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Stress Equilibrium Equations 
 
Hello everyone! Welcome to lecture 5! We will discuss about stress equilibirium equations.  
 

1 Introduction (start time: 00:35) 
Let us suppose we have a body which could be clamped at some part of the boundary as shown in Figure 
1. We have talked about traction and stress at a point but not about how stress is varying in the body. 

As we apply a load at some part of the boundary, the stress would be different at different points within 
the body. To decide where the body is going to fail, we need to know the value of stress at every point 
in the body. Higher the stress more the chance of failure. The stress equilibrium equations allow us to 

obtain the distribution of stress in a body. 
 
2 Linear Momentum Balance (start time: 01:40) 

Think of a small cuboid with its centroid at an arbitrary point x as shown in Figure 1. 
 

 
Figure 1: Body under the action of some force. A cuboid is considered centered at x 

 
Let us apply Newton’s second law to this cuboid: 
 

  (1) 
There will be traction on the six faces of this cuboid that will be applied by the other part of the body. 
Suppose the edges of the cuboid are aligned along e1, e2 and e3 directions as shown in Figure 2. The edges 

along e1, e2 and e3 are of length ∆x1, ∆x2 and ∆x3 respectively. To find the net force on this cuboid we need 
to find the forces due to tractions and the body force. 



 

 
2.1 Traction contribution (start time: 04:32) 

Starting with the e1 plane, an arbitrary point on this face will have coordinates as                  in the 

(e1,e2,e3) coordinate system. This is because we need to move by            from the centroid to first reach 

the center of the e1 face. Then, any arbitrary point on this face will have some coordinate along e2 and e3 

given by ξ and η respectively. 

 
Figure 2: The coordinates of an arbitrary point y on the cuboid’s +ve e1 face 

 
In general, traction will vary from point to point on this face. For the particular point under consideration, 

traction will be given by: 
 tn = σ n (2) 

 

  (3) 
 
We want to write this in terms of the stress tensor at the centroid of the cuboid using Taylor’s expansion, 

i.e., 

  (4) 
We neglect higher order terms to simplify the analysis. Also keep in mind that σ and its derivatives are 

evaluated at the cuboid’s centroid. The total force due to traction on e1 plane will be obtained by 

integration of traction over the area of this plane. As ξ = 0 and η = 0 corresponds to the center of this 

surface, we need to integrate from                to           for ξ and from               to           for η. Thus 

 

  (5) 
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The first two terms within square brackets in the above equation are independent of ξ and η. So, they 
can come out of the integration and further integration simply gives the total area of e1 face. The third 

term is independent of η and the fourth is independent of ξ. So, we get 
 

  (6) 
 

The two single integrals give     and       respectively. Thus, when we put their corresponding limits, we 

see that both these integrals vanish. On further noting that ∆x1∆x2∆x3 equals volume of the cuboid 

(denoted by ∆V), we obtain: 

  (7) 
This is the force on positive e1 plane. The force on −e1 plane will accordingly be 
 

  (8) 
The total on e1 and -e1 faces are thus 

 

  (9) 
We can then find out the total force on +e2 and -e2 planes using a similar analysis and we will find that 

only the index ’1’ changes to ’2’ in equation (9). Similarly, for total force on e3 and -e3 planes, the index 
’1’ changes to ’3’. So, the total traction force (denoted by Ftra) on all the six surfaces will be 
 

  (10) 
 
 



 

2.2 Body force contribution (start time: 22:53) 
We also need the body force contribution. As body force is defined as force per unit volume, we need to 

integrate over the volume of the cuboid to get the total force due to body force  which we denote by Fb. 
The body force, denoted by b, can also vary within the volume of the cuboid in general. So, it will be a 
function of the position vector of the point of interest in the cuboid. A general point in the cuboid will 

have position vector (x + γe1 + ξe2 + ηe3). Thus, the total force would be: 

 
  
The higher order terms in the Taylor’s expansion when integrated will give terms of order less than the 

volume of the cuboid. In mathematics, ’o’ is used to denote a smaller order term. So, if we have terms 
like o(∆V ), then if ∆V approaches zero, o(∆V ) will go to zero faster than ∆V itself, i.e., 
 

  (12) 
 

2.3 Dynamics term (start time: 28:50) 

The total linear momentum (�⃗�  ) will be obtained by the volume integration of the linear momentum of 
a small volumetric point of the cuboid: 

  (13) 
As this is for a deforming body, the velocity and density could also be changing in space. So, we again 
need to use Taylor’s expansion of ρv about the centroid. When we use the expansion and solve the 

integration similar to what was done for the body force, we get: 

 �⃗�  = ρv(x)∆V + o(∆V ) (14) 



 

Similarly, for the rate of change of linear momentum we need to expand ρa using Taylor’s expansion 
about the centroid. Here a represents acceleration which may also be changing within the cuboid. Thus 

 
 
 

 
 

(15) 
 

 

Note that the total time derivative 
𝑑

𝑑𝑡
 could be moved inside the integral easily because the first 

integration is over mass domain which does not change since we have to choose such a system whose 
mass does not change with time: Newton’s 2nd law is applied for an identifiable/fixed mass. In case the 
first integral were over the volume, then we could not have moved the total time derivative easily inside 

the integral since volume domain also changes with time for a fixed/identifiable mass.  
 

2.4 Final balance (start time: 33:15) 

Now, substituting equations (10),(11) and (15) in Newton’s second law given by equation (1): 

  (16) 
The o(∆V ) terms can be combined together, i.e., 

  (17) 

This is Newton’s second law applied to a cuboidal volume. Let us now divide both sides by ∆V and shrink 
the volume of the cuboid to its center (∆V → 0). 

  (18) 
We can do this shrinking because this equation is valid for any cuboid irrespective of its volume. Now, 
using equation (12), the term containing o(∆V ) vanishes and we finally get: 

 
   
                                                                                 → Linear Momentum Balance(LMB)  (19) 

 
 
 
This equation is called Linear Momentum Balance because we get it by applying Newton’s second law 

which relates the rate of change of linear momentum of a body to the net external force acting on the 
body. 



 

2.5 Representation in a coordinate system (start time: 38:33) 
Let us write the LMB equation in (e1,e2,e3) coordinate system. For the first three terms, σ will be 

represented by a matrix. When we take the derivative of a matrix by a scalar, we take the derivative of 
each term in the matrix. Then we need to multiply by ei in (e1,e2,e3) coordinate system. (e.g., in this 
coordinate system, e1 will simply be [1 0 0]T ). Following this way, we finally get 

 

  (20) 

We get in total three scalar equations from the three rows of the above matrix equation, i.e., 

 
 (21) 

 
(22) 

 
(23) 

 
Equation (19) is the tensor form of the Linear Momentum Balance and equations (21), (22) and (23) 
represent it in (e1,e2,e3) coordinate system. The first of these (equation (21)) is actually just the balance 

of forces along e1. This is because all the terms present in this equation act in e1 direction. Similar 
interpretation can be made for the remaining two equations (22) and (23). There is an easy way to 
remember these scalar equations: For the ith scalar equation, the first subscript of the stress components 

will always be ’i’ as it denotes the direction. The second subscript is for the plane on which the traction 
is being considered. So, it will take values 1,2,3 in each equation and the derivative of the stress 
component has to be taken with respect to xi corresponding to the second subscript. 

These equations contain derivatives in space. Thus, we would also need some boundary conditions to 
solve them. The solution thus obtained would give us the distribution of stress in the body. 
 
3 Angular Momentum Balance (start time: 47:50) 

We know from first year mechanics course that a rigid body has to also obey the balance of angular 
momentum apart from the Newton’s second law. For a rigid  body, net external torque on it equals the 

rate of change of its angular momentum. We’ll use T to denote Torque and �⃗⃗�  to represent angular 
momentum. Let ’O’ denote a fixed point and ’cm’ the center of mass. We can do the balance of angle 

momentum either about a fixed point or about the center of mass according to which: 
 

  (24) 
We’ll do it about the center of mass of the cuboid (i.e. x). So, we have to first find the net external torque 

about this point which again comes from traction on the six faces and body force. 
 



 

3.1 Traction contribution (start time: 50:54) 
Let us begin with torque due to traction on the plane with normal along e1 (denoted by T1/x). For an 

arbitrary point y on this face, the arm of the force r will be y − x and force on a small area around y would 
be t1dA. Hence 

 

   
 
 
 

 
 
 

 
 

(25) 

 
We have again used Taylor’s expansion here about the center of the cuboid. In the integration above, 
the first term within the small bracket crossed with first two terms within the square brackets will be 

constant and can come out of the integration. So, their integration just gives surface area of �̂�1 face for 
these terms. Other terms will either cance l or will be of lower order than ∆V. In fact, the second term in 
the final expression is also of lower order than ∆V as it is multiplied by ∆x1 along with ∆V. So, this term 

with all terms after it can be clubbed together as o(∆V), i.e., 
 
  (26) 
 

Doing a similar analysis for −e1 plane: 
 

 
Adding torques on e1 and −e1 faces, we get 

 T1/x + T−1/x = e1 × σ e1∆V + o(∆V ) (28) 

Doing a similar analysis for the remaining four faces, we obtain 

  

(29) 
 
 



 

3.2 Body force contribution (start time: 59:17) 
Now, consider torque due to body force about the centroid. Now, y will represent a general point in the 

volume of the cuboid. The volumetric integration together with Taylor’s expansion leads to 

 

 

 
 
 

 

(30) 
 
Noting the formula for centroid (𝑥̅,𝑦,𝑧̅) for an arbitrary volume given by 

 

  (31) 
equation (30) becomes 

 

                                                              (32) 

Here x1c represents x1 coordinate  of centroid with respect to the cuboid’s centroid itself. Thus, it will be 
zero. Similarly, all other terms are either going to vanish or will be of the order smaller than the cuboid’s 
volume. So, we can club all the terms together as 

                                                                                 
(33) 

Thus, the body force contribution to the torque has all terms of the order less than the volume of the 
cuboid. We will continue from this point in the next lecture. 


