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Previous lecture we started finite element formulation for transverse vibration. We could 

be able to develop the elemental equation with the help of the governing equation related 

with the Euler-Bernoulli beam model. Now, in today’s lecture we will try to take up 

some numerical example. So, that the method of finite element method is more clear, 

specially the assembly of the equations, application of the boundary conditions, how to 

solve the Eigen value problem to get the natural frequency and mode shape? Even the 

force response for a given unbalance into the system. Then, if time permits we will go 

for calculation of the proportional damping.  

Generally, in the Euler Bernoulli beam model there is no damping terms. So, generally 

your Rayleigh’s damping is considered in the finite element method and some reduction 

techniques in which we can be able to reduce the degree of freedom of the system, if it 

becomes large to solve the Eigen value problem. So, with this, let us see what are the 

things we will cover? 
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So, basically we will be focusing on the transverse vibration only by a finite element 

method, both free and forced vibration numerical problems. We will be taking up even 

the unbalance response. We will be obtaining proportional damping and some kind of 

reduction schemes. We will try to discuss in this present lecture. So, we will take up 1 

example. 
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In this particular example, basically we have 1 beam or a rotor or a shaft. In this 

particular shaft we are considering the shaft property, both mass and stiffness, which is 

distributed over the length of the shaft. That means the shaft is having enough inertia 

property. We are considering simply supported end conditions for analyzing and for 

illustration purpose I have divided this shaft in 3 elements. We could have divided into 

more number of elements to get more accuracy, but for showing the matrices for 

elemental and assembled, this 3 element model will be more meaningful. 
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So, for this particular rotor we have all the property including the diameter of the shaft, 

length of the shaft and property of the material of the shaft. Basically we need to obtain 

the natural frequency. Once we will develop the assemble equation and apply the 

boundary condition as I mentioned, we can be able to take more number of elements to 

get better accuracy in the results. So, we will see that if we increase the number of 

element, how this natural frequency converges close to the actual values.  
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For this particular simply supported case, we have already obtained the continuous 

system closed form solution. So, we will try to compare the results with the closed form 

solution of the finite element method. So, with this given property we can be able to 

obtain further property, like area, second moment of area of the shaft and for the beam 

value we will be obtaining the mass property. So, this will be requiring for the mass 

matrix and this will be required for the stiffness matrix. 
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So, for element 1, this is the elemental equation. So, for element 1 we have node 1 and 2. 

Correspondingly, these are the nodal displacements. This is the mass matrix. This we 

already calculated earlier for the mass. This is stiffness matrix and this is the reaction 

force and moment. So, we are not considering any external force. So, that particular 

vector is 0 here. So, this is the elemental equation for element 1. 
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On the same line we can be able to obtain equation for element 2 and 3. In this, because 

the size of the element is exactly same, so mass and stiffness matrix will be exactly same 

as the previous one. Only, the nodal displacement vector, here 2 and 3 will be there and 

here 3 and 4 will be there for element 2 and 3 respectively. Similarly, here these are the 

reaction forces and moment of the element 2 and 3. So, once we have obtained the 

elemental equation for all 3 elements we can be able to assemble them. 
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Now, assembly we have already discussed in detail in torsional vibration also and for this 

case also. So, I am not giving more detail of the assembly procedure, but you can be able 

to see that this particular vector will now contain all the degree of freedom of the 

element. So, we have corresponding 4 nodes because each node is having 2 degree of 

freedom. So, this vector is having size 8 into 1. So, mass matrix is having size 8 into 8. 

This is symmetric. So, only 1 portion of the diagonal terms have been shown because 

this is symmetric.  

Similarly, this is stiffness matrix. This is assembled stiffness matrix in the reaction force, 

the sheer force and bending moment at the common mode, that is 2 and 3, where this 

reaction force and moments will cancel each other. These are at mode 1 and 4 and they 

will not be 0 and that will be specified by the boundary condition of the problem because 

node 1 is simply supported and node 4 is simply supported. So, displacement at this 

locations will be 0. 

The bending moment also will be 0 at these nodes. So, we have this displacement 0. It is 

a boundary condition of the simply supported case. Also, these bending moments are 0. 

Now, we can be able to see that in this particular right hand side vector, the first term and 

the seventh term is containing the reaction of the support that is unknown. So, among 

this we will be eliminating, the first and the seventh row equations. So, basically you can 

be able to see that we will be having in this mass matrix, we will be eliminating the first 

column and first row. Similarly, in the stiffness matrix first column and first row, we will 

eliminate and seventh column and seventh row we will eliminate here. So, remaining 

terms will be carrying into the reduced form of the assemble equation. 



(Refer Slide Time: 08:44) 

 

If we see the next equation, this is the reduced form and this is the form because we have 

eliminated already 2 rows and 2 columns. So, this will be instead of 8 into 1, now 6 into 

1 will be there. The mass matrix will be 6 into 6. Similarly, stiffness matrix will be 6 into 

6. This vector is also 6 into 1. Because we have eliminated the equation corresponding to 

the reaction force at the support, that is the sheer force. So, those term and this factor will 

be 0. Because deliberately we eliminated them in which we had the unknowns in the 

right hand side, now we can be able to see this particular equation. 
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For simple harmonic motion, we can be able to write like this. Basically, we have 

already seen this kind of conversion. So, we have this kind of equation. For simple 

harmonic motion, x double dot can be written as this, where omega n f is the natural 

frequency of the system. So, if we substitute this here, we will get the form of the 

equation like this and this is the basically that particular form in which this is the mass 

matrix. This is minus omega squared n f. This is the k stiffness matrix. So, this is 

stiffness matrix. This is mass matrix, so this equation is of this form basically. 
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Because this is a homogeneous equation for non trivial solution of this, we need to have 

determinant of this equal to 0 or what we can do if we can able to convert this into Eigen 

value problem. So, here we had multiplied by k inverse here throughout. So, basically we 

got k inverse into m minus this. Also, k inverse into k inverse will give the identity 

matrix into mu. This is not equal to 0. So, basically this k inverse, where 2 m, I am 

writing as a matrix. I express this as lambda. So, this is the standard Eigen value 

problem. So, if we have obtained the Eigen value of a matrix, the square root of that, you 

give as the natural frequency and Eigen vectors will be the mode shape. So, let us see in 

more detail the calculation of that. 
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So, if we obtain the Eigen value, this is for the 3 element which I have shown the 

illustration. So, if we take the Eigen values square root, we will get the natural 

frequencies. So, these are the natural frequencies for first mode, second, third, fourth, 

and fifth. If we do the same exercise for 6 element, generally for this, maybe we need to 

program the assembly of the equations in a computer, so that we can be able to increase 

the size automatically.  

Just we need to change the number of elements and the program should able to take care 

of the how we should assemble the equations, if the number of elements are more. How 

to apply the body condition, that should be incorporated in the program. So, if it is 6 

element, then these natural frequency will be this. So, we can be able to see the first, 

second is close, but third there is a difference, fourth also there is difference and there is 

also lot of difference in the fifth. So, that means with 3 element whatever the natural 

frequency we are getting up to fifth mode, they are not accurate, but up to second mode 

they are reasonably, okay? 

If we want to find out whether 6 element is enough or we need to have more elements. 

So, let us take 10 elements. If we take 10 elements, we will see that third is now 

reasonably okay, not much change. Fourth is also not much changed, but fifth there is a 

still change. So, that means 10 element is still giving a better natural frequency. The 

calculation for fifth mode and even for fourth, there is a slight difference. Generally, we 



will find that if we are taking more number of element, whatever the natural frequency 

we will get that will be more accurate. So, just to test whether these are accurate, take 50 

elements.  

So, we can be able to see now up to fourth element. I think with fourth mode up to tenth 

element itself, we have got that there is slight improvement in the fifth mode as 

compared to the tenth element. So, with 50 element we could be able to get quite 

accurate results up to the fifth mode, but let us compare this with the closed form 

solution because that is what we obtained in the previous lectures using the continuous 

system approach. Using separation of a variable method also, we obtain closed form of 

this and with that these are the values. So, you can be able to see that with 50 elements 

we could be able to get quite accurately the natural frequency calculation up to fifth 

mode.  
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So, this was the analytical expression for the natural frequency where and 1, 2, 3 and 4, 

we can be able to substitute and get the natural frequencies. So, basically natural 

frequency is given by this. For simply supported beam case, we need to put 1, 2, 3 and 4 

one by one here to get the closed form or analytical solution of the this particular 

problem. Now, once we obtain the natural frequency, let us see how we can get the mode 

shape.  
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So, in mode shape basically because we will be getting Eigen value as well as Eigen 

vector, if we are using any software for this, so Eigen vector stacking will be like this. 

So, the first column of the Eigen vector whose Eigen vector will be for 3 element, the 

size of the Eigen vector matrix will be 6 in to 6. The first column of that is this particular 

values and the corresponding variables, if you see which we got after the application of 

the boundary condition in the equation of motion. 
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So, we apply the boundary conditions. This is the reduced form of the equation. So, this 

order, this vectors and this particular field variables are corresponding to the Eigen 

vectors which we are getting. 
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So, you can be able to see that the first column of the Eigen vector matrix will belong to 

this particular field variables. Similarly, for the second column if we want to obtain the 

first mode shape of our translational displacement, so obviously we need to pick up the v 

2 and v 3. So, correspondingly we need to pick up this term and this term for linear 

displacement. Others are corresponding to the slope, but if we want the mode shape 

corresponding to the translational displacement. Obviously, we need to pick up these 2. 

So, this we have picked up v 2 and v 3. Here, we already know at node 1 and 4 that 

because it is simply supported and condition the displacements are 0, so that we can 

adopt here. 

So, now we can be able to see that for 3 element, only 4 nodal displacement informations 

are there. With this, if we plot the mode shape we may not get that much accurate, but if 

we want to plot this we will see that at node 1 and 4, it is 0 and for 2 and 3 is some value. 

So, in between this we can be able to join or we can be able to predict the displacement 

using shape function. So, shape function is cubic in nature. So, we will get something 

like this for first mode, but only these are intermediate points. We know from the finite 

element method in between that we need to predict using shape function. So, this is for 



the first mode, for second mode, the second column, we need to pick up. So, 

corresponding this and this we need to pick up. 

So, in this we can be able to see this is negative, this is positive, or this is 0. So, if we 

want to plot the mode shape, this 1 and 4 are 0. This is, let us say negative at element 2, 

node 2 and for this is positive in between, we will be using the shape function. So, we 

expect the mode shape like this, but for plotting the mode shape it will be better if we 

take more number of elements and get more intermediate points. But, this for illustration 

purpose here, I have shown with 3 element how to pick up these Eigen vectors variable 

for translational displacement for mode 1 and mode 2. 
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If we want to plot the slope, corresponding to the slope the mode shape, then we need to 

pick up that we can be able to see this, this, this and this corresponding to 4 nodes. We 

will get the slopes, these are corresponding to that they can be drawn separately. This is 

for the first natural frequency corresponding to the first natural frequency and this is 

corresponding to the second natural frequency.  
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This mode shape you are plotted for more number of elements, so we can be able to see 

that the first mode is this one. So, this is not for 3 element. We took more number of 

elements and we have drawn. So, this half sign we can be able to see for first mode, then 

second mode is full sign. This is full sign second mode. Similarly, third mode will be this 

one and half sign. Similarly, four five mode shape can be identified. So, here if we take 

more number of element, if we use shape function we will able to get better mode 

shapes. Basically, we can be able to see that this is 0 line.  

The modes are varying between the 0 and 1. If we draw this line, we will see that this 

line will intersect the mode shapes at various positions. Those are nothing, but the node 

positions where the displacements will remain 0. As we have already seen in the 

torsional vibration case also, this nodal positions are more critical. Even the 

displacements are 0, but stresses will be more and at these locations this is corresponding 

the slope variation for mode 1, 2, 3 and 4. 
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So, we can be able to see this is first mode, second mode. This is the slope variation. As 

we have seen that the previous Eigen vector contains not only the linear displacement, 

but also the slope. So, that can be extracted and this slope variation along the length of 

the beam can be seen. Basically, this horizontal excesses representing the length of the 

beam and this the amplitude of the displacement because mode shapes are always 

relative. 

So, this we have scaled up scale to a nice number like 1 and minus 1 and this is the 

length of the beam. Through a very simple example, with 3 element we illustrated that 

how we can be able to calculate the natural frequency and how we can be able to abstract 

the mode shape. Now, we will take up some more examples. Especially while dealing 

with the transfer matrix method, we saw that when there is an intermediate support in the 

rotor system, then we have difficulty in solving such system. So, let us see in finite 

element method, if there is intermediate support in the rotor system how we can be able 

to handle that particular case.  
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So, this particular case example is exactly same as we did in the transverse vibration 

case. So, this is an intermediate support and this is basically simply support and this is 

overhung portion of the rotor. The various properties are given here such as mass, 

diametric mass moment of inertia of the disk, various lengths of the shaft, diameter of the 

shaft and the mass and elastic property of the shaft. We are not considering the 

gyroscopic couple effect. 
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So, in this particular case again for simplicity we are dividing in to 2 elements. So, this is 

the first element and this is second element. Corresponding, we have 3 nodes and now 

we are writing elemental equation for element 1 and element 2. So, this is a standard 

mass matrix and stiffness matrix for Euler Bernoulli beam element or this will be using it 

for obtaining the elemental equation. So, basically we are considering the mass of the 

shaft also along with the mass of the disc. 
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So, various property we can be able to calculate area, certain moment of area from the 

given data for element 1 because the dimensions are given. So, this is the elemental 

length and now this is the elemental equation. 
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Basically, this is a mass matrix, this is stiffness matrix and this is the reaction torque. In 

this particular case we are not considering any external force. So, now we can be able to 

see that apart from the mass of the shaft, the mass of the disc, this is corresponding to the 

mass of the disc and this is the diametric mass moment of inertia of the disk. Because, 

that particular disk is at node 1, so at diagonal terms they are appearing rigid diametric 

mass mode of inertia of the disk. So, at node 1 they are appearing, but not at node 2. So, 

this is for element 1. 
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Similarly, for element 2 because element length is different, so it will be having property 

like this. In element 2 there is no concentrated mass. So, mass matrix, stiffness matrix 

will be like this. In this particular case reaction, this is the reaction torque. Reaction 

forces arise from this because once we take out the shaft from the support there will be 

reaction from the shaft or reaction from the bearing. This reaction from the bearing and 

this particular shear force, they are different. This is coming because we have cut the 

shaft in 2 piece; that is why it is coming.  

If we join 2 shafts this will cancel because this is at the common node, but this will 

remain because this is coming from the bearing. So, this is important to see how to 

handle the intermediate support that we need to add the reaction force from the support 

which is unknown as external force because this is not giving moment. So, it will not 

come here, it will come in the node 2. In this position only now we obtain the elemental 

equation from 1 and 2. Only 2 elements, we have considered. Now, we can be able to 

assemble them. 
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So, once we assemble them this is the mass matrix we can be able to see them. The total 

degree of freedom of the system is 6. So, field variables are via 6 size of this factor. It is 

6 in to 1. The mass matrix size is 6 in to 6 and stiffness matrix 6 in to 6. So, you can be 

able to see intermediate reaction force. The moment will cancel each other, but this 



bearing reaction will remain there, now you can be able to see. Now, this is ready for 

application of the other boundary conditions, that is at node 1 and 3. 
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So, let us see what are the boundary conditions at node 1. So, the shafts node 1 is this 

one. Here, we know that shear force and bending moments are 0. So, this is at node 1. At 

node 2, we have displacement 0 because, this is a support and at node 3 here not only the 

displacement, but moment is also 0. In this particular support, the moment is not 0 as 

said. This is not a simply supported condition. That is why the moment is not 0, but so 

this is very important to observe the difference between these 2 support conditions.  

This is because in this the right hand side there is no further extension of the shaft. So, 

the moment on this bending moment is 0 and because of that this we are getting it, but 

here this shaft is continuous. So, as such there will not be 0 bending moment at this 

location. Now, let us apply this boundary conditions into the previous problem. 
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So, we have bending moment and shear force. Bending moment at node 1 is 0. At node 3 

bending moment is 0, v 2 is 0 at support and v 3 is zero at second support. So, that means 

once we apply this boundary conditions. Now, we need to look into the right hand side, 

so in right hand side those terms in which we have zeroes only we will be picking those 

equations. For first equation, second equation, third is having one unknown. So, we will 

eliminate this particular equation. From the reduced form of the equation, this will be 

picking up there is unknown here. 

So, basically we will be removing the third equation and the fifth equation from this and 

the remaining equations will be keeping with us. So, basically if you see the third row 

and fifth row will be eliminating from both mass and stiffness matrix, third row and third 

column and four fourth column and then corresponding rows also. This row and this row 

we will eliminate. This third row and fifth row we will eliminate. So, remaining terms 

we will see that will get eliminated. So, this is the reduced form of that. 
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So, reduced form will be this factor, will be 4 into 1 because we have eliminated 2 

variables here. Here, 4 into 4 size will be there. This is also 4 by 4. Now, this is ready for 

Eigen value problem solution.  
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Now, basically again we can be able to take up the inverse of K, so that we will get the D 

matrix. So, D is defined as inverse of M into K. So, this particular is you can be able to 

obtain the Eigen value of D matrix, which is M inverse into K. So, this will give us the 



Eigen value, Eigen vector square and the root of the Eigen value will give us the natural 

frequency. 
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So, in this particular case because we have illustrated with the 2 element, so with that if 

we calculate the natural frequency we will get this 4 natural frequencies. But, if we take 

more number of elements, let us say 20 elements, by dividing this into 20 elements ee 

will get the refined value of this. But, you can be able to see that the first natural 

frequency and second, with even 2 elements we are getting reasonably well, but third 

onwards we are not getting that much accurate. So, if you are interested in first few, then 

even 2 elements are good enough.  

From this we can be able to see, but it is always better to check how the natural 

frequencies are changing by increasing the number of elements. If there is not much 

change up to the mode we want, based on that we can be able to decide how many 

number of elements we should choose. So, this is called convergence study. In this we 

gracefully increase the number of element and see the change in the natural frequencies. 

If there is not much change in the natural frequency up to the mode we require, we stop 

the number of element at that position because if we increase the number of elements 

obviously computational time will be more and more. So, we need to have some kind of 

trade off between the number of elements and the computational time and the accuracy. 
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This is the mode shapes, the relative linear displacements as we discussed in the previous 

case on the same lines. We can be able to extend the mode, this mode shapes. So, you 

can be able to see the first mode basically, this is the intermediate support. This is the 

other support because this is the total length of the shaft. So, first mode is like this, disc 

position is here. Second mode will be like, this third mode is this one. Because this is 

support, so all the displacements are 0 here. So, you can be able to see that we can be 

able to get the mode shapes, the fourth mode shape. Then, we have interpolated in 

between using the shape function. That is why, in these curves the mode shapes are very 

smooth also.  

We normalize from minus 1 to 1, so that we can be able to comply these mode shapes 

easily. This is corresponding slope variation along the length of the shaft. You can be 

able to see at the support that the slope will not be 0. That is why, here there is a 

variation of the slope. So through very simple example of 1 intermediate support, I 

illustrated how the intermediate support can be handled easily. So, as compared to the 

transfer matrix method now we can be able to appreciate that the finite element method 

is quite convenient even for difficult boundary conditions. Now, we will take up another 

very simple example in which we will be obtaining the unbalance response. 

So, how to obtain the unbalance response? We will be taking up very simple example as 

we basically do. This example will be exactly same as we have done for the simply 



supported beam case, the only thing is now we will be adding the unbalance in the 

system. 
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So, in this particular case basically this is the similar simply supported beam. The only 

thing is that we are not keeping a disc here. For the illustration, again I have divided this 

into 3 elements and at node 3, I am keeping 1 disc and in this disc we will be keeping 

some unbalance. 
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So, let us see various properties, especially of the unbalance. So, unbalance is on 0.005 

kg at a radius at of 0.05 meter and the location of that unbalance with some reference 

position from the shaft, is let us say 30 degree phase. This is with respect to some 

physical reference mark from the shaft. Now, we need to plot the unbalance. That means 

the response with a speed. That means how this amplitude of the response at 1 particular 

location, let us say at the disc location, how it changes with speed? We expect that 

whenever there will be meeting of the speed with the natural frequency, there will be 

resonance there.  

We expect very high amplitude of vibration. Even we expect some kind of change in the 

phase information. So, not only we will be plotting the amplitude, but also we will be 

plotting the phase. Basically, we will be obtaining all the critical speed of the system by 

changing the speed from low value from 0 to base value. Gradually we will be increasing 

it, so that we can be able to get 4 or 5 critical real. First two critical speeds we will be 

obtaining. Because, this is a continuous system we can have infinite number of critical 

speed, but we will be illustrating here only 2 critical speed. 
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So, in this particular case because we are considering the unbalance which will be acting 

in basically the two planes, so we are considering the motion in 2 planes x and y. As 

such there is no coupling in the 2 planes because bearings are rigid, but still for 

illustration purpose we are combining the 2 plane motion now. For unbalance we are 



considering, let us say horizontal axis x as a reference and the direction of the rotation is 

positive is counter clockwise direction.  

At time t is equal to 0, we are assuming that this unbalance is in the horizontal position, 

and at time t it occupies some hard rigid position were this angle is theta for some time t. 

So, this is phase. So, basically this is the phase which we are talking about. The theta for 

this particular case is 30 degree. So, that means at t time is equal to 0 the unbalance 

position will be 30 degree, but with time t then it will increase from that position. So, the 

initial phase is 30 degree. So, this initial position of the unbalance is here and with time 

then it increases in the counter clockwise direction as positive rotation. 
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For element 1, because we have divided this into 3 elements, so this is the elemental 

equation for first element. Because, there is no disc, so there is no change as compared 

with the free vibration. It is exactly same. There is no external force in this particular 

element because the unbalance is acting only at node 3. 
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So, either we can consider that unbalance node element 2 or element 3 in one of them. 

So, let us see this is for element 1. 
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There is no external force here. Element 2 also we have not considered, so this is also 

again element 1. But, in y z plane this is in vertical plane. Element 1 is in the horizontal 

plane z x plane. The mass and stiffness matrices are same. Only, now you can be able to 

see the change in the displacements. Now, these are corresponding to displacements in 

the horizontal plane and they can be combined. 
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So, this is the elemental whirl equation when we are considering both plane motion. So, 

you can be able to see here first 4 or corresponding to node 1, but horizontal plane and 

vertical plane. Similarly, this is for a node 2 horizontal plane, vertical plane, mass matrix 

and stiffness matrix. There is no external force. These are the reaction forces and 

moments. Similarly, we can be able to write for element 2, in this element 2 we have 

considered the disc. You can able to see the disc mass is also appearing.  

The diametric mass moment of inertia of disc, we have not considered. The stiffness 

matrix, this is the reaction force and torque, but now you can be able to see this is the 

unbalance force. This is the unbalance force corresponding to node 3, because disc is at 

node 3 of the element 2,we have both plane motion. So, this is the horizontal force 

component and this is the vertical force component of the unbalance force. 
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Let us see, how this we have introduced? So, basically unbalance force is m b that is 

mass of unbalance into radius omega square, the phase of that m is e j and omega t is the 

frequency. Because, this is rotating with speed of the shaft, now this is f x. This 

particular is f x. Now f y, this is because f y is lagging behind by f x in the direction of 

the rotation of the shaft by 90 degree. Because, you can be able to see the direction of 

rotation is clock wise, so this particular y axis is lagging behind the x axis by 90 degree. 

So, f x and f y, because they are component of the same force and their phase difference 

is of 90 degree, so they will be related by minus j, because this represents the minus 

90degree phase .  



(Refer Slide Time: 42:39) 

 

So, now you can be able to see this is the horizontal force and if you multiply by minus j 

that will be the component of the force in the y direction. This is the phase which we are 

talking about at the initial, the 30 degree phase which we have considered. 
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So, this is the case when the shaft rotation is in other direction. So, in this particular case 

y axis will be leading x axis by 90 degree. So, the force component in the y direction and 

x direction will be related by this. So, instead of minus j, now only j will be there. 



So, we have considered this particular case element 3 is identical to element 1 in which 

there is no disc. 
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The only change is in this field variable. So, here corresponding to node 3 and 4, the 

field variables in the horizontal and vertical direction will be there. There is no external 

force here because. We have considered the disc in the element 2. Now, these 3 elements 

can also be added. 
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So, if we add this, just as I am illustrating, you may not be able to see the various 

numbers. But, this is the mass matrix for the whole 3 elements. So, this will give just 

indication that how the size of the matrix will be if we assemble it. This is the mass 

matrix.  
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This is the stiffness matrix. So, again the size are very small to look into the values. But, 

the over all procedure I am trying to explain that now. The size of this will be because 

we have now 4 elements and each four nodes are there and each node is having 4 degrees 

of freedom. So, we have now 16 into 16 size of this and this vector is having 16 to 1 size.  
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Similarly, reaction torque and reaction force will be having this only term. We will get 

reaction force and moments will cancel unbalance force which is there at this node x 

component. Horizontal component and vertical component, there is no external force in 

any other nodes. Only at two locations corresponding to the horizontal and verticals are 

there. 
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Now, let us see the boundary condition of the problem. So, here simply supported 

boundary conditions are there. So, displacement in horizontal and vertical direction will 



be 0. Similarly, here at node four displacement in horizontal and vertical direction will 

be 0. The corresponding moments are also 0 at these locations. 
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So, that means this boundary conditions we can be able to apply in the previous equation 

and this is the reduced form of the equation. So, basically in this particular case, now we 

have equivalent to 1 size and 12 into 2 size. So, this is a reduced form of the stiffness 

matrix and reaction unknowns. 
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We have already the need to eliminate. Only the terms containing the unbalance force 

will be there in the right hand side, but other reaction force and moments if they are 

appearing like at node 1 and 4, then shear force will be 0. So, corresponding rows and 

columns we have eliminated. So, only known unbalance force are here. 
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So, basically this particular force we have of this form in which f is a complex quantity. 

Here, f is the frequency. Similarly, this is the response in which this is a complex 

response and this is a frequency component. If we take double derivative of this, we can 

be able to relate the response like this. Now, basically we can be able to see this 1 and 

this is the displacement. Now, if you substitute this in the equation of motion, the 

equation of motion will be of this form.  

All the e j omega t terms will be common. That will go out. So, basically this equation is 

now in the frequency domain and because now this is common, so we can able to take 

this common and whatever the terms within that we can take inverse of that multiplied 

by the force. This will be the unbalance response.  
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Now, let us see we are taking at the disc location, how the amplitude of the response 

changes with changing the speed? So, if you change the speed we will see that we will 

get peak at some location. This is at peaks. These are the critical speeds and if you see 

the change in the phase, because the response is a complex quantity and is having real 

part imaginary part. If we take the amplitude of this the previous part, we will get phase 

plot. It will be the tan inverse imaginary part divided by the real part. So, this will be the 

phase. So, at the disc location the imaginative part divided by real part tan inverse is the 

phase.  

So, you can be able to see that we have we change in the phase corresponding were the 

peaks were there. So, here there is a change. You can be able to see there, were peaks are 

at that location. So, wherever the critical speed occurs there will be change in the phase 

and this particular phase is this response is in the vertical direction. Basically, the phase 

was 30 degree from the x, that is the axis horizontal axis. This response is in the vertical 

direction. So, obviously that is minus 60 degree because y axis is lagging behind by 

minus 90 plus 30, which is giving us minus 60 degree phase. So, initial phase is minus 

60. Then, it is changing by 180 degree at critical speed 1 and then again it is changing at 

critical speed 2 by 180 degree. 



(Refer Slide Time: 49:53) 

 

This is the same plot, so you can be able to see that wherever there is a peak there is a 

change in the phase. So, in fact this peak is not small because we have taken some step 

size which was not very close to the critical speed, that is why this amplitude is low. 

Otherwise, if you take more refined value of the step size of the speed you may get this 

as more, but this phase will indicate nicely the location of this particular critical speed. 

Today through some simple example, we tried to illustrate how we can be able to solve 

the free vibration to get the natural frequency and mode shape and how we can be able to 

handle if there is a intermediate support in a rotor system.  

Even we tried to illustrate how we can be able to get for simple rotor unbalance response. 

Now, with these examples we can be able to appreciate that if we take more number of 

element, we have the size of the mass matrix and stiffness matrix which are larger in size 

now. In the subsequent class, we will not only try to incorporate the gyroscopic couple 

and even some kind of damping into the system like Rayleigh’s damping, but also we 

will try to see some methods by which we can be able to reduce the size of the matrices 

without compromising on the accuracy.  

So, that means some of the reduction schemes we will be taking up in the next class apart 

from that because till now in the finite element formation we have not considered the 

flexibility of the bearing. So, that also we will try to see how the bearing equations we 



can be able to club along with the shaft equations. So, that will give over all idea about 

how the rotor bearing system can be analyzed using finite element formulation. 


