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Welcome to today’s class of non-linear vibration. So, in today’s class we are going to 

study about this development of equation of motion for continuous systems using 

extended Hamilton principle, and also I will tell you about these ordering techniques. 

And in this lecture we are going study, how to develop the equation motion by using 

extended Hamilton principle, also I will use this generalized Galerkin method to develop 

the temporal equation motion. After deriving the equation motion we will study how to 

order this equation using the scaling parameter and book keeping parameters. So, in the 

last class, we have studied or we have developed the equation of motion of the 

continuous system using Newton’s second law or d’Alembert’s principle. 
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So, in today’s class we are going to deriver the equation motion by using this extended 

Hamilton principle. So, let us take simple example for of linear system before going for 

the non-linear system. So, we will derive the equation motion for the longitudinal 



vibration of the beam and then, we will go for the Euler Bernoulli beam then, will make 

that equation motion non-linear and will take several examples to derive equation motion 

for non-linear systems. Then, we will see some exercise problems to derive the equation 

of motion also, will study about the ordering techniques. 

 

So, let us now derive the equation motion of the longitudinal vibration of a beam. So, in 

case of the longitudinal vibration of a beam so, let us take a beam; for example, this is a 

cantilever beam, in this beam you want find the equation motion of this beam. So, the 

difference between a continuous system and a discrete system is that incase of the 

continuous system it is a distributed mass system unlike incase of the discrete system. 

And in this continuous system or the distributed mass system we have infinite number of 

degrees of freedom. So, each point you can consider as a spring and mass system so, in 

this infinite degrees of freedom system you can have infinite number of infinite number 

of natural frequencies.  

 

So, let us consider a small element so, this longitudinal vibration of the beam so, the 

vibration takes place in the longitudinal direction that is in this direction and let us take a 

small element so, this small element at a distance x from the fixed end so, this small 

element has length d x. So, let rho is the density of this material so, rho into A into d x is 

the mass of the small element and we are considering, let u is the displacement at point at 

this or this element so, if u is the axial displacement of this element then, the velocity is 

the u by d t or I can write it as u dot is the velocity so, u dot is the velocity and rho A d x 

is the mass of the small element. 

 

So, the kinetic energy using extended Hamilton principle, first we should write all the 

energy terms so, let us first write the kinetic energy, kinetic energy T equal to so, it will 

be for the small element it is equal to rho A d x and it will be half rho A then, it will be 

del as u is a function, as u is a function of both x and d so, we can write this velocity 

equal to del u by del t whole square into d x. So, for the small element the kinetic energy 

can be written as half rho A del u by del t whole square d x and for the whole beam one 

can integrate that thing to find the kinetic energy. So, the kinetic energy of the whole 

beam in longitudinal vibration can be written as half rho A del u by del t whole square d 

x. And similarly, one can find the potential energy that is U so, the potential energy can 

be written as, it is equal to half integration 0 to l stress into strain into d v. 



So, d v is the, v d v is the volume. So, this d v can be written as a into d x if you are 

taking the uniform cross section and this stress can written in terms of the strain by using 

this young’s modulus. And epsilon can be written epsilon that is your strain so, that is 

will be equal to del u by del x so, epsilon equal to del u by del x and this sigma equal to 

so, sigma, stress by strain equal to young’s modulus so, stress sigma can be written as 

young’s modulus into so, it will be equal to young’s modulus into del u by del x that is 

the strain. So, substituting these 2 in this equation, I can write this U equal to half 

integration 0 to l so, this is equal to E del u by del x into del u by del x del u by del x into 

d v so, for d v one can write this is equal to A into d x. So, the strain energy associated 

with this longitudinal vibration of the beam can be written as half integration 0 to l E del 

u by del x into del u by del x into a into d x or in other word one can, one can write this 

equation equal to half integration 0 to l E A then, del u by del x whole square into d x.  

 

Now, considering known force acting on the system let us first try and find for the free 

vibration of the system so, in this case the Lagrangian of the system can be written as T 

minus U. So, the Lagrangian equal to this is expression for T and this is expression for 

U. So, the Lagrangian can be written in this form T minus U and one can use the 

Hamilton principle to derive this equation motion. So, as in this case known force is 

acting on the system then, this extended Hamilton principle reduces to that of the 

Hamilton principle which is generally applied for a conservative system.  
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So, in this case using this Hamilton principle one can write the Hamilton principle, 

Integration t 1 to t 2 then, del L plus del W n c d t equal to 0. So, in this case as known 

non conservative force is acting on the system one can write integration t1 to t 2 del l d t 

equal to 0. Now, one can find this del L from the previous expression for this L so, that 

will be equal to operating this del operator on 0 to l so, this is equal to half rho A then, 

del u by del t whole square d x so, this is for the kinetic energy minus for the potential 

energy one can write this is from 0 to l half E A del u by del x whole square d x. Now, 

this del operator will be acting on this and this can be written as so, this will be equal to 

integration 0 to l then half into in this case it will be multiplied with 2 then, rho A del u 

by del t into del u by del t into del of del u by del t into d x minus similarly, it can be half 

integration 0 to l E A into 2 into del u by del x into del of del u by del x d x.  

 

Now, using this integration t 1 to t 2 del L d t will gives us integration t 1 to t 2 

integration 0 to l. So, this 2, 2 cancel so, this becomes rho A del u by del t into del of del 

u by del t into d x so, one can write this thing del of del u by del t into d x d t minus so, 

this 2 and half cancel one can write again integration t 1 to t 2 integration 0 to l E A del u 

by del x into del of del u by del x into d x into d t. Now, one can simplify this equation 

so, to simplify this equation one can write so, one can use this integration by parts, by 

using this integration by parts one can write this equation equal to so, it will be equal to 

integration.  

 

Now, one can write this part rho A u dot. So, one can write this equation in this form 

integration t 1 to t 2 integration 0 to l rho A u double dot by using this integration by 

parts one can have rho A u double dot plus E A del u by del x whole square into del x d t 

del, one can have del u into del u d x d t equal to or plus one can have plus or minus sin 

one can one can expand this thing so, it will be minus half t 1 to t 2 E A del u by del x 

into del u 0 to l so, this will be equal to 0. So, this part is the boundary condition and as 

del u is arbitrary so, this represent the equation motion of the system. So, the equation 

motion becomes rho A u double dot plus E A del u by del x whole square equal to 0. So, 

this is the equation motion at the system. Similarly, one can derive the equation motion 

for similar other equations.  

 

And the advantage of using this Hamilton principle over Lagrange principle or Newton 

or D’Alembert principle is that so, in this case in addition to getting this equation motion 



one can get the boundary conditions also. So, this gives the boundary condition this E A 

del u by del x into del u 0 to l so, that gives the boundary condition that means u will be 

either u will be 0 or del u by del x will be 0 at either x equal to 0 or l. So, in this way one 

can derive the equation motion for the longitudinal vibration of a beam. So, to be more 

precise so, one can so, let us derive this term again.  
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So, that is integration t 1 to t 2 in 0 to l half rho A 2 u dot then, it becomes rho A del u by 

del t into del of del u del t d x d t del u by del u by del t into d x d t. So, in this case one 

can write this term so, this term can be written in this form by changing the integral so, 

one can write 0 to l t 1 to t 2 so, this 2, 2 cancel so, this becomes rho A u dot into so, one 

can so, here we have this delta root so, u dot so, one can interchange between this del by 

del t into del u so, one can write this way into d t and d x. So, this equation can be written 

in this form rho A u dot then changing between this del and del by del t so, one can write 

del by del t of del u d t. Now, one can use this integration by part so, to use this 

integration by parts so, first function remain as it is so, rho A u dot so, you keep the first 

function as it is.  

 

Now, integration of the second so, integration of this del by del t of del u so, this 

becomes del u so, this is from t 1 to t 2 so, one can have this 0 to l outside and so, rho A 

u dot del u so, this minus then, one can have integration t 1 to t 2 then, this del u into 

derivative of this first term. So, derivative of this first term becomes rho A so, u dot 



derivative becomes u double dot so, rho A u double dot u double dot is this del square u 

by del t square. So, u double dot is nothing but, del square u by del t square so, del rho A 

u double dot into del u. So, outside we have this d t and d x. So, this term this del u at so, 

according to our Hamilton principle this term del u vanishes at this 2 time that is t 1 and t 

2. 

 

(Refer Slide Time: 18:05) 

 
 

That is why this term becomes 0 and so, for this purpose one can get this equation so, 

you will have a minus so, minus term here t 1 to t 2 0 to l rho A u double dot E A del u 

by del x whole square e u del u d x d t minus half t 1 to t 2 E A del u by del x del u 0 to l. 

So, to derive this term one can easily find this term so, this term will reduce to minus E 

A del u by del x whole square del u d x d t minus half t 1 to 2 e a del u by del x del u 0 to 

l. So, in this way one can derive the equation motion by using extended Hamilton 

principle. 
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So, while taking the kinetic energy term one has to change the integral. So, in this case 

one can change this thing from 0 to l and t 1 to t 2 and then integrated by parts so, by 

integrating it by parts so, the first term becomes 0 and the remaining term one can take it 

in equation motion. So, the final equation motion becomes rho A u double dot plus E A 

del u by del x whole square equal to 0 or one can write this equation in this form so, E U 

double dot plus E A by rho A del u by del x whole square equal to 0. So, here A can be 

cancelled or one can write this equation in this form u double dot plus C square del u by 

del x whole square equal to 0 so, where C square equal to so where c square equal to E 

by rho or C equal to root over or one can write C equal to root over E by rho. So, this is 

the equation for a longitudinal vibration of a beam when we have taken a linear system 

so, we have not consider any non-linearity in this but, the method shows how one can 

derive the equation motion by using Hamilton principle. Similarly, one can derive the 

equation motion for Euler Bernoulli beam. 
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So, in case of the Euler Bernoulli beam, the beam is subjected to pure moment pure 

bending moment. So, in this case as the beam is subjected to pure bending one can derive 

the equation motion for the system by taking the kinetic energy and potential energy of 

the system.  

 

So, the kinetic energy of the system if one can consider so, let us consider a system 

cantilever beam or any beam one can consider so, at a distance x at a distance x let w is 

the transverse direction vibration. The displacement in the transverse direction is w so, if 

w is the displacement in the transverse direction which is a function of both x and t, x is 

it is at a distance x that is the phase coordinate and at time t one can find the equation 

motion by using this extended Hamilton principle or by using the simple Hamilton 

principle incase where there is no non conservative force acting on the system. So, here 

the kinetic energy can written as half let m is the mass for unit length then at m into d x 

is the mass of the small element and into velocity square so, velocity equal to d w del w 

by del t.  

 

So, in this case it will be equal to del w by del t as w is a function of both x and t. So, one 

can write this kinetic energy for the whole beam as the integration of half m del w by del 

t whole square d x where, m is the mass for unit length m is the mass for unit length or it 

can be equal to the density of the system into a density into a will give the mass for unit 

length. So, mass for unit length into d x that is the mass of the element then its velocity 



velocity equal to del w by d t so, the kinetic energy equal to half integration 0 to l m del 

w by del t whole square into d x. And one can find the potential energy similar, to the 

previous case one can find the potential energy equal to half stress into strain into d v or 

one can write this by using this bending moment into d theta so, it is equal to half 

integration 0 to l M d theta and here theta is the slope so, theta can be written equal to 

theta, one can write theta equal to del w by del x.  

 

So, as this bending moment one can write so, if one take small deflection so, in that case 

this bending moment can be written as E I del square w by del x square. By using this 

formula one can find this thing so, M by I so, pure bending equation M by I equal to 

sigma by y equal to E by R so, here M will be equal to E I by R so, 1 by R can be written 

that is the curvature can be written as del square w by del x square. So, one can write this 

M equal to E I del square w by del x square and this d theta will be equal to del square w 

by del x square again. So, one can write this potential energy or the strain energy 

associated with this vibration of the transverse direction equal to half integration 0 to l E 

I del square w so, it is del square w by del x square into d x. Now, one can proceed in the 

similar way and derive the equation motion in this case which already we have seen as 

the Euler Bernoulli beam equation. And if, one considers large amplitude displacement 

so, in that case this M can be written in this form of large amplitude large curvature. 
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So, in case of large curvature one can or incase of large amplitude vibration, one can 

write large amplitude vibration, one can write this M equal to del square w by del x 

square plus half del w by del x whole square into del square w by del x square. And d 

theta can be written in the same way as before that is equal to del square w by del x 

square. So, in this case one can have this U equal to half E I del forth del square w by del 

x square whole square or one can take this del square w by del x square common so if 

one takes common then it becomes 1 plus half del w by del x whole square into del 

square w by del x square.  

 

So, one additional term one can get in this case so, that is equal to half del w by del x 

whole square so, this term will lead to the non-linear terms if one derive the equation 

motion so, one can find the equation motion by using this formula that is del l plus del W 

n c d t equal to 0 where, l equal to l is the Lagrangian of the system so, that is equal to T 

minus U. So, while deriving this equation one can take this del q k where, q k is the 

generalized coordinate so, here W is the generalized coordinate so, here one can consider 

this del w at t 1 will be equal to del w at t 2 equal to 0. Now, this W that is the transverse 

direction displacement which is s a function of both space and time can be written by 

using the scaling parameter. 
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And time modulation and safe function so, one can write this W equal to r psi x into q t. 

Where, r is the scaling factor, psi is the safe function and q t is the time modulation. So, 



by using this equation in kinetic energy potential energy and finally, in this Hamilton 

principle one can derive the temporal equation of motion by applying the Galerkin 

principle. 

 

So, the Galerkin principle is the use of Galerkin principle has been discussed in the last 

class. So, one can use that principle to derive the equation motion. So, either one can 

apply the Galerkin principle or one can apply this equation that is W equal to r psi x q t 

in this u and v t and u and then apply this Hamilton principle or after applying the 

Hamilton principle and getting the differential equation so, one can apply this equation 

there to find the temporal equation. So, both the method will yield the same equation. So, 

in this case one can take only single mode but, instead of taking a single mode one can 

consider multi mode analysis. So, here one can take psi i or r i into psi i x and q i t where, 

psi i x is the safe function of the i th mode so, already we are familiar with, so we are 

familiar with the continuous system, linear continuous system in which we know that it 

has infinite number of modes so, by taking different modes one can find or one can write 

the transverse displacement equal to r i into s i x into q i t where i equal to 1 to infinity.  

 

But, in actual case as the higher modes will not be effective or not be useful for our study 

so, one can limit this number of modes to few lower terms. So, it can be written as i 

equal to 1 to n so r i psi i x into q i t, this psi terms can be obtained so, this psi terms can 

be admissible function or it can be the Eigen function of the system. So, when one can 

consider Eigen function then, the resulting equation can be reduced to a simpler form 

but, if one consider the admissible function which are not the Eigen function so, then 

model interaction will be there in the equation motion. So, for example, one can consider 

the psi i for a simple supported beam.  

 

For example, for a simply supported beam one can has tried the general solution for the 

Euler Bernoulli beam. So, one can write psi x equal to c 1 cos beta x plus c 2 sin beta x 

plus c 3 cos hyperbolic beta x plus c 4 sin hyperbolic beta x and now, apply the boundary 

conditions to get psi x. So, where one can get this characteristic constant beta also from 

frequency equation and applying this boundary condition one can find psi x so, that will 

give the Eigen function though Eigen function satisfy both the differential equation. So, 

Eigen function satisfies both the differential equation motion and all the boundary 

conditions.  



And one can have another set of functions also, that is comparative function so, that 

comparative function satisfies the differential equation and also the geometric boundary 

conditions. So, Eigen function satisfy both differential equation and all boundary 

condition this comparative function satisfy only the boundary condition so, it has not 

satisfy the governing equation. And another set of functions also one can use that is 

admissible function so, this admissible function satisfy only the geometric boundary 

condition of the system. So, one can use admissible function so, in case of admissible 

function it satisfy only geometric boundary condition. So, in case of comparative 

function it satisfies all boundary conditions. And in case of Eigen function it satisfies 

both differential equation plus all boundary conditions.  

 

So, if one takes this Eigen function of the system which is satisfying the differential 

equation motion and all the boundary conditions so, one can get orthogonal functions 

and these orthogonal functions one can use to reduce this multi degree of or this 

continuous system into a set of multi degree of freedom systems. If one use this Eigen 

function then most probably one get an equation which are decoupled but, if one use this 

admissible function where it satisfy only the geometric boundary condition sometimes 

one may get the coupled equation motion. Now, for diff let us consider different cases 

so, how one can find what are the boundary conditions associated with this. So, in this 

case we have just discussed about 2 cases so, in one case if one take the potential energy 

in this form that is half integration 0 to l E I del square w by del x square whole square. 

So, one can get the linear Euler Bernoulli beam equation. But, if one can take the strain 

energy in this term by considering this additional term so, one can obtain the non-linear 

equation motion. 
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So, with examples we can study about this system after a few minutes. So, let us now 

discuss about some of the linear boundary conditions or some of the boundary condition 

in the transverse vibration of the beam.  
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So, for example in case of this simply supported beam, the boundary conditions are so, in 

this at x equal to 0 and x equal to l boundary conditions are the both displacement and 

slope equal to 0 so, both displacement and slope equal to 0 here and in case of a no so, in 

case of the simply supported beam. So, here slope is not equal to 0 one can see that slope 



is not equal to 0 displacement equal to 0 at this end displacement equal to 0 at this end 

but, slope is not 0 in case of a fixed fix beam one can find both displacement and slopes 

are 0. So, here up to this one can see the displacement is 0 that means slope is 0 here also 

both displacements and slopes are equal to 0. So, in case of the simply supported beam 

so, displacement at this end is 0 displacement at other end is also 0 so, along with that 

one can have the bending moment equal to 0. 

 

So, both bending moment and displacements are 0 at both the end. So, this displacement 

is the geometric boundary condition and bending moment is the natural boundary 

condition or the force boundary condition. So, if one can find the one can take one 

admissible function so, and then it will satisfy only the displacement is 0 at both the 

ends, one may not take a function which will satisfy this bending moment equal to 0 at 

both the ends. Similarly, here for the clamped beam for this fixed fix beam one can have 

both displacement equal to 0 and so both displacement and slope are 0 in this case so, in 

this case displacement and bending moment are 0.  

 

So, if we are writing displacement equal to w so, this bending moment equal to E I del 

square w by del x square as we have written w equal to r psi x into q t so, it can be 

reduced to E I r del or by removing this del one can write this d square psi by d x square 

into q t so, as this E I r and this q is a function of t time modulation. So, for a at a 

particular distance one can take this constant so, one can have this del square or at this 

for all times, for all times as these bending moment will be equal to 0. So, one can write 

this E I r d square psi by d x square into q t equal to 0 so, for all time as q t will not be 

equal to 0 so, this reduces that this becomes d square psi by d x square equal to 0. That 

means, in case of the simply supported beam so, one can take this w that in this is equal 

to r psi x into q t equal to 0 so, for all time as q t will not be equal to 0 r also will not be 

equal to 0 so, in this case psi x will be 0 and d square psi by d x square also will be 0. 

 

So, for simply supported beam one can write psi x at x equal to 0 and l so, this will be 

equal to 0. Similarly, d square psi by d x square at x equal to 0 and l will be equal to 0. 

So, this is for the simply supported beam and incase of the fixed fix beam so, one can 

have both displacement and slope equal to 0 here so, in that case one can show that psi x 

at 0 l equal to 0. Similarly, d psi by d x so, who is correspond to the slope at x equal to n 

will be equal to 0. So, in a similar way one can find the boundary condition for a 



cantilever beam the left end is similar to that of this fixed fix beam that means so, here 

psi x or psi 0 equal to 0 psi x at x equal to 0. So, in this case one can write this way at x 

equal to 0 equal to 0 also the slope will be equal to 0 this means d psi by d x at x equal to 

0 equal to 0 but, at the free end one can have both bending moment and sear force equal 

to 0 already we have seen that this bending moment is proportional to d square psi by d x 

square so, one can write d square psi by d x square equal to 0 and sear force proportional 

to d q psi by d x q equal to 0. So, in this way one can find all the boundary conditions. 
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So, let us see some more complicated boundary condition so, let us take one beam let at 

this end one have a mass also let us have mass at both the ends and this is also supported 

by some spring and damper. So, if it is supported by some spring and damper then one 

can write let this is k and this is c this is stiffness and this is damping. And for this beam 

let this is mass m then, at this end so, or one can write so, the sear force will be equal to 

the inertia force plus the damping force and plus the stiffness force. So, one can write 

this del by del x of E I del square w by del x square so, this is the sear force that is rate of 

change of this bending moment equal to sear force. So, this will be equal to a k w plus c 

del w by del x del w by del t plus m del square w by del t square. So, here a equal to 

minus 1 for left end and equal to plus 1 for the right end. So, if one take the free body 

diagram of the side so, one can show that the sear force will be equal to sear force will be 

equal to the inertia force so, which is equal to m del square w by del t square then, plus 

the damping force that is c into del w by d t and plus the spring force that is k w. 



So, if one take this right side then the sear force will be positive, if one take to the left 

side the sear force will be negative. Also in addition to this the bending moment will be 

equal to 0 so, one can write this E I del square w by del x square equal to 0. So, instead 

of taking this linear spring and damper one can take the torsional spring and damper also.  
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By taking a torsional spring and damper in this case one can have let us take a rotary 

mass also, a mass with moment of inertia I and let us take a torsional spring and torsional 

damper. So, in case of this torsional spring that of this is a torsional spring and let us take 

a damper this way similarly, this side also one can take a spring and damper and let I is 

the moment of inertia then, this is the damping element and one can have a spring 

element also torsional spring element.  

 

So, in this case this torsional spring element k t and damping element let us take c t. So, 

in this case the sear force will be equal to 0 that means del by del x of del square w by 

del x square will be equal to 0 but, this bending moment will be equal to E I del square w 

by del x square will be equal to a into k t into del w by del x plus c t into del square w by 

del x del t plus i 0 into del q w by del x del t square it may be noted that this del w by del 

x is the slope that is theta square theta by del t square that is the inertia due to this 

torsional mass that is i theta dot square then this is due to damping and this is due to 

stiffness.  



So, here a will be equal to minus one for left So, one can have this equal to i 0 into del 

end and it will be equal to plus 1 for right end. So, one can similarly, derive the equation 

motion or temporal equation motion of the system by taking a safe function which 

depends on the boundary conditions. So, for different boundary conditions by using these 

expressions one can derive the safe function and after using those safe functions one can 

reduce the governing equation to that of a temporal form. So, in all these cases till now 

we have considered the cross section of the beam to be uniform.  
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So, instead of taking uniform cross section one can take also non uniform cross section. 

In that case let us take one non uniform cross section so, for a cantilever beam we can let 

us consider this system so, one can write the boundary condition for this but, while 

writing the equation motion so, if one consider the mass to be of a homogenous material 

then, only one can consider the variation in the i term. So, while deriving this equation 

so, this i term will be different and it can be so, while doing the integration one can take 

this i as a function of x. Similarly, in case of similarly, one can consider a cantilever 

beam with let us consider one more example so, here also one can derive the equation 

motion of the system this way so, here up to this one can use i 1 and after that one can 

use i 2 and use appropriate boundary condition to derive the equation motion. 
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So, if let us consider a case when some force is acting on the system. So, a beam 

subjected to a axile force p so, in that case so, one can find the work done due to this 

axile force in this transverse direction in this way so, half 0 to l p into del q x that is del 

w by del x whole square into d x and then one can use this extended Hamilton principle 

by taking this non conservative force into account and find the equation motion. 
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So, let us consider one more example which was published in international journal of 

non-linear mechanics by Pratiharan Dwivedy. So, here a roller supported beam is 

considered so, in this case we have to find the equation motion. Now, considering a 

small section one can write the potential energy, strain energy of the system and in 

addition to that so, it is subjected a vertical force in vertical direction. So, one can find 

this non conservative work done also in this way so, after using all these and using these 

in extensibility condition so, in inextensibility this is the condition for inextensibility one 

can find this and then one can find the governing equation in spatio temporal form in this 

way. 
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So, after getting the equation motion in spatio temporal form now, by substituting this 

safe function one can find the temporal equation motion. 
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So, in this case one has used this time modulation u t V y is the safe function so, this is 

the safe function of a cantilever beam with tip mass. 
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As a tip mass is there so, one can consider the safe function of a cantilever beam with tip 

mass and this expression gives the frequency equation for beta l. So, one can find this 

temporal equation in this way so, after finding this temporal equation where one can see 

the coefficients can be written in this form.  
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For example, in this case one has the linear term u double dot so, this is the linear term 

this is another linear term but, all these terms are non-linear terms. So, the coefficient of 

the non-linear terms can be obtained from these expressions. 
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Where, one can find the coefficient alpha 1, alpha 2, alpha 3 by integrating these terms. 

So, these integrations are function of the safe functions so, by using this integration one 

can find the coefficients. So, after finding the coefficient one can use this ordering 

technique to order the non-linear equation motion. So, next class we are going to study 

about how to order the equation motion or some systems so, also will see different some 

more different systems where some magnetic field is applied.  
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And you can take some exercise problems also where you can derive the equation 

motion for a sandwich beam so, in the sandwich beam 3 so, this is the core element both 

are both are skin and this is core so, in this core one can use this Visco-elastic or elastic 

material also one can use this magnetorheological elastomer also, by taking different 

property and taking this force so, one can derive the equation motion.  
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So, one can take this as one exercise problem and some other exercise problem also you 

can take to derive the equation motion. So, already you have seen this example so, also 

one can derive the equation motion for the sandwich beam when this magnetic field is 

applied one can find the equation motion by using the force due to magnetic field. Also 

one can derive the equation motion for a cantilever beam by taking piezoelectric layer. 
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In a similar way one can take a micro beam, also one can take a functionally graded 

material supported by non-linear springs or by taking a linear or non-linear vibration 

observer and with different boundary conditions. 
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So, taking these exercise problems one can derive the equation motion for the continuous 

systems and after getting the equation motion by using the safe functions one can derive 

the temporal equation. So, after deriving the temporal equation one can use this ordering 

technique, use the ordering technique to find the temporal equation motion. So, next 

class we are going to study about the ordering technique for commonly used non-linear 

equation motion like Duffing equation, van der pol equation, Mathieu equation or 

Mathieu hill type of equations.  

 

Thank you. 

 


