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Balance of Angular Momentum (Contd.) 
 

Welcome to Lecture 6! We will continue with our Angular Momentum Balance derivation.  

 
1 Angular Momentum Balance (start time: 00:21) 

1.1 Traction contribution (start time: 00:27) 
In the last lecture we had derived the Torque due to traction forces as: 

   

(1) 
 
 

1.2 Body force contribution (start time: 00:35) 
Similarly, we had derived the torque due to body force as: 

 Tbody force/x =  o(∆V ) (2) 
 
1.3 Dynamics term (start time: 00:41) 

We need to now derive 
𝑑

𝑑𝑡
(H /x). In Figure 1, x is the center of the cuboid as considered previously and y 

is any arbitrary point in the cuboid. If we consider a particle of mass m moving with velocity v, its angular 
momentum is given by: 
 𝑟 /O × mv (3) 

Here, 𝑟 /O  is the position vector of the particle relative to the point ’O’ about which we are measuring 
the angular momentum. To find the angular momentum of the mass m in the cuboid about its center, 

we need to integrate over all the particles that it contains. 

 
 
 

 



 

 
Figure 1: A cuboidal volume centered at the point of interest x. y is an arbitrary point in the volume of 

the cuboid 

 
As we are writing the equation in the center of mass frame, so the momentum of the particle is simply 
mass dm times the velocity of the particle v(y) relative to the center of mass, i.e., v(y)/x. This leads to 

   
 (4) 

 

Note again that the first integral is over fixed/identifiable mass whereas the second integral is over 
changing volume domain since as the identifiable mass moves in space, the volume contained by it 
changes with time. This volume happens to be our cuboid in the current time. Just like linear momentum 

balance, angular momentum balance is also applied always to a fixed/identifiable mass. So, taking the 
time derivative in control volume setting isn’t easy whereas in control mass setting, we can easily move 
the time derivative within the integral. Thus, taking the time derivative in control mass setting, we get 

   
(5) 

 
 
Here, the time derivative of velocity becomes acceleration. In the first term, the time derivative of (y − 

x) will give velocity of y minus velocity of x, i.e., v(y)/x. So, this term cancels as it involves the cross product 
of a quantity with itself. Also note that dm, mass of the particle, is a constant and does not change with 
time: density and volume of a particle can change but mass cannot. For the second term, we can now 
switch back to the volume integral as the time derivative is already inside, i.e., 

  
(6) 

 

Comparing this with the derivation of the torque due to body force term, we see that this is exactly 
similar to that term with just b replaced with ρa(y)/x. So, upon integrating this dynamic term using 



 

Taylor’s expansion for acceleration, we would get a similar result as that of the body force contribution 
to torque, i.e., 

  
(7) 

 

 
1.4 Final balance (start time: 10:54) 
So, now we can substitute equations (1),(2) and (7) in 

 
(8) 

 

(9) 
 
 
As this equation is valid for a cuboid of any size, we can shrink it to its centroid ( x). So, first we divide by 

∆V on both sides and then take the lim∆V→0: 

   (10) 
We finally get 

  

→ Angular Momentum Balance (AMB) (11) 
 
 

This equation holds even if a body force is acting or if the body is accelerating as these terms vanished 
in the derivation itself. 
 

1.5 Representation in a coordinate system (start time: 14:25) 
Let us try to write the tensor equation (11) in component form in (e1, e2, e3) coordinate system. Consider 
the first term in the summation. The representation of e1 in (e1, e2, e3) coordinate system is trivial and is 

given as [1 0 0]T while the representation of σ e1 will just be the first column of the stress matrix  
corresponding to (e1, e2, e3) coordinate system. We thus have 
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(12) 

 



 

Thus, we get the following three scalar equations: 

τ32 = τ23  
τ31 = τ13 

    τ21 = τ12  (13) 

So, the final outcome of the angular momentum balance is that the stress matrix is symmetric which 
holds true even if the body is accelerating or body force is present. 

 
1.6 An alternate method to derive AMB (start time: 19:02) 
There is also a simpler but approximate way to come to this final outcome which is given in many 
textbooks. Consider the same cuboid again. The coordinate system (e1, e2, e3) is shown on the right side 

of Figure 2. We have drawn stress matrix components on some of the planes as shown in Figure 2. On 
the right plane, we have σ11, τ21 and τ31. On the top plane, we have σ22, τ12 and τ32. On the bottom face, 
we have σ22, τ12 and τ32. But, these three act in the −e2, -e1 and -e3 directions respectively. This is because 

this is the −e2 plane. Similarly, we can draw the components on the −e1 plane. 
 

 
Figure 2: Traction components on various faces of the cuboid along with the coordinate system 

 
 
Let us now find the moment due to these tractions about e3 axis passing through the centroid of the 

cuboid. The normal components σ11, σ22 and σ33 pass through the centroid and thus do not contribute to 
this moment. The components τ31 and τ32 also do not contribute to this moment as they are parallel or 
anti-parallel to e3 direction. Only contributions would come from τ12 and τ21. Moment due to τ21 will be 
traction times the area of the face (∆x2∆x3) on which it acts times the distance from the center (       ). 

The component τ21 has two contributions from e1 and −e1 planes both in the same direction (+e3). The 
moment due to two τ12 components acts in −e3 direction. Finally, moment due to body force will be a 
smaller order term. The rate of change of angular momentum about e3 axis is also a smaller order term. 

When we shrink the cuboid, their contribution will vanish quickly than the contribution to moment due 



 

to traction components. The total moment about e3 axis (passing through the center of the cuboid) will 
then be: 

 

  (14) 

This is a simpler derivation but it involves a strong assumption of traction components not varying on 
cuboid’s faces. Likewise, when we find the moment equation about e1 and e2 axis, we will get τ23 =τ32 and 
τ13 =τ31 respectively. The symmetry of stress matrix leads to several simplifications as we will see in future 

lectures. 

 
2 Relating externally applied distributed load on body’s surface to stress tensor(start time: 27:22) 
Suppose we have an arbitrary body which is clamped at some part of the boundary and a load is applied 
on some part of the boundary by an external agent. As the load is usually distributed over an area of the 

boundary of the body, it has the unit of traction which we write as t0 as shown in Figure 3. Our aim is to 
relate the state of stress (at the point where external load is acting) to the applied load itself . If we solve 
the stress equilibrium equations, we can find stress everywhere in the body. But at points on the 

boundary where the external load acts, we can find the state of stress partially without solving the stress 
equilibrium equations. In fact, the relation that we will derive  here will be required as boundary condition 
in order to fully solve the stress equilibrium equations. 
 

 

Figure 3: An arbitrary body subjected to an externally applied distributed load t0 over its surface 
 

Let us set up our coordinate system such that we have e3 axis along the surface normal as shown in Figure 
4. We have drawn the part of the body near the surface. On the top part of this  surface, external load t0 
acts. We are looking at an infinitesimal part of the body, so we can safely assume that t0 is constant on 

the top surface. The directions e1 and e2 are in the plane of the surface at that point and aligned along 



 

the edges of the small part of the body. We also say that the two directions are in the tangent plane at 
that point. So, e3 becomes the normal to this tangent plane. The edges along e1, e2 and e3 directions are 

of length ∆1, ∆2 and ∆3 respectively. 

 
Figure 4: A zoomed view of the part of the body close to the surface point where the distributed 

external load acts 

 
The total force on this small part of the body will be the vector sum of the traction forces applied from 
remaining part of the body, externally applied load and the body force, i.e., 

t−3∆1∆2 + (t2 + t−2)∆1∆3 + (t1 + t−1)∆2∆3 + b∆1∆2∆3 + t0∆1∆2 

We now apply Newton’s 2nd law to this small part of the body: 

t−3∆1∆2 + (t2 + t−2)∆1∆3 + (t1 + t−1)∆2∆3 + b∆1∆2∆3 + t0∆1∆2 = ρ∆1∆2∆3a          (15) 
 

This small box is also called a ’pill box’ in several books. We now divide both sides of the above equation 

by ∆1∆2 and then take lim∆3→0. By taking this limit, we are essentially shrinking the pill box by pushing the 
bottom surface towards the top surface keeping the area of these surfaces (∆ 1∆2) constant. 

          (16) 

The terms containing ∆3 will vanish in the limit and we get 

 t−3 = −t0 (17) 
As t3 and t−3 form an action reaction pair, we finally obtain 
 t3 = σ e3 = t0 (18) 

As mentioned earlier, this equation is also used as boundary condition for solving the stress equilibrium 
equation. This result might look very intuitive and trivial. But, it is not as straightforward as it looks. 

Traction is the force per unit area applied by one part of the body on the other part of the body. It is 
applied by the body itself and is an internal force per unit area whereas t0 is applied by an external agent. 
We cannot conclude that t0 = t3 by intuition because they are two different things. But, this derivation 

tells us that the internal response of the body close to the surface is the same as what the external agent 
is applying. We still won’t be able to conclude anything about t1 or t2 from this derivation though. 



 

 
2.1 Relating stress matrix at surface point with externally applied load (start time: 40:40) 

Suppose we want to find the stress matrix at the surface point with respect to the chosen coordinate 
system. We know that the columns of the stress matrix will be formed by the tractions on e1, e2 and e3 

planes respectively. Thus, using equation (18), we know that the third column is the externally applied 

load per unit area. The first and second columns of the stress matrix are still unknown. As a stress matrix 
has to be symmetric, the third component of the first and second column also become known to us. So, 
we get five entries of the stress matrix at surface point right away as shown below: 

  (19) 
The rest four entries are unknown (out of which only three are independent as the stress matrix has to 
be symmetric) and can be found by solving the stress equilibrium equations. As a special case, if there 
are parts of the boundary where no external load is being applied (t0=0), then 

  (20) 

 
3 Traction and Stress inside a fluid body at rest (start time: 43:56) 
Think of a static fluid, say bucket filled with water as shown in Figure 5. We know that the pressure ( p) 
inside the water is given by ρgh where h is the depth from the top surface, g is the acceleration due to 
gravity and ρ is the density of water. 

 
3.1 Traction (start time: 44:49) 
We want to know the state of stress at any point in the water body. So, we first think of a small 

infinitesimal plane at that point. As fluids cannot sustain shear when they are in static equilibrium, there 
will be no shear component of traction on any plane. The traction would be the same as pressure (p) and 
would act along the plane normal but pointing into the plane due to compressive nature of pressure. 

Thus, at an arbitrary point x in the fluid and on an arbitrary plane at that point (with plane normal given 
by n), traction t will be given by 
 t(x;n) = −p(x) n (21) 

 



 

 
Figure 5: A bucket filled with water with a point x at depth h inside water. 

 

 
3.2 Stress (start time: 48:37) 
Stress matrix in (e1, e2, e3) coordinate system can be found by writing the tractions as columns. Traction 

on ei plane will be equal to −pei. So 

  (22) 

We observe that all the shear components in the stress matrix are zero. We can verify  as shown below 
that σ n will give us the traction given by equation (21): 

 
 t = σ n = −pI n = −pn (23) 

 
Thus, the stress tensor for a fluid body in statics is −pI. 

 


