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Welcome to this course Introduction to Uncertainty Analysis and Experimentation. This is a

4th lecture in module 6 which is on Uncertainty in a Result. We will look at result uncertainty

from the Taylor series method and look at some special cases. At the end, we will also look at

methods I and methods II a comparison.
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So, what we have done this far is that we started with the result formula R which is a function

of various parameters X 1 to X p and of some constants. We put a restriction that this is a

continuous function and continuously differentiable and from there, we got the formula for

combined standard uncertainty of the result as a function of the result formula and combined

standard uncertainties in individual measurements.

And then, we defined theta i which is the sensitivity coefficient for the parameter X i and so

the expression became u R bar square is equal to the summation of theta i u X i bar whole

squared for all the terms.

So, we have defined theta I, the sensitivity coefficients and the non-dimensional or the

relative sensitivity coefficient and with that the various relations that we can use in our

calculations, they are expanded combined uncertainty of the result is here U R as a product of

the multiplicative factor K CL which depends on the confidence level chosen and the random

stand, the combined standard uncertainty in the result.

Then, we can get the expanded relative uncertainty in the result which is U R bar by R bar

times 100 so, this becomes a percentage, dimensionless and we can compute the individual

random standard uncertainty S R bar from these two inputs and the systematic standard

uncertainty in the result from these two inputs.

In method I, we do not calculate this particular part that we will see at the end of this lecture.

Method I is only up from this, this and this so, we get the answer that is where method I ends

and we do not get information about the random and standard uncertainties or the elemental

uncertainties. So, if that is good enough for us, method I is the one to use. If we want more

detailed information, we have to go to method II.
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So, this was our big picture of calculating results uncertainty. One was the multiple tests, the

other which we have been looking now is a single test, then method I in this and then, method

II. So, we have seen that we have all this data, we have this, we got this function that we were

looking for now, we are in a position to calculate this so, we have everything about method I.

We will right now look at some special cases which are applicable to both method I and

method II. So, just to tell the difference between method I and method II is we calculate this

part just like before, our data input is also same as method I, a single stay single test input.

Instead of calculating the combined standard uncertainty in each measurement, we calculate

the random standard uncertainty in each measurement and systematic standard uncertainty in

each measurement and then, we have the functions that we have already seen, we use those



and we calculate the standard the random, standard uncertainty and the systematic standard

uncertainty in the result, combine them and then we get the answer.

So, a very small difference; in this case, we would have got these by calculating s X, s and b’s

and combining them at this stage itself. In this case, we do not combine it at that stage, we

keep them separate and because of that we are able to get this information and the end we will

see how this information helps us in assessing our experiment and all of this was based on the

Taylor series method.
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Now, we look at one special case which is the multiplicative result relation. So, let us see

what we mean by this term multiplicative result relation or multiplicative result formula.

Here, we have the general form of the formula as a function of X 1, X 2, X i, X p with



constants. Now, we put a restriction that this formula should be such or if the formula is such

that it has no addition and no subtraction.

So, X 1 plus X 2 as a formula, this is out. Similarly, if the result were X 1 minus X 2 this is

also out, and it does not mean that we do not encounter such type of relations in experiments.

A good example of this is what the fluid being heated where X 1 is inlet temperature and X 2

is the outlet temperature. Then, we have to have the result which is the change in temperature

as an additive subtractive formula.

So, this method that we will come out with right now, this will not be applicable here, for this

we have to go back to our original equations that we had and solve it from there. Those

relations had no restrictions so, they were universally applicable. Now, we are looking at a

restrictive use of what we have learnt. We also say that there are no functions involving sines,

logarithms, logarithmic functions, sines, cosines, hyperbolic sines, hyperbolic cosines and

exponential terms. So, this is also no.

Beside this any other operation is possible. So, what we are saying is essentially only

multiplicative operation should be there and this also means that division is and when we said

exponential, what we are saying is that some number raised to the power X 1, this is not

allowed. What is possible is X; what is allowed is X 1 to the power a or say X 2 to the power

m, this is ok where a and m are constants, but this constant to the power parameter, this is not

allowed.

So, examples of this are that result is constant times X 1, X 2 times, X 3 to the power a or X

1, X 2 to the power a, X 3 to the power b, X 4 to the power c where a, b, c are constants and

they could be positive or negative, they could be less than 1, they could be more than 1, there

is no restriction on that.

A good example of where we encounter this all the time is in heat transfer where we say

Nusselt number is some constant times Reynold’s number to the power m times Prandtl



number to the power n, now these are very common formula one would enquire in, and you

will get this formula in heat transfer, mass transfer even in drag.

So, this is the restrictive form that we are talking off. What we could do is if we do have

addition or multiplication in that formula, we could treat that as one function forget that there

are plus and minus signs in it and then, in the result formula, treat it as a multiplicative

relation.

So, for example, in if the heat transfer rate is equal to h heat transfer coefficient into area into

T 1 minus T 2, this relation by itself will not qualify as a multiplicative relation, but if we say

that I will call the T 1 minus T 2 as delta T so, this relation becomes h A delta T where delta

T is a parameter now, then this is a completely a multiplicative relation. We can do what we

are about to see, we can apply that to this one.
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So, here is how we will treat this case. We will say that the result formula is like a constant

with X 1 to the power a 1, a 1 is a constant, X 2 to the power a 2, the this is a product there, a

2 is again a constant multiplied by X 3 to the power a 3, again a constant like that X i to the

power a i, X p to the power a p. So, we have all these constants so, all of them are constants

and of course, the trivial to say that they are non-zero, but they could be positive, or they

could be negative.

Now, we want to do is isolate one parameter at a time and so, say well, we will look at X i

alone and see what I get for sensitivity coefficient and using that what help I get? So, we

re-express this formula here by keeping X i to the power a i as one term and club everything

else as another function which I have denoted here as w dot o X i that means, this is a

function without the parameter X i, everything else is there in it.

So, now, we differentiate this with respect to X i and remember when you dR by dX i, this is

what we define as the sensitivity coefficient of X i, this is function without a X i, it comes out

and the differential of the this becomes a i into X i to the power a i minus 1, this is our

sensitivity coefficient for X i.

Now, we divide throughout by R, the result. So, this comes 1 by R dR by dX i. On the right

side, we have this numerator which we had just now this one so, this is there and we know

that R which was the modified form, here we have this as function without X i times X i to

the power a i. So, that is what we have written in the denominator on the right side. So, what

you see here? This term, this is essentially nothing but R and when you simplify this, we get a

i X i to the power minus 1 and which tells us that a i upon X i, this is theta i, this is 1 upon R

theta i. So, we have got a very nice simple relation coming up here for theta i.

But by definition, we also have there is a non-dimensional sensitivity coefficient theta i is X i

bar upon R bar times theta i and this if we combine it with this relation that we have here, this

tells us that the theta i prime is a I that means the sensitivity, the non-dimensional sensitivity

coefficient of X i or the relative sensitivity coefficient of X i, this one is nothing but the

exponent of X i.



So, by inspection in the formula, you can say that the non-dimensional sensitivity coefficients

of X 1 is a 1 of X 2 is a 2 of X 3 is a 3 of X p is a p, this is possible because we have a

multiplicative result relation and this immediately tells us that life can be much simpler.
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And we can see that happening in the next step here that this was the result formula that we

had, everything else clubbed in without X i into X i to the power a i. The relative combined

uncertainty of the result u hat R bar square which we defined as combined uncertainty divided

by the value of the result, this is theta i prime into u X i prime so, this is again the relative

combined uncertainty of X i and using our earlier relation, theta i prime is nothing but a I so,

we write this a i times u hat X i bar whole square.

So, this becomes a very nice elegant simple expression and that is usually simplifies life

while solving problems and here is an example that if R is C times X 1 with X 2 to the power



a X 3 to the b, then by inspection alone, we can say that u hat R bar is equal to u hat X 1

square plus a times which is the exponent of X 2 u hat X 2 whole thing square into b times u

of X 3 whole square where a was the exponent of X 2, b is the exponent of X 3. This is a.

So, what we have to what tells you that if you have the result function and you want to write

the relative combined standard uncertainty, you do not need to go through all the steps of

derivation and calculating every sensitivity coefficient individually, you can straight away say

that looking at it that the theta i, theta 1 prime is equal to 1, theta 2 prime is equal to a and

theta 3 prime is equal to b. So, straight away we can write this formula, it saves us a lot of

intermediate steps and time as well.

Then, we can extend this result to the expanded uncertainty to the expanded relative

uncertainty in the result and note that when we talk of expanded uncertainty, it is essential

that we define the confidence level so, this confidence level as percentage will tell us what is

the multiplicative factor which was K; which was K CL.

And now, a restriction is that for every parameter from u X i going to capital U X i with or

without the hat, every one of them must be at the same confidence level. If X 1 is reported at

95 percent confidence level, X 2, X 3, X i everything should be reported at 95 percent

confidence level. We cannot have X 1 at 95 percent confidence level, X 2 at 99 percent

confidence level and X 3 at 60 percent confidence level, then this is not done.

So, all the measurement uncertainties are reported at the same confidence level which is

almost always the case that we will do in uncertainty analysis and then, K CL is the only

factor which came in into all these expressions on all sides, we just put it there and we get the

relative uncertainty in the result is the sum of the squares of these multiplied by their

respective exponents. So, very quickly, we can see what is happening over here.

So, if you have a function like volume, so volume of a cylinder is pi D square upon 4, D is the

diameter multiplied by its length, then we see a very simple thing. The exponent of D is 2,



exponent of L is 1. So, if we say X 1 is D, X 2 is L, then a 1 is equal to 2 and a 2 is equal to 1,

this is the two parameter formula.

And it will tell you that by looking at this that you had the relative uncertainty in the volume

squared, this will be relative uncertainty in the X 1 those exponent is 2 so, this will be sorry,

so, this will be exponent of X 1 which is exponent of D which is 2 times U hat D bar square

plus exponent of L which is 1 times U hat L bar square. This we could do because this

satisfies this condition, multiplicative formula.

And by looking at this, it tells you very quickly that uncertainty in diameter propagates twice

as rapidly than uncertainty in the length actually, it is more than that because this is squared

so, uncertainty in diameter is something that is going to be more important than uncertainty in

the length.

And in the measurement, if both these uncertainties are similar say 1 percent, then we know

that the result uncertainty here, this will be 1 here which is 4 plus 1, 5 this is square root 5, 2

point something of which a large chunk came from uncertainty in the diameter so, you rather

put your energy in reducing this parameter, this uncertainty than worrying about measuring

length more accurately then, it tells you what strategy as an experimentalist you should do and

not say I want to reduce uncertainty so, I will reduce uncertainty in all parameters. This

method tells you, you it is better to focus on the ones which are relatively large.

So, this is what we have been look wanting that for multiplicative relations, the uncertainties

becomes very simple, you do not need to worry about doing any calculations or in the sense

that calculating the derivatives, you do not need to calculate theta 1, theta i, theta i prime we

get that straight away by looking at the formula and of course, if it is not a multiplicative

relation, this method is not to be used, you have to go back to the original formulas that we

have derived and do everything in detail from that point itself without touching this point.
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Now, we will look at the uncertainty percentage contribution or UPC i or sometimes we call

UPC X i. So, this is a number associated with a particular parameter. Very broadly, UPC, the

uncertainty percentage contribution is that fraction of the uncertainty of the result, the

expanded uncertainty that comes from the uncertainty in measurement X i.

So, how much come uncertainty came from X i divided by that combined total uncertainty in

the result, this is our definition of uncertainty percentage contribution. So, our formula

becomes UPC X i is defined as theta i U X i whole square upon U R bar square, U is capital

which tells us this is the expanded uncertainty that means, R U R bar is our final answer of

the uncertainty in the result, and we are asking what fraction of that came from every

individual measurement that we had in the apparatus.



So, the definition is theta i U X i bar square, this whole thing squared upon U R bar square

which can be written as the sensitivity coefficient comes out and then, we have a ratio of

combined uncertainty in the measurement to combine uncertainty of the result, this whole

thing is squared or square of the ratios of these two.

Now, if we report all uncertainties at same multiplication factor which means at the same

confidence level which we must always do, then the U whichever way we look at it is K CL

time the standard error whether it is the measurement or the result. So, if we do that, we can

substitute here, and the case will cancel out in the term here and we will get theta i u X i bar

this product square upon u R bar square and this theta i square upon u X i bar square upon u

R bar square.

So, that is a definition in terms of the expanded uncertainty or the total uncertainty or we just

cause the uncertainty, uncertainty in the measurement and uncertainty in the result where this

ratio is the ratio of the standard uncertainties. So, that is the definition of uncertainty

percentage contribution.

Now, we can further classify these in terms of their breakup, in terms of random and

systematic uncertainties. So, UPC due to random uncertainty in the measurement X i is

contribution to the total uncertainty in the result is theta i s X i bar square upon u R bar

square. So, this ratio tells us that in the result, what is the fraction of random uncertainty from

measurement X i, what is the contribution of the random uncertainty of X i to that combined

or the total uncertainty in the result that is what this ratio will tell us.

And similarly, we can qualify UPC that UPC due to systematic uncertainty in measurement X

i is theta i b X i bar square upon u R bar square. So, this tells us that what fraction of the

uncertainty in the result is coming from systematic uncertainty from the measurement X i. So,

when we talk of uncertainty percentage contribution, our default condition is that it is the

ratio of the expanded uncertainties of the result to the expanded uncertainty of; expanded

uncertainty of the measurement to expanded uncertainty of the result that whole thing squared

that is what our prime definition is.



If we want to look at systematic and random uncertainties, then we have to specifically

qualify that it UPS; UPC due to this or due to this. So, that gives us all the definitions of

uncertainty percentage contribution. And now, let us see how this helps us in the result

relation.
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So, first we write here what the result relation is and that is given over here u R bar square is

the summation of dR by dX i squared evaluated at the mean value of each measurement

multiplied by u X i bar whole square. So, the standard uncertainty in the measurement, this is

the standard uncertainty in the result. So, the definition is coming in terms of standard

uncertainties and from our definition, we can see that this term here is theta i so, the

expression becomes quite elegant that is theta i u X i bar square summation 1 to P.



Now, what we do is we take this relation, this part of the relation and this part of the relation,

divide throughout by u R bar square so, the left side becomes 1 which is what we have here,

and the u R bar goes into this termand the denominator and you have theta u X i bar square

upon u R bar square and this is nothing but as we saw a few minutes back, this is UPC of X i.

So, we have a nice conclusion coming up here that summation of the uncertainty percentage

contribution from each measurement this is 1. So, this helps now, gives a quite a tool to

understand more about these numbers. So, with that, we can state again that UPC X i, the

uncertainty percentage contribution from measurement X i is a fraction of the combined

uncertainty in the result that is due to combined uncertainty in the measurement X i. So, it can

be other combined standard uncertainty u and X i and u R bar or the combined expanded

uncertainty U X i bar and U R bar and you can make the same definition for random and

systematic standard uncertainties.
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Now, let us see how all of this helps us in the uncertainty analysis process. So, what we have

is that UPC X 1 plus UPC from X 2 plus UPC from X 3 and so on, we add up all of them

UPC from the last parameter p, this is 1 and we have all that information required to do these

individual calculations.

So, what we get is a series of numbers for each UPC whose sum is 1 and now, we can look at

these numbers and figure out what is going on. So, we will take a few examples and let us see

what happens. So, in an experiment, we have 4 parameters, we do all the calculations and we

find that the UPC’s that we get are 0.05, 0.10, 0.80 and 0.05. So, we checked the sum is 1.

Now, if this is the way the numbers stack up, just by looking at these numbers, it tells us that

here you have a number which is very large in comparison with a large fraction of the total



which is 1 and much greater than the others that are there. So, this would be what we will

term as the dominant uncertainty and its implication is as follows.

If we do something to reduce this or reduce this or reduce this hoping to do a better

experiment, the benefits will not be there, they will be very very small, they may be

insignificant. So, whatever we should what these numbers tell us is if you want to reduce the

uncertainty in individual measurements, focus on this one, the dominant uncertainty. If you

reduce this by half, your total uncertainty will come down say substantially, reducing this by

half will have very little effect.

Then, we take another example where say we have 3 parameters and the uncertainties in them

are 0.41, say 0.42 and 0.17. As before, we check this has to add up to 1 and now, we say well

what do these numbers tell me and what we have what we see here these two are comparable

to one another and they are much greater than the third one not as great as in this first

example, that was 0.05 and 0.8, but still about factor of two, two and a half times greater.

So, in this situation, our dominant uncertainty becomes these two. So, our objective should

now be if you want to reduce the uncertainty in the result, you have to focus on this and this

not so much on this. So, figure out which are these measurements and come up with strategies

to reduce the systematic uncertainties and the random uncertainties

And you take a third example which has say 5 parameters. So, we have 0.002, 0.0001, 0.85,

0.10 and the remaining is over here so, this is 95 so, this will be something like 4 04 0.04 or

38 something like that 379. This happens in many instances. Without doing much effort, we

find that in some measurements, the uncertainty is very very small say like this one even this

one.

And you wonder you know what is, am I, have I made a mistake or is it actually the case and

if you go back, check what is happening, you find out what this is actually the case. So, you

have some cases some numbers which is they are so small relative to of course, this is all



adding to 1, they are so small that we say you know I need not even take this uncertainty into

consideration in my analysis.

I will make my life simple instead of 5 parameter, I have now I have to deal with 4 parameters

that becomes a little easy and I can say that is my result formula, this particular parameter say

it was X 2, this is almost exact and I approximate this and treat it as a constant and make my

entire calculation little easier without losing any information in the analysis.

And like before, this was to tells us that is you look at this number, this is hugely the

dominating uncertainty and if you want to reduce the total uncertainty in the result,

concentrate on this measurement and if you go back to the experiment and say well, now I

will tried to reduce this and it may so happen that this is a very difficult measurement and to

reduce it substantially is actually quite a challenge. So, that is the reality we run into and then,

we say what is the best that I can do with this, I will do that and live with it.

We could further break up any of these numbers into their systematic and the random part.

So, what we could do say in this first case is look at 0.8 and say well, what are the elemental

contributors to this uncertainty? And we will find that there are some random causes and

there are some systematic causes. Then by comparing those, you can figure out which one is

the main culprit that is making a big contribution here and again like the others, you will find

one or two of these or three of these which are large contributors to the total uncertainty of

that measurement.

Then, we can say now that is where I need to focus, the systematic uncertainty if that was the

issue or we may have to change our instrument, if we have the result, the random uncertainty

as an issue we may have to take more measurements and reduce the uncertainty in that or get

a better instrument and take more measurements. 

So, this is the help, this is what our UPC has come to our rescue. We are able to take quite a

few important decisions without even doing the experiment in some cases as would actually

be the case with the pre-test uncertainty analysis.



What is happening in the pre-test uncertainty analysis is that we do not have measurements

so, we do not have the random uncertainties the s X i's are not there, we can work with b X i's

and get these from some other source or make a good estimate of that and if you do that

analysis and we come up with these type of numbers at the pre-test stage which means you

are in the design stage or you are in the detail engineering stage where you are deciding what

instruments to get, what parameters to have or you are in the qualification phase. 

Then in all these cases, you have not yet done the experiment, but by doing this analysis, you

have got to know what is it that to expect in this type of a setup? Which are the measurements

which will have low uncertainty? Which are the measurement which are contributing very

large uncertainty and we can at that stage itself make changes in our in this part and get

uncertainties to a lower value which we actually want.

So, that is the reason why we did all of this uncertainty analysis so that even before doing the

experiment, we are in a position to say what uncertainty I will have and so, it is a situation

where you have an apparatus say for measuring thermal conductivity of a material and

somebody comes and says please measure the thermal conductivity of this material for me.

The first thing you would do is to figure out the broad parameters are acceptable and if that is

ok, then you come and do the pre-test uncertainty analysis and see what sort of uncertainty

can you expect and if those are acceptable to that person who has come to you, then you go

ahead and do the experiment, if they are not acceptable, the nothing goes forward we says we

cannot do that, something else has to be done.

So, we took a very important decision that telling somebody that something is not possible

because the uncertainty is not coming in my apparatus. In the post-test uncertainty analysis,

we have all the data, and all this analysis helps us in interpreting the result and drawing our

conclusions.

If we draw a certain conclusions based on the values of the result, then we can go further

qualified and say in this result, this particular factor was the dominant uncertainty and in light



of that, the interpretation of that result should be done in a different way. So, that is how

valuable our UPC has been in both the pre-test phase and in the post-test phase.
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So, what we have done so far is assume that we were looking at method I and in method I, I

just mentioned we were looking at u X i bar which we calculated from s X i bar, b X i bar and

then, directly from here, we calculated U R bar and all this came in the category of what we

had already classified as a single test as against the multiple test.

So, when you got final result in method I, we got contributions of individual uncertainties, the

combined individual uncertainties so, theta i's or theta i prime, this we got. So, we know

which parameter is contributing how much, this method I tells us. What method I does not tell

us is whether that uncertainty contribution that we are looking at is coming from systematic



uncertainties in a measurement or random uncertainties errors in a measurement. This is

where method II is slightly different from method I.

What we do in method II? We have first calculated X i; s X i bar and b X i bar. Using these,

this we calculated b R bar, systematic standard uncertainty in the result, using this, we

calculate s R bar the systematics the random and standard uncertainty in the result, then

combine these two and get the combined standard uncertainty in the result. So, we have used

the same data that was there in the single test. So, this is also a single test, but we did not do

the calculation from here to here in the beginning, we let it stay as it is, we calculated the

other two parameters and then calculated this one.

So, now, what do we have finally? We have contributions from systematic uncertainties,

contribution from random uncertainty. By looking at these two numbers relative to this, we

can say well what is it that is really hurting us is it the random uncertainty or the systematic

uncertainty and then, within that, we can further break it up and then, go backwards and say

you know which parameter is causing most of that.

So, we can then say that go back and say well it is parameter X 2 and it is the systematic

standard uncertainty of X 2 which is the big problem, we need to look at that and that tells us

that if that were the case, X 2, the instrument we are using or the method of measurement we

need to improve that. This is very valuable information and method II gives you all the details

from there.

Here are on the top, this and this are the expressions for doing this calculation. So, we wanted

s R bar so, this is s R bar square which is del R by del X i square which is nothing but theta i

multiplied by s X i square and if it divide throughout by R and take the square root s R by R

is the summation of theta i prime s X i bar over X i bar, this whole thing is squared. So, we

have calculated a s X i bar, we have the mean here, we got the value of the sensitivity, the

relative sensitivity coefficient and you can use this.

Now, remember these formula were universal. They are also good for the multiplicative

formula that we may come across, but even that is not the case, these are always good and if



you want to be on the safe side, use these. It will take a little more time, little more effort, but

you know what you are doing. This was the random standard uncertainty.
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Now, look at the systematic standard uncertainty where b R bar square is this multiplied by s

X i bar square theta i times b X i bar square and b R bar by b R is theta i prime into this. So,

very similar relation and we can calculate the systematic standard uncertainty in the result

here and then finally, we can combine the two and get the combined standard uncertainty of

the result as this square plus this square and that gives us the answers we are looking for.

So, what we have seen is so, this what we see here that with this analysis, we can compare

contributions to the result uncertainty coming from combined uncertainty which was method I

and if you use method II, we could also get the breakup of random and systematic uncertainty

from different parameters. So, here, we get as much inputs as there are number of parameters.



In the second case, we get twice as much information because the random and systematic

uncertainties are also taken care of and to a graphical representation of that you one can do by

using Pareto charts and in one picture, it gives you a complete overview of which has

uncertainty which are very significant, which are those that can be neglected and how is the

distribution happening.
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So, finally, whether it was method I or method II, we converge and we say we have calculated

the combined uncertainty in the result of either from method I or method II so, u R bar could

come from either of these sources and then, we multiply it by the factor which would depend

on whatever confidence level we take, we will normally take 95 percent confidence level the

K CL becomes 2 is I can round up from 1.96.



And we can get the expanded uncertainty in the result, divide that by the mean value of the

result and we get the relative uncertainty in the result, both of these are at a particular

confidence level and finally, we report R bar plus minus U R, CL at certain confidence level

as in units or as plus minus U hat R, CL, this should be R bar percentage at certain confidence

level.

In practice, you will see both of these coming in and this is when people say what is the

uncertainty in the result, it is this which is the value that is the uncertainty. So, you may just

call it in the end, uncertainty in the result or just uncertainty. Uncertainty could be a little bit

confusing, if you are looking at result, it is uncertainty of the result, if you are looking at the

measurement, it becomes uncertainty in the measurement. So, that is how we calculate and

express finally, the uncertainty in the result.

Method I, method II we have looked at. We also looked earlier at the multiple test, repetitive

test technique all of them gave us the answer for this question. So, this was the objective of

this module.



(Refer Slide Time: 53:22)

So, we summarize this lecture, what we have learned is calculating uncertainty in the result

from Taylor series method and we looked at two methods method I and method II. Then, we

looked at a special case of the result formula being purely multiplicative in nature and we saw

life becomes much more easier to deal with if we have the multiplicative relation.

Then, this analysis gave us a breakup of uncertainty percentage contributions. So, we defined

what is UPC and then, we could see where it came from, which parameter or which

measurement and whether systematic or random. 

So, we got a lot of information from this analysis and we then combined everything, and we

saw how do we report the result and its uncertainty which was central to our objective. Next,

we will look at some worksheets and a few examples. With that we conclude this lecture.



Thank you.


