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Elementary Flows: Uniform Flow, Source and Sink, Free Vortex 

So, let us do a quick recap of what we have covered so far in the previous lectures. So, recall that 

in this course now that we are dealing with ideal fluid flows and ideal fluid flows are inherently 

irrotational. We have so far been working with the definition of fluid velocity in a certain way.  
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We have said so far that the x component of velocity which is u which should be d phi d x could 

also be written in terms of the stream function which would be d psi d y and the y component of 

velocity which is v which is d phi d y can also be written as minus d psi d x. So, in the last 

lecture we discussed that these are the Cauchy Riemann equations for a velocity potential which 

we could write as phi plus i psi. So, that was the velocity potential or the complex potential that 

we had defined.  

Further, we said that if we take the derivative of this function with respect to z then what we 

recover is the complex velocity which could be written as u minus i v. More importantly, if you 

have to recover the magnitude of the velocity, we could just take W times its complex conjugate 



that would become u square plus v square. And clearly the square root of that number will give 

us the magnitude of the velocity at any given point on the X Y plane.  
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Finally, we said that in cylindrical coordinates, we could write the same velocity or the same 

complex velocity W in terms of the radial and tangential components. So, we could write this as 

u R minus i u theta e to the power minus i theta. So, we exploit the polar form of a complex 

number in a complex plane. So, this is something that we have already covered. So, in today's 

lecture we will talk about some elementary flows and also discuss what are their complex 

potentials. So, that would be the agenda for this class.  

Now, the simplest elementary flow that I want to begin with is what is called as a uniform flow. 

And the way I would explain these potentials is that I would first propose a particular form of 

complex potential and then show you how it transforms to the flow pattern that we expect or that 

we are trying to come up with. So, let us consider a function F of z to be C times z where C is a 

real number.  

For now, I am not going to put any restriction on whether C is positive or negative. We will see 

that the sign of C will eventually dictate the direction of the flow but it is important to note that C 

is real. So, what is d F d z. Well that is easily seen that is just C which I am going to write as the 

complex velocity W which could be written as u minus i v.  



Now, if I know that C is real and that the complex number W is u minus i v, I could compare the 

real parts and the imaginary parts of the two sides and what we would get is u is C and v is 0. 

Now, what does this mean? This is characteristic of a flow which has a constant X component of 

velocity and the Y component of velocity is 0. So, this is a uniform rectilinear flow along the X 

direction.  
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In fact, if we want to draw this velocity field, let us show on the complex plane, what we would 

have is a velocity field which should be pointing in one or going along one direction and if C is 

say positive then the flow would be from left to right. So, that is a uniform flow and the complex 

potential for it would be C times z.  

To be more precise because typically we specify velocity in terms of the variable u. If I want a 

uniform velocity field with velocity capital U, then I would say the complex potential for this 

elementary flow has to be U times z and then we get flow field which has uniform X component 

of velocity and the Y component is 0. Now, we could also construct an elementary flow which 

has a Y component of velocity only.  

So, consider F of z to be say minus i C z where again C is a real number, then we can again take 

the derivative of this potential with respect to z, write it as W and that is minus i times C which 



would be u minus i v and clearly this means u is 0 and v is C which is the same as a uniform 

vertical flow or flow in the vertical direction.  
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If I say that the velocity component along the vertical direction is say capital V then I can say 

that for obtaining a uniform flow along the vertical direction the complex potential must be 

minus iota V z. That complex potential will give us a velocity field of the following type. So, we 

will now have a field which is vertically oriented at all places with the magnitude of velocity V.  



Now, it is clear that F C was negative, for instance, if I was to chain this and make this positive 

then the field would be downwards. And similarly, if I was to put a negative sign in front of here 

that would mean the flow is from right to left. So, those are very simple ways of managing these 

two elementary flows. There is a chaining the sign in front of the constant gives us the direction 

in which we want the flow to be going. Now, let us take a general case then. Now, we have 

looked at scenarios where the flow is either going from left to right or from bottom to up.  
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So, what if we want a general flow but uniform flow, may be pointing in some direction to the x-

axis. So, let me propose a system or a situation where I want the flow to be going in this way but 

should be uniform. So, say I want the velocity to be V magnitude to be V and I know this flow 

makes an angle alpha with the x-axis.  

So, you can think it over what would be a suitable complex potential for this. You can then 

verify that F of z here the more suitable way it will work out is that F of z should be V e to the 

power minus i alpha into z. That is a complex potential which will give you this flow pattern. 

Now, the reason being that we could write V e minus i alpha to be V cosine alpha minus i V sine 

alpha times z.  

So, clearly if I take the X component of velocity u will be V cosine alpha and v will be V sine 

alpha and that is a significance of choosing a negative sign here. So, the negative sign ensures 



that y component is in positive y direction. So, that would become one of the a more general case 

of defining a uniform flow in a 2-D plane.  
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So, now, let us look at another elementary flow. So, these are source and sink. So, let us say we 

define a complex potential F of z as C log to the base e of z. Let us say that is my proposed 

complex potential. Now, because the dependence on z is logarithmic, it makes more sense here 

to define z not in terms of Cartesian coordinates but rather in terms of cylindrical coordinates.  

Because what I want to exploit is that log of e is 1. I am going to exploit that property. So, let us 

do it this way. So, we can write F of z as C log of R e i theta which if we use the manner of 

taking logarithms, we can say this would be C log R plus C times i theta. Now, this is a powerful 

step here or this is one of the important steps that we have to be very careful about. I could write 

this as the sum of the velocity potential plus iota times the stream function. And I can compare 

both sides to say what represents what here.  

Now, note that though I forgot to mention C is again a real number. So, if C is real, I can say that 

phi is C log R and psi is C theta. So, at this point, let us just spend a minute thinking about what 

we have got so far. We know with this choice of complex potential, phi is C log R, psi is C theta. 

So, what I am going to do is? I am going to now plot the flow field just by knowing these values 

without even having to calculate the velocities.  



The way to do it is to identify what would be the locus of constant velocity potential and what 

would be the locus of constant stream function. Say, I want to look at conditions under which phi 

is constant. This means that C log R must be constant, C being anywhere constant, this translates 

to R being some constant value. Similarly, if I want to say psi is some other constant, we would 

say C theta to be some constant number which would again mean that theta is some constant 

value. Now, what do these representations mean on X Y plane?  
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So, let us try and work this out. So, if we have the X Y plane here saying R constant, this means 

that the locus is going to be a circle where R basically means a distance of that point from the 

origin. So, on all points on that circle, the radius is the same because of which phi would be 

constant.  

So, we can draw and let me use a different color for representing this, the lines corresponding to 

constant potential would be circles centered about the origin. So, these are lines of constant 

velocity potential. What about lines corresponding to constant stream function? Now, lines 

corresponding to constant stream function are theta constant. That means along a line which goes 

radially outwards from the origin, the theta remains constant.  

So, along these lines now we could say that psi is constant. So, these are lines of constant psi. 

Remember, so, what do we know about stream function? We know that the derivative at any 

point in the streamline gives us the direction of the velocity field. Now, because the streamlines 

are actually straight lines, clearly, the flow must be along these streamlines.  

So, the flow must be going along these streamlines either readily outward or readily inward 

depending on the value of the function C and whether it is positive or negative. So, let me say 

this now that if C is greater than 0 then the flow would actually be going radially outwards. So, 

we will have this scenario where the flow would be leaving the origin and it would be going only 

readily outwards, at any point where the stream lines and equi potential lines intersect. You 

would know that they are actually normal to each other. So, this is anywhere 90 degrees. Now, 

let me also tell you why when I say C is greater than 0, the flow is going readily outwards. We 

can prove it very easily which I am going to do now using the velocity definition.  
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So, say we write now d F d z knowing that F is C log z. So, we can say d F d z would be C by z. 

And in the complex plane again z is R e to the power i theta. So, I can write this as C by R e to 

the power minus i theta. Now, it makes lot of sense here to actually write the complex velocity 

which is what this is W in terms of its representation in cylindrical coordinates.  

What I mean by that is that it makes sense to write this as u R minus u i theta e to the power 

minus i theta because I see that there is an e to the power minus i theta here and I can straight 

away get rid of it by using this definition of the velocity, complex velocity. So, I can use this to 



write that u R minus i u theta is C by R. And for C being real this means u R is C by R and u 

theta is zero.  

So, do you now see that what we have achieved from this is that we have a flow which has only a 

radial component of velocity and the tangential component is 0. Which means that the flow must 

be in the radial direction. And for C greater than zero u R becomes positive which means that the 

flow is going radially outwards which is what we had drawn here in this picture, where you can 

see now that for C greater than zero the flow is moving outwards.  

More importantly, if you look at it functional dependence of u R which is 1 by R, this means that 

the fluid which is moving radially outwards, its velocity magnitude decreases with distance from 

the origin. So, the velocity magnitude decreases as distance from the origin increases. Now, since 

in this flow if C is positive and the flow is moving radially outwards, we call this as a source 

flow.  

So, this type of flow is called as a source flow and it is also one of the more prominent 

elementary flows that you would have come across at some point. But the important point to take 

away from here is that its complex potential would be this function. And whether C is positive or 

negative, will dictate whether it is a source, or as I will show later or whether it is a sink. Now, 

note that origin is a point of singularity.  

We should not lose sight of this fact that this origin is a point of singularity for this function. 

Then we will talk about these at some point later. Now, sources are typically characterized by 

volume of fluid that they can supply and so they are characterized by their strength. The sources 

or our source flow is characterized by its strength and the parameter chosen to define strength is 

m.  
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And the way we define the strength of the source is that this is the volume of fluid which is 

leaving the source per unit time and per unit depth. What I mean by that is, let us again go back 

to the schematic that we had. So, if we take at a distance R, if we take a isopotential surface. So, 

this is a distance R at some angle theta. What I want to calculate is how much flow leaves this 

surface per unit depth.  

Remember, in the real system this would actually be a cylindrical surface, per unit depth means 

that we sort of take the depth to be let us say one unit. So, what we can do is we can take an 

infinitesimal element and for visual clarity I am going to draw this Infinity element slightly 

larger.  

So, say the infinitesimal element has angle d theta because of which the arc becomes of length R 

d theta. Across this arc, the velocity is flowing radially outwards which is u R which is also C by 

R. So, I need to calculate m by saying this should be the velocity times the arc length or the 

length of the element which is R d theta over the entire circumference. So, I will go from theta 0 

to 2 pi.  

Now, note that this would be C by R into R d theta. So, R cancels off here and what we are left 

with this 2 pi C. Which means if I have a source of defined strength m, C will be m by 2 pi. So, 

using this definition now, we can write that the complex potential for a source of strength m is m 



by 2 pi log of z when this source is located at the origin. So, this is the complex potential for a 

source flow of strength m which is situated at the origin.  
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In a more general sense, if I say the source was located at some other location in the complex 

plane, maybe z naught we could write that the complex potential for a source located at z equal 

to z naught by just translating arc system. So, we could say this would be m by 2 pi log of z 

minus z naught. That would be the general way of writing a source flow when the source is not 

located at the origin but at some other point on the complex plane.  

Now, what would be the complex potential for a sink? So, a source is something that provides 

flow, a sink will be one which sort of is consuming all the flow. Now, this is quite easy to see 

that you just replace m by minus m and you can recover the complex potential for a sink which is 

let us say situated at the origin. So, we will have the complex potential of a sink with strength m 

will be minus m by 2 Pi log of z.  

And similar to what we did earlier, we will now have isopotential lines as circles. So, these are 

lines of constant velocity potentials, we will have stream lines which would be radially outwards. 

But this time these will be pointing towards the origin. So, this is with C less than 0 and this is 

what how we will describe a sink. So, this is how the picture would look like when we start 

dealing with sinks.  
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Now, let me now bring you to another very interesting elementary flow which is a free vortex. 

Now, let us consider in this case F of z to be say minus iota C log of z. Note that for source, we 

wrote the complex potential as C log of z, here we are writing it as minus iota C log of z. So, a 

very small difference can make a huge change in the kind of flow we can generate. As again, I 

would say C is real.  

So, the way we worked out the previous case, we are again exploit the idea that we can write z in 

terms of polar coordinates. So, we can write F of z to be minus iota C log of R e i theta which we 

can simplify now to be minus i C log of R minus i C i theta which would be minus i C log of R 

plus C theta. Now, F of z is phi plus i psi which would be C theta minus i C log of R. Which 

clearly means that phi is C theta and psi is minus C log R. Now, let us do the same thing that we 

did earlier but with this flow.  
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So, unlike this source, in this case, the situation is slightly turned. Now, we have constant for 

constant velocity potential, we require theta to be constant. And for constant stream function, we 

require R to be constant. More importantly, if you want to derive the velocity in the plane, in the 

2D plane, using the complex velocity concept, we would say d F d z which is the complex 

velocity would be minus i C by z which we can write as minus i C by R e i theta which is minus i 

C by R e minus i theta.  



Now, again I go back to the same principle of writing the velocity field in the cylindrical 

coordinates. So, we will say this is u R minus u i theta e to the power minus i theta. So, clearly u 

R is 0. So, if I cancel this, clearly, u R a 0 and u theta is C by R. So, now you can also see why I 

chose this as minus sign here. By choosing this minus I end up bringing this minus here.  

And when I compare with this minus, these two will actually cancel. So, we get u theta as C by 

R. This is minor observation but an important and a powerful observation. It may seem very 

strange that we put up minus signs and plus sign at will, but that is not the case. We know what 

we are trying to derive. So, some changes have been made before and when choosing the 

complex potential.  

So, now, u theta is C by R u R is 0. So, what type of a flow is this? Now, clearly radial 

component velocity is zero and there is only a tangential component of velocity. So, this flow 

what we will call as a vortex because this is a flow which is along the theta direction and when 

we want to draw it which we should now, we can do a similar thing here.  
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So, we say X and Y. So, what would be lines of constant potential? Note that constant potential 

would mean that theta is constant. So, we will have theta constant lines are these. So, these are 

lines of constant potential. So, along these lines, phi is constant and lines of constant value of the 

stream function would mean R is constant. So, now we will have surfaces which are circular 

which would denote the stream function. So, these are psi constant lines. And if C is positive, if 

C is positive, you can see that u theta is C by R. So, C is positive would mean that the flow 

would be in the counter clockwise direction which is a direction along which theta increases.  

So, C positive would mean that if you use the right-hand screw rule, C positive means that we 

have to go around from theta 0 to theta 2 pi and so the flow must be along that direction. So, the 

arrows here show you the direction of the velocity. So, that is the elementary flow which is a 

vortex. Now, similar to the way we define the strength of a source or a sink, we also use the 

same concept here to define the strength of a vertex.  
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So, the vertex strength is defined in terms of a quantity called as circulation which will represent 

as gamma Greek capital gamma. So, gamma is defined as the line integral of the velocity along a 

closed path. So, in this case, we will calculate say for just to show you one case, let me say if I 

take one contour, circular say, I would go along this contour which is let us say at some distance 

R and calculate what would be u dot d l.  

So, we can write this as. Now, note that along this path only one component of velocity exists 

which is u theta and that is so that is u theta. And if I take an infinitesimal element along this 

path, the element size will be R d theta which is along the vector u. So, u dot d l will be just u 

theta R d theta. And we will go from theta 0 to 2 pi along the entire curve. So, u theta was C by 

R and R d theta is anyway as it is. And so, we get R cancels here. So, we will just get 2 pi C and.  
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So, gamma is 2 pi C or we can say C is gamma by 2 pi. So, the complex potential for a free 

vertex which is centered at the origin would be, will now be F of z to be minus iota gamma by 2 

pi log of z. If the same vertex was located at some other point, say z naught then you would 

displace the variable to that point z naught. So, we will say F of z there, will be just minus i 

gamma by 2 pi log of z minus z naught.  

So, it is just a matter of translating our singularity or putting the function so that it becomes 

singular at point z naught. So, let us put that down. So, if you want to put the complex potential, 

let us say a counter clockwise which is what I am saying is a positive rotation vortex at z equal to 

z naught then we will say its complex potential will be minus i gamma by 2 pi log of z minus z 

naught. It is also now, I would say quite easy to see that the complex potential for a negative 

rotation vortex or a clockwise vortex, you can easily be obtained by replacing gamma by minus 

gamma.  

So, if we have a negative rotation which I am saying is a clockwise oriented vortex with 

circulation say plus gamma, it is already has a negative rotation, then we will say F of z in that 

case would just be minus i minus gamma by 2 pi log of z which becomes i gamma by 2 pi log of 

z when the vortex is situated at the origin. If it situated at some other point, we again just 

translate that to that point. So, we say it would be just z minus z naught. Now, the singularity in 

this case, in the vortex is situated at the origin.  
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But I want to now ask you to think about this fact that say we had the streamlines given in this 

type, so, we had these stream lines in this flow, maybe with the positive vortex, if I was to take 

up contour in this flow which does not contain this singularity, which is the singularity is located 

here at the origin, so, if I was to take a contour C which does not contain the singularity and I 

want to calculate the circulation, let us say gamma prime over this contour C, what would be that 

value?  

Now, C could be any arbitrary shaped contour but it does not contain the singularity and it is 

simply connected contour. Now, you can work this out maybe take a few special cases. I do not 

know. Maybe one case that I can propose for you to just work out is that if I take a contour let us 

say of this type, I go along let us say this path, come back down here, come down here, and then 

go by this path.  

So, say this is the part that I choose, then you should be able to quite easily prove that along this 

path, this gamma prime comes out to be 0 because it does not contain the singularity. And 

consider this as an assignment for you to prove this to yourself. So, this happens for any contour 

C which does not contain the singularity and that happens primarily because the circulation of 

this vortex is concentrated at the singularity.  



So, the circulation is concentrated at the point of singularity. And so around any closed path, 

which does not contain the singularity, we will still get the circulation to be 0. So, please, try this 

for yourself and I hope that you should be able to work out why this is the case. So, we will end 

this lecture here and see you in the next lecture. Thank you. 


