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Mohr’s Circle 

Welcome to Lecture 9! In this lecture, we will discuss about the very interesting concept of Mohr’s 
circle. 

1        Conditions for applying Mohr’s Circle (start time: 00:26)  

Mohr’s circle is a graphical way to find normal and shear components of traction on arbitrary planes. The 

only restriction is that the plane normal has to be perpendicular to one of the principal stress directions. 
Accordingly, let us consider a coordinate system such that the third coordinate axis is along one of the 
principal stress directions (the rest two coordinate axes need not be along any principal direction, also 

see Figure 1) and we are looking at planes whose normals are perpendicular to the third principal 
direction. Then, all such plane normals will have n3 = 0. On such planes, we want to find the normal and 
shear components of traction (see Figure 2). The stress matrix in this coordinate system will be such that 

its column will be formed by traction on the plane along third coordinate axis. But that being a principal 
plane, the third column will not have any shear component. Hence, the third column will have its last 
entry nonzero but the other two zero. Symmetry of stress matrix will further force the first two entries 

of last row to be zero, i.e., 

   (1) 

Also, the normal vectors of the plane on which we want to obtain normal and shear components will 
look like 

   (2) 

2 Deriving formulas for normal and shear components on such planes (start time: 04:19)  

Let us draw a cuboid element at the point of interest with its face normals along the coordinate system 
(see Figure 1). As discussed earlier, the third coordinate axis (e3) is along the third principal direction. We 

will call e1, e2 and e3 axes as x, y and z axes, respectively. On the e1 plane, we have normal component of 
traction denoted as σxx and shear component of traction denoted as τyx pointing towards y axis. The third 
component (τzx) is absent as per the stress representation (1). Similarly, on the e2 plane, we have τxy (same 
as τyx) and on the e3 plane, we have σzz (equal to λ3) only. On the −e1 plane, the normal component is σxx 

in −x direction and shear component is τyx in −y direction and likewise for other two negative planes. 



 

 

Figure 1: The cuboid with face normals along the three coordinate axes. The third coordinate axis is 
also a principal direction. The traction components are also shown. 

 

2.1 Reducing the cuboidal representation of state of stress to a square (start time: 07:53) 

There is another simpler way to draw such a state of stress for whom there are no shear components in 

the third direction: we can just draw a square instead of a cube where the sides of the square denote 
the faces of the cuboid as shown in Figure 2. The right edge of the square represents the (+ e1) face. 
Similarly, the top edge represents +e2 face and the plane of the square itself represents e3 face. So, the 

plane containing the square has just one traction component σzz. We use a dot enclosed by a circle to 
denote the traction component coming out of the plane as shown in Figure 2. On the edges of the square, 
we have both the shear and the normal components of traction. On the right edge, representing e1 face, 

we have σxx and τyx (which is equal to τxy in magnitude). So, we will just write τxy to denote both τyx and 
τxy. On the top edge, representing e2 face, we have τxy and σyy. Keep in mind that such a reduce to square 
to represent stress matrix is possible only when the third coordinate axis lies along one of the principal 

directions. 



 

 

Figure 2: A square with its sides representing the faces of the cuboid. Traction components are also 
drawn. 

 

2.2        Trigonometric formula for σ and τ (start time: 11:04) 

Now, our goal is to calculate the normal and shear components of traction on planes whose normals are 

perpendicular to e3. The blue line in Figure 2 shows a general plane of such kind. The normal to this plane 
is represented by n and assume that it makes an angle α with e1 axis. To get to this arbitrary plane n, we 
can rotate our e1 plane by α about the e3 axis. The column representation of n in this coordinate system 

(e1,e2,e3) will be 

   (3) 

An important point to note here is that we have assumed the direction of τ on this plane makes 90◦ (anti 
clockwise) from the normal vector n (also see Figure 2). Now, σ will be given by 

  (4) 

To get τ, we need to first represent the direction along which it is acting which we denote by n⊥. If we 
look at Figure 2, we can find the angle that n⊥ makes with all the three axes. The representation of n⊥ will 
thus be 

   (5) 



 

Now, to get τ, we need to take the component of total traction (  [σ] [n] ) on this plane along the 

n⊥ direction, i.e., 

      (6) 

Upon doing some algebraic manipulation in equation (4), we get 

  (7) 

Further, using the following trigonometric identities: 

cos(2α) = cos2(α) − sin2(α) = 2cos2(α) − 1 = 1 − 2sin2(α),  (8) 

sin(2α) = 2sin(α)cos(α),  (9) 

we obtain 

  (10) 

Similar rearrangements and simplifications using trigonometric identities (8) and (9) in equation  (6) gives 

us 

  (11) 

2.3       Introducing Graphical Parameters (start time: 23:42) 

If we look at equations (10) and (11), we notice that σ and τ both have cos(2α) and sin(2α) terms. Let us 

define a scalar R as 

  (12) 

We can now think of a right angled triangle with hypotenuse R and the two perpendicular arms as  
       and τxy as shown in Figure 3. Let us denote the angle between the hypotenuse and the  base  

as 2φ. Thus, from basic trigonometry, we see that 

  (13) 

 



 

 

Figure 3: A right angled triangle with the two arms as                        and τxy. 

 

Using equation (13) in equations (10) and (11), we get 

  (14) 

Upon further using following trigonometric identities: 

 cos(a − b) = cos(a)cos(b) + sin(a)sin(b), (15) 

 sin(a − b) = sin(a)cos(b) − cos(a)sin(b), (16) 

we get 

 

  (17) 

These are the formulae obtained for getting σ and τ on a plane making an angle α with e1 axis. For a given 
stress matrix, we can find out R and φ using equations (12) and (13) respectively. Then, using equation 
(17), we can find σ and τ on the plane which is obtained by rotating e1 by angle α about e3 axis. Let us try 

to represent the above two formulas graphically. 

3 Graphical representation of the derived formulation (start time: 31:07) 

We need to see what equation (17) means. Let us think of a σ − τ plane and plot σ and τ for each α in this 

plane. The plane with σ on the x-axis and τ on the y-axis is shown in Figure 4. From equation (17), we can 
see that by plotting all points, we will get a circle centered on the σ axis at    . Let us start 

σ = 
σ xx + σ yy 

2 
+ R cos (2 φ − 2 α ) 

τ = R sin (2 φ − 2 α ) 



 

by plotting σxx and σyy on the σ axis. The center of the circle is thus at the mid point of the two points. We 
also plot τxy on the τ axis. Now, we can plot the point (σxx,τxy) which corresponds to e1 plane. If we join 

this point with the center, the line obtained will give us the radius of the circle. This is because the circle  
has to pass through the point corresponding to e1 plane: the circle is the locus of all (σ,τ) when α is varied 
and the point corresponding to e1 plane is obtained for α = 0. We can also verify that the radius R that 

we obtained graphically also matches with the formula for R in equation (12). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: σ − τ plane with various parameters plotted on it. 

 

3.1        Mohr’s Circle (start time: 34:09) 

Once we have obtained the radius and the center of the circle, we can draw the comple te circle as shown 
in Figure 5. This circle is called the Mohr’s circle. When we compare the right angled triangle in Figure 5 

with Figure 3, we see that the angle that the line from center to the point corresponding to e1 plane 
makes with the σ axis would be 2φ. To find σ and τ on any arbitrary plane (for general α), let us look at 
equation (17): the angle in the cosine and sine terms there is (2φ − 2α). So, for a general plane, the 
argument in the trigonometric function there reduces by 2α. So, the radial line from the center to the 

point corresponding to the α-plane on Mohr’s circle should be at an angle of (2φ − 2α) from the x-axis. 
Thus, we can obtain the point corresponding to α-plane on Mohr’s circle by going in the clockwise 
direction by angle 2α from the e1-plane point as shown in Figure 5. 



 

 

Figure 5: Mohr’s circle plot 

 

We summarize below the steps involved in drawing the Mohr’s circle and finding the point coresponding 

to α-plane: 

1. Draw the center of the circle at       . 

 

2. Draw (σ,τ) for e1 plane, i.e. the point (σxx,τxy). 

3. the line joining the center and the point for e1 plane forms the radius of the circle. 

4. With center and radius known, draw your circle! 

5. To find (σ,τ) for α-plane, rotate the radial line of e1 plane by 2α clockwise. 

Notice that the normal to the required plane made an angle α with e1 in the counter clockwise direction 

(also see Figure 2). But on the Mohr’s circle, we draw that point by rotating by 2α in the clockwise 
direction from the point corresponding to the e1 plane. This is because in equation (17), we have 2α with 
a minus sign in the trigonometric functions. So, clockwise rotation of the plane corresponds to counter-

clockwise rotation in the Mohr’s circle and vice versa.  

4         Sign convention while using Mohr’s cirle (start time: 42:40) 

Let us draw the Mohr’s circle again as shown in Figure 6. We know the point corresponding to the e1 

plane. To get to the e2 plane, α should be 90◦ in the counter-clockwise direction. So, in the Mohr’s circle, 

we need to go 180◦ in the clockwise direction from e1 plane. Thus, we get the e2 plane at the diametrically 
opposite point with respect to e1 plane point. The two right angled triangles in Figure 6 are similar and 
thus, we get σ at this point as σyy as required but τ as −τxy. However, in Figure 2, we see that on e2 plane, 

shear component is τxy. So, why are we getting −τxy from the Mohr’s circle? This is because of our 
convention for the shear component of traction. In Figure 2, we had defined positive τ when we go 90◦ 

in the counter clockwise direction from n. So, to get shear component on e2 plane, we go 90◦ in the anti-

clockwise direction from e2 direction and thus, get to the −e1 direction. So, Mohr’s circle is giving us τ on 



 

e2 plane in the −e1 direction whereas τxy, by definition, is the shear component in the +e1 direction. 
Therefore, Mohr’s circle gives us −τxy as the shear traction on e2 plane. We can remember that this 

negative sign comes because n⊥ for e2 plane is along −e1 direction by convention. 

 

Figure 6: Mohr’s circle with important quantities marked on it.  

 

5 Other conclusions that can be drawn using Mohr’s circle (start time: 48:57)  

We can also get the maximum and minimum values of σ and τ using Mohr’s circle. The maximum and 
minimum values of σ are attained on the σ axis itself. These are plotted in Figure 6. The maximum and 
minimum values of τ are on the top and bottom of the circle respectively as highlighted in Figure 6. We 
can verify that these values match with the ones derived in the last lecture. Suppose that the principal 

stress components λ1, λ2 and λ3 are defined such that λ1 > λ2 > λ3. Thus, λ1 and λ2 will correspond to the 
points of maximum σ and minimum σ respectively. From the circle, λ1 and λ2 will be obtained by adding 
and subtracting R to the σ for center respectively, i.e., 

  (18) 

  (19) 

This allows us to get the value of principal stress components directly from the Mohr’s circle: otherwise 
one has to solve an eigenvalue problem. Writing the center of the circle in terms of principal stress 
components, we obtain 

 Center = (20) 

 

 

 



 

We can also get the radius of the circle in terms of principal stress components by subtracting equation 
(19) from equation (18), i.e., 

  (21) 

Notice that in the previous lecture, we had derived the maximum value of shear component of traction  

to be   . And from Mohr’s circle too, we get    . From the Mohr’s circle, we  

can also see that σ corresponding to the point where we have maximum shear will be the same as σ for  

the center of the circle, i.e.   . This is the same value that we had derived in the previous lecture.   

We have thus verified our results of the Mohr’s circle.  


