bearing property as a speed 

dependent.  

We have taken this property as constant. So, and from this real part, we can able to 

define a logarithmic decrement like this which contain both alpha and beta. So, and 

negative sign is there. So, that means if this is 0, more than 0, positive then, system will 

be stable. If it is negative then, system will be unstable. So, in the subsequent, we will be 

seeing this stability aspect in more detail. But, with the finite element formulation of the 

state space form, we can able to adjust the stability of the system directly using the 

logarithmic decrement.  
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Now, this is the natural frequency and logarithmic decrement which we have obtained. 

So basically, we have solved the D matrix because we know the D matrix completely; 

mass stiffness, damping matrix. We have obtained the eigen value and eigen vector of 

that. Using the imaginary part of that, we got the natural whirl frequencies of the system 

and from the real part and the imaginary part.  

By the definition of the logarithmic decrement, we could able to get this. Here, we can 

able to see all are positive that means system is stable for all the frequencies. It is not 

unstable, but you can able to see that gradually those are decreasing. These damping’s 

are very high, may be because of whatever the bearing property was taken; is because of 

that. So, but at higher speeds, we are having low logarithmic decrement.  
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Now, just to compare how the if in case of fluid film bearing, if we have simply 

supported end condition like we consider the fluid film bearing; if it is simply supported 

end condition. So, what will be the change in the natural frequency? So, you can able to 

see with fluid film bearing basically the value of the natural frequency got decreased. So, 

this is just comparison of two boundary conditions.  

So, if we want to model the same system, which is actually mounted on fluid film 

bearing by a simply supported condition; we can able to see how much difference will be 

there in the prediction of the whirl frequencies. In the previous shaft model, using Euler-

Bernoulli beam, we did not have the damping. So, let us see some simple damping model 

which we can able to consider. 
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So, this is a proportional damping. So, in this particular case earlier, we had this 

elemental equation for mass stiffness. Now, we want to add the damping also in the 

system. So, this we can able to in the proportional damping. We can able to write the 

damping in the terms of mass and stiffness proportional to mass and the stiffness. There 

are some constants. Rayleigh’s damping factor, this M, M1 are defined like this. So, for a 

particular mode, let us say, nth mode, this is the damping ratio.  

This is having a constant. This is a natural frequency. So, if we are interested in certain 

frequency range; so we can pick up that two natural frequency within which we want to 

analyze the system. So, let us say one is the m th mode, another is the nth mode. If you 

write this for m th mode and nth mode, we will get two equations that can be written like 

this. Now, we can able to see, we can able to get the a by inverting this matrix. 
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So, if we know the natural frequency of the system a, two frequencies within which we 

want to operate over system and damping ratio; if we can able to obtain corresponding to 

that mode then, we can able to obtain the a naught and a 1. So, that only damping ratio 

we can able to get through the experiment with relatively easy as compared to the 

damping matrix itself. So, once we get this, we can get the a naught and a 1. 
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Then, our C matrix is defined. So, this generally we will use it if we want to introduce 

some kind of damping in the system to have more realistic analysis of a rotor system. So, 



 
 
this particular damping is at the shaft damping itself. But, it is proportional to mass and 

stiffness. Today’s lecture, we first started with the gyroscopic couple of a disc; how we 

can able to incorporate infinite element formation. As such, we did not consider the 

gyroscopic couple in the shaft itself because we need to have attenuation beam model for 

that. Till now, we have only considered the Euler Bernoulli beam model. 

So in that particular case, when we considered the gyroscopic couple of the disc, we saw 

that the two plane motions were coupled. The whirl frequency was depending up on the 

speed. For applying the critical speed of the system, we need to obtain the campbell 

diagram. Then we saw how we can able to incorporate the fluid film bearing model into 

the equation of motion of the rotor bearing system. In this particular case, we saw that 

coupling of the motion in the two planes.  

Also, the eigen value and eigen vector were more complex specially, the eigen value we 

have seen that, it become complex. Not only we have the natural frequency formation, 

but also damping in terms of the logarithmic decrement. We can able to adjust the 

system stability. Then we took one simple Rayleigh damping model, which generally we 

can able to use it if we want to introduce some damping into the shaft model so that we 

can have more realistic analysis on the rotor system.  

Now, with this we will be completing our analysis of the transverse vibration of the rotor 

bearing system. Now, in the subsequent class, we will study the instability in the rotor 

system. We will see that various sources of instabilities are present in the system. We 

will see in more detail of this in the next class. 


