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So, welcome to today class of non linear vibration. So, today class we are going to study 

more examples on parametrically excited system. So, we will see the example of elastic 

and magneto elastic beams subjected to periodic base excitation. So, here we will study, 

how this periodic elastic and magneto elastic beam subjected to periodic excitation, 

behave as a parametrically excited system and how the response of the system changes 

with system parameters. Last class, we have studied about this sandwich beams. So, in 

which, we have applied axial load and we have studied the parametric instability regions 

of those systems.  
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So, in case of parametric instability region or the region inside the… So, we have 

obtained the parametric instability region. So, in which we have plotted this P d versus 

omega. So, we have taken this symmetric and unsymmetric, unsymmetric sandwich 



beams, these are the, this is a sandwich beam so, subjected to periodic axial load. So, 

here we have applied the load to be in this form that is P equal to P 0 or P s plus P d cos 

omega t. Similarly, this is P equal to P s plus P d cos omega t so, here also we have 

applied P. So, when we have applied this force P s plus P d cos omega t. So, we have 

seen for certain values of this P d and omega for example, for this value of P d, the 

system become unstable. At a frequency, this correspond to this again, the system 

becomes stable at a frequency greater than this. So, this region is stable; this region is 

stable and inside this curve it is unstable. So, these are the parametric instability regions, 

we have studied in case of sandwich beams, in the last class. So, today class we are 

going to take some more examples in which, we will take this elastic beam. 
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So, there are many works available on this elastic beams, which are or which can be used 

as Cartesian manipulator basic excited. So, one can take this basic excited beam. So, one 

can see this literature review on a detailed review on dynamics and control of Flexible 

manipulator by the Dwivedy and Eberhard in 2006. This is published in the general of 

mechanism and machine theory similarly, there are many other works related to 

cantilever beam, related to beams where it is subjected to base excitation. So, some 

works by Colemn M P then Poppelwell and Chang, Colemen Mcsweency and so they 

have determined for example, Colmen M P determined only the natural frequency of a 

single link Flexible Cartesian manipulator. Similarly, one can find this papers by 

Tadikoanda and Baruah Buffinton Hou Chalhoub. 



 

So, where one can see this proposed different control strategy to minimize the vibration 

problem of a single link Flexible manipulator. Similarly, many other literatures are given 

here. So, where this base excited cantilever beams have been taken so, in this base 

excited cantilever beam. So, for certain value of this frequency and amplitude, the 

systems will vibrate in a. So, the system vibration can be, so for example, by taking a 

system. So, if one take a base excited cantilever beam. So, either this way base may may 

be excited or one can take a system in which it will excited in a vertical plane or either it 

can excite in a vertical plane or it may move in this horizontal plan. 

 

So, in all these cases for the periodic force P equal to P 0 plus P 1 cos omega t. So, for 

certain value of this P 1 and omega. So, no longer, it will be in the trivial state, it will 

vibrate in a transverse. So, for those cases, so one has to find the parametric instability 

region and also one has to study, what will happen to the system character. 
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So, Let us see some of the example. So, here let us first take a cantilever beam. So, this is 

a cantilever beam with a tip mass and it is subjected this base excitation y b equal to z 

cos omega 1 t. So, here taking a section at a distance s. So, one can write the equation of 

motion. So, the equation of motion can be derived using this D’alembert principle or 

detailed derivation, one can see the work by Baruah and Dwivedy. So, which, I will 

show in the last page of this presentation. So, in the reference section, I will show details 



about this publications. So, this, this system, this base excited system, the equation 

motion can be written. So, by this equation that is e i del fourth b by del s fourth plus half 

v s square into v i v plus 3 v s into v s s into v s s s plus v s s q, where this v s is nothing, 

but this is the del v by del s, where v is the transverse deflection of the beam. 

 

So, the transverse deflection of the beam, if it is v then v s is del v by del s and v s s 

equal to del square v by del s square. So, if one take this as a simple Euler Bernoulli 

beam then the equation will contain only the first term, that is e i del fourth e by del s 

fourth, but due to taking moderately large displacement. So, one can write the equation 

by adding these terms. So, this equation can be easily derived by using this D’alembert 

principle by considering different forces acting on the system and taking this moderately 

large deformation of the system. So, so this term will come from this stiffness of the 

system, then one can write this row a b s into integral 0 to s v zeta dot square plus v zeta 

into v zeta double dot into v zeta plus v s into v s s integral s to l rho a v double dot plus 

c d. So, this is damping due to damping and this part row a v double dot, this is due to 

inertia. 

 

So, so this is the inertia force, this is the damping force similarly, these are the non-linear 

forces acting on the system and this rho a y b l minus s. So, this represent, so into v 

double dot. So, this represent the base excitation. So, y b double dot is the acceleration of 

the mass acceleration of the system. So, y b is the displacement of the base and as it is 

moving in this guide. So, one can have that inertia force similarly, these are the other 

terms present in the system. So, this terms are non-linear term. So, this Spatio temporal 

one can derive this Spatio temporal equation by writing different forces for example, 3 

different forces, one can write. So, one is due to inertia force in x direction or direction u, 

it is shown here. So, direction x and 1 is in y direction. 

 

So, let the displacement along x direction is u displacement along y direction is v then. 

So, one can write the inertia force in x direction inertia force in y direction in this 

damping forces and also the inertia force, due to the steep mass and taking a section at a 

distance s one can find the bending movement and differentiating that term, one can get 

differentiating that term twice. So, one can get this equation. So, after getting this 

equation, so this it may be noted that this equation is in the form spatio temporal 



equation; that means, it is in both space and time because v is a function of space and 

time. 
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Now, by applying this generalized Galerkin method by taking the mode shape of a 

cantilever beam with steep mass. So, one can find the equation of motion or temporal 

equation of motion of the system. So, here this G is the time modulation taken. So, this 

equation reduce to this form that is G double dot plus G plus 2 epsilon zeta G dot plus 

epsilon. So, where epsilon is a bookkeeping parameter, which is very very less than 1 so, 

plus epsilon into alpha 1 G cube. So, this is the geometric non-linear term and these 2 are 

the inertia non-linear term. So, alpha 2 G square G double dot plus alpha 3 G dot square 

G plus. So, here it may be noted that. So, we have 2 more terms, which are, which 

represent the non-linear parametric term. 

 

So, here the coefficient of this G square is alpha 4 omega square cos omega t, which is a 

time varying term. So, due the presence of this term, the system become a parametrically 

excited system and also due to the presence of this term that is alpha phi omega square 

cos omega t. So, the system is a combination of both force and parametrically excited 

system. So, the system, what we have considered now is reduced to that of a forced and 

parametrically excited system. So, this term, the last term with alpha phi. So, is due the 

forcing function, this is force this will represent the force vibration of the system and due 

to this it will behave as a parametrically excited system. So, this equation contain, so up 



to this these are the liner term then, we have this cubic non-linear terms along with a 

non-linear term in of quadratic type with parametric Excitation and we have a forced 

vibration term. So, as this temporal equation of motion contain many non-linear terms, it 

is difficult to find the close solution. 

 

So, one can go for a numerical solution. So, here method of multiple scales has been 

used to find the solution of the system. So, while applying the method of multiple scale 

with different time scales. So, one can see that the system will have different resonance 

conditions. So, one resonance condition will be omega bar nearly equal to 1 and the other 

one is omega bar nearly, equal to 3. So, when omega bar is nearly equal to 1. So, this is 

known as simple renounce and omega bar equal to 3. So, this is the sub harmonic 

resonance. So, one can observe these 2 renounce in this case. So, in case of simple 

resonance so, one can get a set of reduced equation so, these are the set of reduced 

equation in a dot and a gamma dot. So, so in this case, one can observe that the system 

has only nontrivial response. So, the trivial state is not present in this case similarly, in 

case of sub harmonic renounce condition. So, when that means the omega bar equal to 3. 

So, omega bar equal to omega by that is the external frequency of excitation by the mode 

frequency. 
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So, in that case, in that case, one will get this; one will get this reduced equation. Now, in 

this reduced equation by substituting this a dot and gamma dot equal to 0 for the steady 



state. So, we can have, so one can take this a common from this equation and also one 

can take a also common from this equation. So, one can see that a equal to 0 is also a 

solution of the system. So, a equal to 0 represent the trivial state of the state, but a not 

equal to 0, that response is the nontrivial response of the system. So, in case of sub 

harmonic resonance so, the system has both trivial and nontrivial response, but in case of 

simple resonance condition, the system has only nontrivial response as a equal to 0 is not 

a solution of the system. So, by substituting a dot equal to 0 and gamma dot equal to 0 

so, one can see that a equal to 0 is not a solution because, one can see this zeta a minus 

this omega 1 square. So, this term this last term does not contain any a term. So, due to 

that the solution will not contain any trivial state. 
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So, in both these cases so, one can let us take some numerical examples and see how the 

system will behave. So, here the length of the system has been taken 0.336 movement of 

inertia 7.0610 into 10 to the power minus 12 m’s modules 1.94 into 10 to the power 11 

Newton per meter square mass density rho equal to 7830 KG per meter cube and 

damping constant. So, 0.11 Newton per second, Newton second for meter square. So, in 

this case, so for simple resonance case it can be seen that the system has only nontrivial 

response. 

 

So, up to this the system has a stable branch and then the system has a unstable branch, 

unstable is shown by this dotted line and then we have a stable branch. So, that means, 



when we increase the frequency sweeping of the frequency. So, up to b as the system is 

stable. So, it will follow this path that is a b and at b with further increase in this omega 

bar, what the system will subjected to a jump up phenomena and then one can get the 

response of the system stable response of the system, but while sweeping down. So, one 

can follow this path that is d c e and it may jump down some e as, as this unstable and 

stable branch was there or it may go on increasing. So, with higher value of damping so, 

this response, so instead of ending at this point so, it may end at some other point before 

e. So, then one, one may observe this jump down phenomena also, while sweeping off 

the frequency, one can have a jump up phenomena and while sweeping down. So, one 

may have a jump down phenomena. So, this correspond to different forcing frequency.  
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So, one can find so, for these different positions. So, the time response has also been 

plotted and it can, one can see that the system behave in quasi periodic response as the 

Poincare section, which shows a closed loop, the system behave as a quasi periodic 

response. So, for some value, so the system response is periodic also. So, system has a 

periodic response and also quasi periodic response because, in this case, one can have a 

bistable region, also one can have a bistable region here in this range up to this b. So, one 

can have a bistable region and after b. So, the system has a single table region similarly, 

this frequency response has been plotted for different value of mass ratio. So, one can see 

the system response for mass ratio equal to so, for the first one. 

 

So, this is this curve is for different mass ratio and the upper curve is for different base 

excitation so, by decreasing the base excitation. So, here the base excitation is 0.05 and 

this is 0.01 to 5. So, one can see the position of this. So, one can see this position, this is 

d. So, this position, so with higher value of excitation, this position left to left. So, at a 

lower value of omega, the system will have a jump up phenomenon, but for a system 

with less value of this z that is the amplitude of base excitation. So, one can have this 

jump up phenomena or the system will become stable up to a higher value of omega 

similarly, by changing the mass ratio, one can observe that for lower value of mass ratio. 

So, for lower value of mass ratio, the b point the jump of phenomena takes place at a 

lower value than by taking a mass ratio higher than higher mass ratio. So, here m bar 

equal to 4.69. 
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So, for sub harmonic resonance case so, in sub harmonic resonance case it been observe 

that the system has both stable and unstable region. So, as the system has a wide range of 

stable region wide range of trivial stable region. So, the system, so while sweeping the 

system for a wide range of frequency, the system become stable, but depending on the 

initial condition up to this point v as the system as bistable region. So, it will go to this 

nontrivial state depending on the initial condition. 

 

(Refer Slide Time: 20:26) 

 



(Refer Slide Time: 20:28) 

 
 

So, for a different value of mass ratio and base excitation, these curves have been 

plotted. So, let us take another example. So, in this case, we have taken a base excited 

cantilever beam, which can be molded as a Cartesian manipulator with n mass subjected 

to a Periodic load. So, periodic load, so in this case the system is subjected to 2 

frequency excitation, 1 due to this base excitation, that is omega 1 and the second 

frequency is due to the second frequency is due to this axial loading. So, due to axial 

loading, we have this omega 2 and due this base excitation, we have the frequency 

omega 1. So, due to this now, we have some additional term. So, this is the additional 

term present in the system that is p 0 plus p 1 cos omega 2 t into v s s following the 

similar procedure as before using this D’alembert principle or by using this Hamilton 

principle, one can get a set one can get this equation. So it may be noted that in these 

cases, we are considering only single mode discritization in the Galerkin method. 
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So, by taking single mode discretization in the Galerkin method so, our Spatio temporal 

equation reduced to this temporal equation. So, in this temporal equation so, in addition 

to, these linear term so, these are the cubic geometric and inertia non-linear term. So, we 

have several other terms. So, here this is the term associated with these 2 terms are 

associated with our terms. So, already we have these alpha 4 and alpha 5. So, these 2 

terms, where before due to this base excitation and now we have this additional term, this 

is omega 1 bar. So, we have additional term alpha 6 cos omega 2 bar tau. So, this is due 

to this base excitation, this is due to the axial loading. 

 

So, it may be noted that a part of the axial loading, that is the static force will be in will 

be the coefficient of the G term that is the stiffness term. So, the stiffness of the system 

and hence the natural frequency of the system will be effected by the static part of the 

axial loading and the due to the dynamic part of the axial loading. So, we can have the 

instability region. So, here it may be noted though due to this base excitation, we have a 

non-linear parametric term that is the coefficient of G square equal to alpha 4 omega 1 

square cos omega 1 tau, but due to this axial loading, we have a term alpha 6 cos omega 

2 bar tau into G. So, this is the coefficient of the time modulation this alpha 6 cos omega 

2 tau is the coefficient of G. 

 

So, this is a linear parametric equation, but this term is the non-linear parametric term. 

So, as so here also we can use this perturbation method, but in this case we can have this 



resonance condition. So, we can take this resonance condition omega 1 bar nearly equal 

to 1 and omega 2 bar is away from 2. Similarly, this omega 1 bar is away from 1 and 

omega 2 bar nearly equal to 2 and this omega bar equal to 1 and omega 2 bar equal to 2. 

So, in the first case, it will be simple resonance like previous 1 and the second case, 

when omega bar omega 2 bar is nearly equal to 2. So, we can have this principle 

parametric resonance and when this omega 1 nearly equal to 1 and omega 2 bar nearly 

equal to 2. So, we can have the simultaneous resonance condition. So, this 3 resonance 

conditions, we can have in the system and for these 3 case. 
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So, we can have this reduced equation. So, this is the reduced equation for the first case 

and this is the reduced equation for the second case and this is the reduced equation in 

the third case, the system has only nontrivial responses. So, similar to the previous case, 

here also we can plot the frequency response curve. So, in this case like the previous 

case, when in case of the simple resonance. So, we can have similar response. So, we can 

have a jump up phenomena while increasing this frequency here, we are considering this 

omega 2 away from 2. So, we are considering the case when omega 1 bar is nearly equal 

to 1. 

 

So, in this case, we can see at for example, at omega 1 bar. So, this figure shows two 

cases. So, 1 case or taking this mass ratio equal to 2, this z bar that is the non dimension 

base excitation equal to 0.00372 and 2 cases of static loading that is 1 case is P 0 bar 

equal to. So, P 0 bar equal to 0.167 and P 0 bar equal to 0.333, the second case that is the 

rate case. So, here the response is plotted for a higher static load and this is the responses 

plotted for a lower static load. So, in this case, one can observe for this omega 1 bar 

equal to nearly equal to 0.8. So, when omega 1 bar is nearly equal to 0.8. So, we can 

have so, so we can have two solutions. So, we can have two solutions and those two 

solutions can be plotted. So, one can see, so for this case we can have a solution for 

example, so this is 1 stable state and this is the other stable state and this branch. So, we 

have a unstable state. So, we can have two stable solution and 1 unstable solution which 

is shown. 



So, this near nearly about, for this case, it is nearly about 2. So, this, this is the nearly 

about 2. So, we can have 2 h. So, a is the amplitude and gamma is the phase. So, this is, 

this so the basin of attraction. So, for a different initial condition for example, so if you 

take this these this point as the initial condition, always it will go to this branch, but if 

somebody takes another initial condition one can see it will go to this branch, which is 

nearly equal to 0.0 point some value very small value. So, one can have this, so this 

correspond to, so this point correspond to 1 solution and this and this correspond to the 

trivial state solution, nontrivial sates solution. So, in the nontrivial state solution, one can 

have 2 different type of phase. 

 

So, one can see or one can observe the basin of attraction or one can plot these basin of 

attraction to know for what initial condition, the system will be in which state. For 

example, so if one take an initial condition of this that is 2 point amplitude equal to 2 

point something and a phase nearly equal to minus 5 minus 4 point something, then it 

will lead to this upper branch, nontrivial branch though both the branches are nontrivial. 

So, this branch is with higher amplitude and this branch is with lower amplitude. So, one 

can plot the time response also in those cases. So, the time response can be plotted by 

solving this either by solving this temporal equation or by solving this reduced equation. 

So, by solving the temporal equation, one can find the response and one can compare this 

response with other response obtained using this method of multiple scale and one can 

find that both yield the same result. 
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So, here some comparisons have been given and these are some more results obtained for 

these cases. Now, one can see the frequency response curve, when the system that is 

omega 2 is nearly equal to 2. So, when omega 2 is nearly equal to 2, the system will have 

principal parametric resonance. So, in case of this principle parametric resonance so, one 

can observe that, so here the trivial state become unstable due to this pitch fork 

bifurcation. So, while sweeping up, so one can observe this trivial state become, unstable 

so or the trivial state and the, so there is, so at this point; so at this point, these trivial 



stable trivial branch and unstable trivial an untrivial branch merge to form a; to from a 

unstable form an unstable trivial branch. 

 

So, this is; so this is a sub critical pitch fork bifurcation point similarly, this point is a 

super critical. So, this is a super critical pitch fork bifurcation point. So, one can have, so 

while sweeping of the frequency at this point, that is at sub critical pitch fork bifurcation 

point. The system will be subjected to a jump of phenomena because, only the stable 

branch available is the nontrivial state and so the system then will follow this nontrivial 

branch, till it reach the trivial state and after that the system will have a single state 

solution. So, up to this point up to this sub critical pitch fork bifurcation point, the system 

will have bistable region and after the sub critical pitch fork bifurcation point, the system 

has nontrivial response up to the supper critical pitch fork bifurcation and after the 

supper critical pitch fork bifurcation the system has only a trivial state. So, depending on 

the initial condition; so depending on the frequency of excitation and amplitude of 

excitation the system response will be different. 

 

So, one can while sweeping down the frequency similarly, one can follow, so up to the 

supper critical pitch fork bifurcation point the system will not; will not, will be in its state 

of trivial state. And after that the system will have a nontrivial state that means the 

system will vibrate at a frequency at an amplitude equivalent to the response amplitude 

of the non trivial sate similarly, by changing the system parameters. So, for example, in 

the first case by taking this non dimensional amplitude of dynamic loading equal to 

0.0366 and the second case in this case it is taken to be 0.167 that means the amplitude is 

increased. So, one can see, so when the amplitude is increased the response amplitude of 

the nontrivial state also increases and also increases and one can study. 

 

So, where the pitch fork bifurcation takes place and to design the system, one should 

note that either it has to operated at a frequency more than this omega 2 bar equal to the 

supercritical pitch fork bifurcation point or if it is required to be required to be operated 

at a frequency less than the sub critical pitch fork bifurcation point. So, one has to take 

note of the initial conditions and between the sub critical and supper critical pitch fork 

bifurcation point. The system will always vibrate at a nontrivial state. So, similarly, one 

can plot the response for different values of P 1 bar. 
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And so, next one can study the case when the system will excited at a frequency which 

contains which is near to both 1 and 2. So, if it is near to both 1 and 2. So, in that case 

that means when it is subjected to simultaneous principle parametric and simple 

resonance case. So, one can observe that the response of the system like this so, up to 

certain part so, up to this the system has a multi stable region. So, for example, this is a 

stable state is the second stable state, and this is the third stable state and after this point; 

after this point the system will have is only the; system will have only the nontrivial 

study nontrivial solution. So, one has to check for what initial condition, it will have less 

amplitude of excitation or amplitude of response because, the system will have 3 stable 

state. So, for a different system parameter, so one has to study, so for what parameter the 

response will be less. 
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So, one can plot this things. So, here the basin of attraction has been plotted to show the 

3 state so, the 3, 3 stable state of the system. So, this is one stable state, this is the second 

stable state; this is the third stable state of the system and depending on the initial 

condition. So, one can find to which stable state the system response will go. 
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So, in this way, one can study different elastic system base excited elastic system. So, 

previous example, we have taken a metallic beam. So, we have taken some beam elastic 

beam and which is base excited at the same time it is subjected to an axial periodic load. 

So, let us take some example, where we will consider the magneto elastic beam. So, 

there are some hero magnetic material or some material, when it is subjected to this 

magnetic felid. So, there will be magneto elastic load on the beam itself. So, due to this 

magneto elastic load, the there will vibration of the system or if the system is vibrating 

so, by applying this magneto elastic load. So, we can control the vibration of the system. 

 

So, let us take a simple example when we have a cantilever beam, which is subjected to 

periodic axial load P equal to P s plus P d cos omega 2 t also it is subjected to a magnetic 

felid, that is equal to time varying magnetic field so, b 0 equal to b m cos omega 1 t. So, 

here we have taken the cross section to be rectangular and so due this magneto elastic 

load and this axial load. So, we can derive this equation of motion of the system. So, the 

equation motion of the systems can be written in this form that is m v double dot, where 

v is the vibration in the transverse direction. So, the equation of motion can be written 

this form that is m v double dot plus by taking this damping c d v dot then e i del fourth e 

by del s 4, then we can have this loading term. 

 

So, due to axial loading, we can have this term that is P 0 plus p 1 cos omega 1 t into cos 

P 1 cos omega 2 t into del square v by del s square, then due to this magneto elastic load. 



So, we can have these terms. So, in this magneto elastic load, the term will be minus P 0 

square h into d is the area. So, j m by mu 0 into mu r into del square v by del s square 

plus sigma into 0 2 l mu double dash integration 0 to eta 0 to zeta v dash v dot dash d 

zeta into d eta plus integration 0 to l v dash, integration 0 to zeta v dash v dot dash v zeta, 

where this eta and zeta are dummy variable, dummy integration variable and this mu 0 

and mu r, mu r is the relative permittivity, permittivity and mu 0 is the permittivity of the 

free space. So, sigma is the conductivity of the material. So, the spatio temporal equation 

can be reduced to its temporal form by using this equation. So, let us use this equation v 

equal to r phi x into u t, where r is the scaling factor phi x is the. So, phi x is the safe 

functions; safe functions; safe function and u t is the time modulation. So, by using this 

safe function of that of a cantilever beam. 
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So, we can reduce this equation to its temporal form and one can get this equation in this 

form. So, in this case, one can note that equation is u double dot plus 2 epsilon mu u dot 

plus u plus epsilon into alpha 1 cos omega 1 bar tau in to u so, into u minus epsilon alpha 

tow cos 2 omega 2 bar tau into u. So, we can have 2 parametrically excited term. So, the 

fast one is omega 1 with frequency omega 1 and second 1 is with frequency 2 omega 2. 

So, this equation, so is similar that of Mathieu Hill Equation and one can solve this 

equation by using different methods and here the method of multiple scale has been used 

and, in this case one can note in ordinary Mathieu Hill Equation, one will have the single 

term that is epsilon alpha 1 cos omega 1 t into u, but as in non-linear systems. 



The super position rule will not holds good. So, we cannot apply the supper position rule 

in this system by taking this forcing function or this equation equivalent to u double dot 

plus 2 epsilon mu u dot plus u plus epsilon alpha 1 cos omega 1 tau into u 1 system and 

the second system as u double dot plus to epsilon mu u dot plus u plus epsilon or minus 

epsilon alpha 2 cos 2 omega 2 bar tau into u. So, as super position rule is not applicable 

so, we cannot take this equation as 2 Mathieu Equation and solve this thing. So, but in 

this case, we can have 3 resonance conditions so, you can study those resonance 

condition so, in one case this omega 2 nearly equal to 1 and omega 1 away from 1 

second case is omega 1 nearly equal to 1 and omega 2 is away from 2 and third case, we 

can take the simultaneous 1. 

 

So, where we will consider this omega 2 nearly, equal to 1 and omega 1 nearly equal to 

2. So, this is the simultaneous case and so we can have this when omega 1 is nearly equal 

to 2. So, when omega 1 is nearly equal to 2 and omega 2 is away from 1. So, we can 

have this principle parametric resonance. So, omega 1 nearly, so let us take the first 1 

omega 1 nearly, equal to 1 and omega 2 omega. So, this is omega 2 away from 1 and 

omega 1 nearly equal to. So, this is the first case omega 1 nearly equal to 2. So, if omega 

1 is nearly equal to 2. So, we will have this principle parametric resonance and in this 

case. So, we can applying this method of multiple scale. So, we can obtain the equation 

form the transaction curve. So, this is, so here we have applied the method of multiple 

scale up to second order. 

 

So, by applying method of multiple scale up to second order, the equation can be written 

as this omega equal to 2 plus epsilon plus minus epsilon. So, we can have 2 branch 1 

plus for this plus and another for this minus. So, we can have this omega or omega 1 bar 

nearly equal to 2 plus minus epsilon into epsilon square into mu square plus 3 into alpha 

1 by 4 whole square minus gamma whole square plus 4 into alpha 1 square minus 16 

minus mu square to the power half minus epsilon square mu square plus 3 alpha 1 by 4 

square minus gamma. So, it can be noted, that if one take, so this is, one can see this is of 

the order of cubic of the epsilon. So, this is epsilon cube and this term is only epsilon and 

so this term contains only epsilon and this contain epsilon cube.  
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So, in this term this gamma, so this gamma is a term, which contain this alpha 1 alpha 2 

alpha, then omega 1 omega 2, all these terms are present in this case. So, in case of 

simple resonance condition again, one can obtain this equation, where in case of simple 

resonance condition omega 2 nearly equal to 1 and omega 1 is away from 2. So, one can 

obtain this equation from the transaction curve similarly, for simultaneous resonance 

condition. So, one can obtain this equation. So, these equations are obtained using higher 

order method of multiple scales and so when 2. So, here when the system is subjected to 

2 frequency excitation so, we will have these equations or these terms. 
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So this system has initial been discussed or studied by Pao and moon in tau and moon 

they have studied experimentally and theoretically, the system, a system subjected to a 

magnetic field and they have plotted this instability region. So, here so for comparison 

propose, this theoretical results. So, this shows the Pao’s theoretical result and the 

present result. So, this is the Pao’s theoretical result, this result show the Pao’s 

theoretical result and inside this shows the Pao’s experiential result and this result is the 

present result for the present analysis. So by using second order method of multiple 

scale. So, one can observe that by using the second order method of multiple scale, one 

can get a get an expression which is very closer to that of the experiential result. So, by 

taking higher, higher order terms, one can get very instability region, very closer to this 

experiential value. So, this way, one can plot the instability region and, in this instability 

region it is plotted, this taking this magnetic felid into account. So, this is the amplitude 

of the magnetic field, this is omega by omega l term. 
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So, similarly, one can plot or one can study the influence of different system parameter 

due this magnetic felid due different value of static loading P 0, due to different values of 

mass ratio also, one can compare this results by plotting the time response of the system. 



(Refer Slide Time: 48:15) 

 
 

(Refer Slide Time: 48:26) 

 
 

  



(Refer Slide Time: 48:44) 

 
 

(Refer Slide Time: 48:55) 

 
 

So, this way, one can study the influence of different system parameters on this 

instability region, when it is subjected to this both magnetic felid and axial load, one can 

study similarly, different other different systems, where a tip mass is considered also. So, 

in this case the response, one can obtain the response of the system also, one can study 

the system with base excitation and applying magnetic field. So, in this case, the system 

will be a two frequency excitation term. So, in this case, one can obtain different 

resonance conditions. 
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And getting this reduced equation one can plot the response of the system. So in this 

also, one can study, the response of the system, what we have observed in the beginning. 

So, one can have this from the response curve, one can have this jump up, jump down 

phenomena. So, these points are saddle node bifurcation points. So, for different system 

parameters, one can observe different phenomena in the system. So, in this way, one can 

study the parametrically excited system and for further study can obtain the, or draw the 

basin of attraction for when this multi stable regions are present and obtain the response 



curve for different cases. So, these are some of the basin of attraction obtained while 

applying or when multi stable regions are present in the system. 
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So, one can study this system. So, here some of the references are given. So, for further 

study, so these the today class the presentation was taken or adopted from the PHD work 

of my student Barun Pratiher. And these are some of the publications, which are already 

published in international journal for example, this is published in journal of sound and 

vibration parametric instability of a cantilever beam with magnetic felid and periodic 

axial load in 2007. Similarly, another paper non-linear dynamics of flexible single link 

Cartesian manipulator so, this is published in international journal of non-linear 

mechanics in 2007. So, another work this non-linear dynamics of flexible single link 

Visco elastic. So, if one take a Visco Elastic Cartesian manipulator also, this work has 

been. So, this is a parametrically excited system. So, one can study some other works 

related to this magnetic felid and elastic beam in this journal of Vibration and Acoustics 

which is published in 2009. 
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And some these are some other work on only elastic beam. So, non-linear dynamics of, 

so these are on magnetic. So, this work is on non-linear dynamics of a soft magneto 

elastic Cartesian manipulator. So, this is published in international journal of non-linear 

mechanics in 2009. So, another work also non-linear response of a flexible Cartesian 

manipulator subjected to pulsating axial load, which is published in non-linear dynamics. 

So, in 2009, so this is on the, this is only on elastic systems and other works are on 

magneto elastic system and also Visco Elastic System, when it is subjected to axial 

periodic loading and the system is modeled as a parametrically excited system. So, in 

this way, one can study the non-linear vibration of parametrically excited system with 

different resonance conditions. And next class, we will study about the parametrically 

excited system with internal resonance.  

 

Thank you. 

 


