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Principal planes and Principal stress components 
Welcome to Lecture 7! In this lecture, we will learn about the concept of principal stress components 

and principal planes. 
 
1       Definition (start time: 00:30) 

By now we have learnt that at any point in the body, we have different traction on different planes. 
Accordingly, each of the planes also has its own normal component of traction. Among these planes , the 
planes on which the normal component of traction becomes maximum or minimum are called principal 

planes and the values of the normal traction on those planes are called principal stress components. The 
knowledge of such planes and traction on them is important because one of failure theories says that a 
body will fail at a point if the principal stress component reaches a threshold limit. Whenever we design 

a machine, the knowledge of principal stress components can help us to know whether our machine  will 
be within the limits of failure or not. 
 

2        Finding Principal Planes (start time: 1:56) 
Let us suppose we are interested in finding principal planes at a point x in the body as shown in Figure 
1. At this point, the normal component of traction on an arbitrary plane with normal n is given by 
 σnn = tn · n = (σ n) · n (1) 

 

 
Figure 1: A body with an arbitrary point x 

 

Our objective is to maximize/minimize it. We know from the first year calculus that once we have a 
mathematical formula for a quantity (in terms of variables) to be maximized/minimized, we set the 



derivative of the quantity with respect to all variables to zero and solve the resulting equations to obtain 
the variables. Let us choose a coordinate system (e1,e2,e3) and write formula for σnn in 
this coordinate system, i.e.,   

 
 
 

 
(2) 

 
The normal direction (or the three components (n1,n2,n3)) is an unknown here while the stress matrix is 

known. However, we know that any direction vector has to be a unit vector. Thus, the three components 
of n must satisfy 

  (3) 

 
Accordingly, not all three components of the direction are independent, e.g., n3 can be calculated from 
the other two by setting 

  (4) 
 
We can substitute the above formula for n3 in equation (2) and then differentiate the resulting expression 

for σnn just with respect to n1 and n2. However, the modified expression for σnn becomes a bit complex 
differentiating which and further solving the resulting equations is not easy. Another way to 
maximize/minimize our function (2) is using the Lagrange multipliers which we now discuss. 

 
2.1        Method of Lagrange Multipliers (start time: 06:33) 
Whenever a function is to be maximized/minimized in presence of constraints, one uses the method of 

Lagrange multiplier. Basically, the objective function (the function to be minimized/maximized which is 
(2) in our case) is augmented by adding/subtracting to it the constraint equation (equation (3) here) 
multiplied with an unknown Lagrange multiplier. So, the augmented function to be minimized (denoted 
by f) now becomes a function of the 3 components n1, n2, n3 and the Lagrange multiplier λ as follows: 

   
(5) 

 

The term    represents our constraint (equation (3)) and the negative sign in front of 
it could very well have been a positive sign. This sign does not make any difference to the overall 
formulation. As the function f has to be minimized/maximized, we take its derivative with respect to 

each of the unknowns (n1,n2,n3,λ). Let us begin by taking the derivative with respect to n1, i.e., 
 

  (6) 
 
 



As σij is a constant here, it does not get differentiated. As n1, n2 and n3 can be taken to be independent 
now, we can write 

              (7) 
Now, taking the derivative of f with respect to a general component nk and using equation (7), we get 

 

  (8) 
Using Kronecker Delta property, we can remove one of the summations from each term and replace the 
index of summation by the other index in the Kronecker Delta function, i.e.,  

    
(9) 

  

The first and second terms can be clubbed together because i and j are just dummy variables (variable 
of summation) which can be replaced with any other variable. Thus 
 

(10) 

 
 
Finally, as the stress matrix is symmetric, we get 

 
 

        (11) 

 
Because of writing in a summation form, we have ended up with a simple expression. The summation 
expression also helped us to take the derivative with respect to a general component nk. Now, we take 

the derivative of f with respect to λ, i.e., 
   

(12) 

 
So, we have 4 equations (3 from equation (11) and 1 from equation (12)) in 4 unknowns ( n1,n2,n3,λ). 
Equation (11) can be written in a matrix form since for each k, the first term on LHS of (11) can be 
obtained by multiplying the kth row of [σ] with the column of n. This leads to 

 

  (13) 
 

We immediately see that this is an ’eigenvalue-eigenvector problem’ with 
n : eigenvector of σ  
λ : eigenvalue of σ  



We also know from first year mathematics that if x is an eigenvector, then a scalar multiple of x is also 
an eigenvector which can be proved as follows: 
 Ax = λx ⇒ A(bx) = b(Ax) = b(λx) = λ(bx) (14) 

 
Thus both x and bx are the eigenvectors with the same eigenvalue λ for arbitrary b. Thus, the magniude 
of our direction vector n could be anything as far as equation (13) is concerned but equation (12) restricts 
its magnitude to be unity. Thus, equations (12) and (13) together give us a unique solution for the 

direction vector n. Also when we consider equation (13), the left hand side is nothing but the column 
representation of traction on plane with normal n. Thus, we have: 
 tn = σ n = λn ⇒ σnn = tn · n = λn · n = λ.  (15) 

 
From this, we immediately infer that the traction on a plane with normal n (given by (13)) acts along the 
direction n itself and hence have no shear component. Summarizing, the principal planes of stress at a 

point have their normals equal to eigenvectors of the stress tensor whereas the principal stress 
components are given by the eigenvalues of the stress tensor.  
 

3      Properties of Principal Planes at a point (start time: 28:12) 
By definition, principal planes are the planes on which the normal component of traction is 
maximized/minimized. We want to know how many such planes exist at any given point in the body. As 

stress matrix is a 3 × 3 matrix, it will usually have three eigenvalues and eigenvectors but they need not 
all be real. However, being symmetric ensures that these eigenvalues and eigenvectors are all real. In 
fact, for symmetric matrices, the eigenvectors corresponding to different eigenvalues are perpendicular 
to each other too. To prove this, consider two eigenvectors n1 and n2 of a symmetric tensor σ, with 

corresponding eigenvalues λ1 and λ2 (but distinct). Thus, we have 
 

 , (16) 

(17) 
 
We now dot the first equation with n2 and the second one with n1. So, we get 

 
(18) 
(19) 

 
Let us consider equation (19) now. From the matrix vector operations discussed in the first lecture, we 
can take σ to the other side of the dot product by taking its transpose, i.e.,  

 n2 · (σTn1) = λ2(n2 · n1). 
However, the stress tensor being symmetric (σ = σT), we get 

(20) 

(σ n1) · n2 = λ2(n2 · n1) (21) 

  

 
 
 



Now, we subtract equation (21) from equation (18) to get 

  (22) 

As λ1 and λ2 are distinct, n1·n2 has to be zero or the two normals are perpendicular. We have thus proved  
that principal planes at a point are three in number and are perpendicular to each other.  It is also easy 

to show that if two of the eigenvalues turn out to be the same, then any linear combination of the two 
eigenvectors is also an eigenvector. For example: 

(23) 
 . (24) 

This implies that if two of the eigenvalues repeat, there exists infinite number of eigenvectors all in the 
plane formed by n1 and n2 all of which by definition are also the principal planes but all having the same 
eigenvalue or principal stress component. 

 
4  Representation of stress tensor in the coordinate system of its eigenvectors (start time: 34:26)  

If there are three distinct eigenvalues for a stress matrix, the corresponding three eigenvectors will all 
be perpendicular to each other (we proved it in the previous section). Thus, we can also choose them as 
the basis for our coordinate system. Let us represent our stress tensor in this coordinate system. We first 

need to find traction on the planes with normals along the basis vectors of this coordinate system. As 
the basis vectors are themselves eigenvectors of the stress tensor, traction on those planes will simply 
be λn (no shear components present). Thus, the corresponding stress matrix will be a diagonal matrix  as 

shown below: 

   (26) 
Alternatively, given an arbitrary stress matrix in some coordinate system, we can always transform it to 

become diagonal in the coordinate system whose basis vectors are aligned along the eigenvectors of the 
stress matrix. In the general case as shown in Figure 2, both normal and shear components of traction 
are present on the faces of a cuboid element at a point in the body.  

Summing the above two equations:  

σ (αn1 + βn2) = λ (αn1 + βn2) (25) 



 
 

Figure 2: A cuboid element at a point in the body with all the stress components shown on it  
 

But, if we choose the cuboid element in such a way that its faces are along the eigenvectors of the stress 
matrix as shown in Figure 3, its faces will have no shear component because the faces are also the 
principal planes. On these planes, we only have normal components (λ1, λ2, λ3) present. So, the faces of 

this cuboid have no tendency to shear. They can either get pulled apart or pushed inside depending on 
the sign of λ. 

 

 
 

Figure 3: A cuboid element at a point in the body with its face normals along the eigenvectors of the 
stress matrix at that point: all the faces become shear free 
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