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Lecture - 8 
Maximizing the Shear Component of Traction 

Welcome to Lecture 8! In this lecture, we will find out the plane on which the shear component of 

traction is maximized/minimized. This is again important because one of the failure theories says that 
the body will fail if the shear component of traction reaches a critical value.  

1 Shear component of traction on an arbitrary plane (start time: 00:45) 

To maximize/minimize, we need to first find an expression for the shear traction o n any plane. We 

consider a part of our body as shown in Figure 1. The plane shown has normal n and the traction on it is 
denoted by t. 

 

Figure 1: A section of the body with normal and shear component of traction shown 

In the last lecture, we had seen that the normal component of this traction (σnn) is given by: 

 σnn = t · n (1) 

To get the shear component of traction, we need to subtract this normal component from the total 

traction vectorially. In Figure 1, the traction t has been decomposed into two parts: normal and shear 
component. The projection of the traction along n corresponds to the normal component given by σnnn. 
The remaining component (perpendicular to n) is the shear part. It can be represented as τn⊥ where τ 

represents the magnitude and n⊥ represents the direction (has to be perpendicular to n). Applying 



 

Pythagoras theorem in the right angled triangle formed by traction and its components shown in Figure 

1, τ2 will be given by 

  (2) 

Note that two vertical bars on each side are used to denote the magnitude of a vector while a pair of 
single vertical bars is used to denote the magnitude of a scalar. 

1.1 Representation in terms of principal planes (start time: 04:08) 

If we work in the coordinate system of principal directions, our stress matrix will be a diagonal matrix  
and that will greatly simplify the calculation. We thus represent everything in this coordinate system 
which yields 

  (3) 

This gives us the formula for square of the magnitude of total shear component of traction on an arbitrary 

plane. Note that this total/resultant shear would be acting in a direction on the plane given by the vector 
sum of both shear components on that plane. For example, on the e1 plane, we have both τ21 and τ31. The 

vector resultant of these two ( ) will give us the square of the magnitude of total shear 
component of traction as given by equation (3). 

2 Maximization/Minimization using Lagrange Multipliers (start time: 07:34) 

Having obtained the expression for the total shear component of traction, this needs to be 
maximized/minimized. As n1, n2 and n3 are not independent of each other, we again use the method of 
Lagrange multipliers. So, we define a function V as given below: 

  (4) 

 

 



 

We’re using α to denote the lagrange multiplier here because we already have λ’s for principal stress 

components. This is the function that has to be maximized/minimized with respect to the 4 unknowns: 
n1,n2,n3 and α. Let us take the derivative of V with respect to these four unknowns starting with the kth 

component of normal vector (nk): 

  (5) 

We have used the fact that the derivative of one component of normal vector with another will give us 
Kronecker delta function. Then, using the Kronecker delta property, we have removed one of the 
summations from each of the terms. The fourth equation is now obtained by taking derivative with 

respect to α and equating to zero, i.e., 

(6) 

This is our constraint itself (i.e. magnitude of n has to be unity). Writing equation (5) for each k separately, 

we get: 

(7) 

(8) 

(9) 

In each of these equations, one among the two terms multiplied has to be zero for the product to be 

zero. There are multiple solutions to this problem and all solutions can be found by considering different 
cases. If suppose n1 = 0 in the first equation, n2 = 0 in the second and n3 = 0 in the third, we get a trivial 
solution for n1, n2 and n3 but that will not give us a valid direction as the magnitude of the direction vector 

will not be 1. So, we take the first term in the first equation and the second terms in the other two 
equations to be zero. So, we have the following equations at hand now: 

 

 



 

(10) 

(11) 

(12) 

Equations (11) and (12) have been obtained by substitution of n1 = 0. We need to find n2 and n3 now. To 

eliminate α, we subtract (12) from (11) to get 

  (13) 

Using identity a2 + b2 = (a + b)(a − b), we can cancel (λ2 − λ3). 

           

 (14) 

As λ2 and λ3 are principal stress components, they are fixed for a given point in space and do not depend 
on what plane we are considering. Also, as this analysis holds for an arbitrary stress matrix at the point 
of interest, λ2 and λ3 can be assumed to be arbitrary. Thus, equation (14) should hold for all λ2 and λ3 

implying that the coefficients of λ2 and λ3 must vanish independently. Thus, we get the values of n1, n2 

and n3 as 

  (15) 

The above equation gives us four solutions for the direction as n2 and n3 both can take two values each 
independently. But these are not the only solutions. In equations (7), (8) and (9), if we would have 
assumed either n2=0 or n3 = 0 instead of n1 = 0, our analysis would essentially have remained exactly 

similar leading to four solutions each given by: 

(16) 

(17) 

So, we have 12 sets of solutions in total given by equations (15), (16) and (17). Keep a note that these 
directions are with respect to the normals of principal planes. For example, if we choose one of the 

solutions: n1 = 
1

√2
, n2 = 

1

√2
, n3 = 0, this tells us that the direction n has to be perpendicular to the third 

principal plane’s normal. And at the same time, it makes an equal angle of 45◦ with the first and second 

principal axes. If we look at all the 12 solutions, at least one component of n is zero for each of the 
solutions. So, each of these directions are perpendicular to at least one of the principal axes. The first set 
(15) is perpendicular to the first principal axis, the second set (16) is perpendicular to the second principal 

axis and the third set (17) is perpendicular to the third principal axis.  



 

3 Magnitude of traction components on planes having maximum shear (start time: 25:41) 

We also want to know the value of the shear component of traction on these planes. To find this, we just 
need to plug in the solution for n in equation (3). For, the set of solutions given by equation (17), we get: 

  (18) 

Therefore, the maximum value of shear traction is half of the difference of principal stress components. 
The value of the normal component of traction on this plane will be obtained by substituting (17) in 
expression of σnn, i.e., 

  (19) 

This is for one set of solution of n. Similarly, we can find τ and σnn for other sets of solutions also. When 

we work it out, we find that for the solution set (15), we get 

  (20) 

and for the solutions set (16), we get 

  (21) 

4 Visualizing results (start time: 30:38) 

To visualize this result, we draw a cuboid at the point of interest with their faces being principal planes 
as shown in Figure 2. Since the faces are principal planes, they have only got normal component of 
traction. We want to draw the planes corresponding to maximum shear. First, consider the set where 

the second normal component n2 = 0, i.e., given by (16). The planes corresponding to this set of normal 
vectors are drawn in green in Figure 2. We now extract this green cuboid out and look at it in isolation 
as shown in Figure 3. For the front face of this cuboid, the normal is such that its second component is 



 

zero. The first and third components will both be 
1

√2
. This normal makes equal angles with the first and 

third principal axes and is perpendicular to the second principal ax is. Similarly, for the left plane, its first 

component will be negative and the third will be positive both with magnitude  
1

√2
. We also know the 

shear and normal components of traction on these planes. For example, on the front face, normal 

component (σnn) will be        and the shear component (τ) will be             . The top face of this  

green cuboid still has only λ2 as it is still a principal plane. We can observe that the planes having 
maximum shear component of traction are at 45◦ relative to two of the principal axes. Also note that 
when we were maximizing the normal component of traction, shear component of traction on those 

planes turned out to be zero. But here, when we maximize the shear component of traction, the normal 
component of traction on these planes are not zero. 

 

Figure 2: The black cuboid is centered at the point of interest with its faces having normals  along 

principal directions. The planes shown in green are the planes where shear component of traction is 
maximized 


