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Hello everyone! Welcome to Lecture 31! In this lecture, we will discuss about different theories of 
failure. 

1 Introduction (start time: 00:25) 

Think of an arbitrary body clamped at some points on its surface as shown in Figure 1. 

 

Figure 1: A body is clamped at some points on the boundary. An arbitrary traction is applied on the 
body. 

It is further subjected to traction at some other parts of the surface. The body deforms due to the applied 
traction. As we increase the magnitude of applied traction, the body deforms more and more and at one 
point, the body will eventually fail. This failure can be in terms of the body suddenly getting deformed a 
lot (yielding or buckling) or due to crack developing in the body. The failure usually initiates at a point in 
the body and not at all points together (e.g., due to crack). At each point in the body, a different state of 
stress and strain exists. If, at a point, some function of stress or strain components reaches a critical 
value, failure occurs. The different theories of failure have been developed on the basis of the specific 
form of the failure function in terms of stress/ strain components. For example, failure could occur at a 
point due to principal stress component reaching a critical value or maximum shear stress reaching a 
critical value. In some cases, neither strain not stress but energy stored at a point might reach a critical 
value causing failure. The various theories of failure can be listed as follows: 



 

1. Maximum principal stress theory 

2. Maximum shear stress theory 

3. Maximum normal strain theory 

4. Maximum shear strain theory 

5. Distortional energy theory 

6. Octahedral shear stress theory 

As there are multiple strain and stress components at a point, we therefore talk of maximum stress or 
strain reaching a critical value. But, the energy stored at a point being unique, there is nothing like 
maximum energy theory: note that we have considered only the distortional part of energy at a point 
and not the total elastic energy. Also, we will see that the distortional energy theory and octahedral 
shear stress theory are related. Let us discuss these theories one by one. 

2 Maximum principal stress theory (start time: 05:18) 

To obtain the critical value for failure, we usually do simple tests like simple tension test or torsion test. 
Let us assume that we are doing a simple tension test to find the critical value. Think of a bar which is 
being pulled from both the ends by a distributed tensile force σ11 as shown in Figure 2. 

 

Figure 2: A bar is pulled from both ends by distributed force σ11. 

We increase the value of σ11 slowly until the body fails, say at σ11 = σy. Now, suppose the body is obeying 
the maximum principal stress theory for failure. As we are doing a simple tension test, the state of stress 
at a general point in the body will be 

   

(1) 



 

The principal stress components for such a state of stress can be found directly through inspection of the 
stress matrix, i.e., 

 λ1 = σ11, λ2 = λ3 = 0. (2) 

Thus, the maximum principal stress is simply σ11 which should be less than or equal to the critical value 
of principal stress, i.e., (σy) which we obtained from direct measurement in simple tension test. 

For a general deformation, the maximum principal stress may not be equal to σ11. Even then, one 
first does simple tension test to obtain σy since it is easier to perform and that, one gets σy by directly 
comparing it with the applied load at failure. Then for the general loading scenario, one has to first obtain 
the distribution of stress in the body and then obtain maximum principal stress at every point in the 
body, say λ1(x). One further computes the maximum value of λ1(x) among every point in the body and 
compare with the critical value σy to check for failure, i.e., 

max
𝑥

 λ1(x) < σy.             (3) 

3 Maximum shear stress theory (start time: 10:42) 

We again do the simple tension test to find out the critical value of shear stress in the body. We increase 
the distributed load σ11 as shown in Figure 2. The load at which the body fails is σy. The state of stress is 
given in (1). The principal stress components for this state of stress are λ1 = σ11, λ2 = 0 and λ3 = 0. Thus, 
maximum shear stress which is obtained by           turns out to be      . 

This will become equal to the critical shear stress value τy when σ11 = σy which implies 

                 . (4) 

Once τy is obtained through simple tension test, it holds even for general loading scenario. The maximum 
shear stress for a general loading case with principal stress components λ1, λ2 and λ3, is given by           . 
So, to avoid failure, the following condition should be satisfied at every point in the body: 

                              . (5) 

We can also obtain the critical value of shear stress τy from torsion test instead of tension test. Figure 3 
shows a circular beam subjected to equal and opposite torques at the ends. 

 



 

 

Figure 3: A circular beam undergoing torsion. 

We had found the state of stress for such a case earlier. In cylindrical coordinate system, the stress matrix 
can be written as 

   

                                     . (6) 

We can find the maximum shear stress for this state of stress by drawing the Mohr’s circle. As er is a 
principal axis, we can draw the Mohr’s circle directly. As σθθ and σzz are zero, the center of the circle will 
be at the origin while the radius of the circle will be the length from origin to τθz. Figure 4 shows the 
Mohr’s circle. 

 

Figure 4: Mohr’s circle for the state of stress given in (6). 

Therefore, the maximum shear stress τmax is simply τθz, the value of shear stress in the cross-sectional 
plane. We can write this shear stress τθz in terms of the applied torque T as follows 

                  . (7) 

This happens to be the maximum shear stress at any point for the case of pure torsion. As it changes 
with radial coordinate r, its maximum value for the entire body is attained when r is maximum, i.e., on 
the outer surface of the cylinder. Thus, the critical value of shear stress τy can be written as 



 

                               . (8) 

where T∗ is the critical torque value at failure. Once τy is obtained from torsion test, for the general 
loading scenario, one can write 

  (9) 

We can also formulate the maximum normal strain and maximum shear strain theories similarly. Let us 
now look at the distortional energy theory. 

4 Distortional energy theory (start time: 19:14) 

Consider a body under general loading. Thus, we have general state of stress at every point in the body. 
There will be three principal components of stress at every point which we denote by σ1, σ2 and σ3. Let 
us now obtain the strain components in the principal coordinate system. There is no shear stress in the 
principal coordinate system and thus the shear strains will also be zero using linear stress-strain relation 
for isotropic bodies. We only have normal strains ϵ1, ϵ2 and ϵ3 which can be written as follows in terms 
of principal stress components: 

  

 

                                                      . (10) 

The total elastic energy per unit volume can then be written as 

strain energy/vol = 

 

 

 

(11) 

We have to extract the distortional part of energy from this. We had decomposed the stress and strain 
matrices into hydrostatic and deviatoric (or distortional) parts in a previous lecture. We can use the 
hydrostatic part of the stress and strain to get the volumetric part of energy, which just causes change 
in the volume of the body. We can write 

 Volumetric strain energy density =  (12) 



 

The volumetric stress is simply the first invariant of stress matrix while the volumetric strain equals the 
trace of the strain matrix. Thus 

 Volumetric strain energy       = 

 

 

(13) 

Finally, the distortional energy becomes 

 Distortional energy = total energy - volumetric strain energy 

    =                                                                                   . (14) 

One can obtain the critical value of distortion energy from simple tests like tension test or torsion test. 
In a simple tension test, σ2 and σ3 are zero and we only have σ1. Thus, the distortional energy for a simple 
tension test equals 

 Distortional energy =  (15) 

Thus, the critical value of distortional energy will correspond to the point where       (the 
tensile stress value when the body fails), i.e., 

 Critical distortional energy =  (16) 

For a general loading scenario, the following condition must be satisfied at each point in the body to 
avoid failure: 

                                                                                                       . (17) 

We can similarly do a torsion test to get the critical distortional energy. The stress matrix for a torsion 
test is given in equation (6) and the Mohr’s circle for this state of stress is drawn in Figure 4. From this, 
we can find the critical principal stress components as 

 

(18) 

The critical distortional energy from this simple torsion test thus becomes 



 

  (19) 

Thus, for a general loading scenario, the following condition must be satisfied at each point in the body 
to avoid failure: 

                                                                                                                           . (20) 

We can notice that the expression in the parentheses is proportional to the square of octahedral shear 
stress τoct. Therefore, the distortional energy theory and the octahedral shear stress theory are related. 

5 Example (start time: 32:09) 

Let us now discuss an example which demonstrates how we can use these theories to design a beam. 
Consider a circular beam which is subjected to equal and opposite torques T and bending moments M 
at its ends, as shown in Figure 5. 

 

Figure 5: A circular beam, with its axis along z axis, is subjected to equal and opposite torque and 
bending moment at its ends. 

We want to first find the state of stress corresponding to this loading in the cylindrical coordinate system. 
We can consider the effects of bending and torsion separately and then superimpose them. As the 
bending will be pure bending, we will only get non-zero σzz due it as 

                        . (21) 

Due to torsion, only τθz and τzθ will be non-zero and will be given by 

                              . (22) 

We now look at the cross-section of the beam as shown in Figure 6. 



 

 

Figure 6: Cross-section of the beam shown in Figure 5. 

The coordinates of a general point in the cross-section can be written as (r,θ). Thus, y coordinate of any 
point equals rsinθ. Substituting this in equation (21), we get 

                                     . (23) 

The state of stress obtained by superposition can be written as 

 

   

(24) 

We can superpose the two phenomena because we are working in linear elasticity regime. We had also 
discussed that for circular cross-sections: 

 J = Ixx + Iyy (using perpendicular axis theorem) 

 = 2Ixx (∵ Ixx = Iyy) (25) 

To get the condition for failure, we can apply a suitable theory of failure. Let us think of applying 
maximum shear stress theory. We can find the maximum shear stress by drawing the Mohr’s circle for 
the given state of stress. This can be done easily because er is already a principal plane. This Mohr’s circle 
is shown in Figure 7. 

 

 

 



 

 

Figure 7: Mohr’s circle for the state of stress given in equation (24). 

The stress components       and σθθ = 0 are marked on σ axis. The center of the circle is in the 
middle of these two. Similarly,       is marked on τ axis. The radius is the line joining this point and 
the center. With the center and radius known, the circle is drawn. From the Mohr’s circle, we can see 
that the value of maximum shear stress is equal to the radius of the circle, i.e., 

 

This value must be less than the critical value of shear stress (τy) to avoid failure in the beam. The body 
will fail first at the points where the shear stress is maximum. Both the terms in the square root are 
proportional to the radius. So, the shear stress will be maximum on the outer periphery (lateral surface) 
of the cylinder where both these terms attain their maximum values. So, we can substitute r = R in both 
the terms. Also, the maximum value of sinθ will be 1 at θ = 90◦. This is true for points on the y axis. When 
we find the points satisfying both the condition, i.e., lying on the periphery as well as the y axis, we get 
two points. These points are shown in green in Figure 8. 

 

 



 

 

Figure 8: The cross-section of the cylinder with the points experiencing maximum shear stress shown in 
green 

If we can ensure shear stress at these points is less than the critical value, the body will not fail. Thus, we 
can replace 2I = J, r = R and sinθ = 1 to get the following condition: 

  (26) 

Any combination of bending moment M and torque T for which the LHS of the above equation is less 
than τy is a safe loading condition for operation. But, in reality, we always design considering some factor 
of safety for incorporating unexpected circumstances. Suppose the factor of safety to be used in 
designing is N which can take any value like 2, 3 or 2.5 but it has to be greater than 1. If the body fails at 
critical torque T∗ and critical bending moment M∗, the operating torque T and operating bending moment 
M should be such that 

 TN ≤ T∗ 

 MN ≤ M∗            (27) 

Thus, substituting T by TN and M by MN in equation (26), we get 

 

                                                                                                                                 

 (28) 

The factor of safety finally reflects on the RHS in this particular case which limits our operational value 
of torque and moment while designing as we don’t want the operational load to reach anywhere near 
the critical load. 


