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Stress Tensor and its Matrix Representation 

In the previous lecture, we had learnt about traction vector and how we could find it on any arbitrary 

plane. In this lecture, we will learn about stress tensor, its matrix representation and its physical 

meaning. 

1   Traction vector (start time: 00:35) 

We had found the formula for traction at point x on an arbitrary plane with normal n (shown in Figure 1) 

as: 

  (1) 

 

 

Figure 1: A plane with normal n at point x 

But physically, this tn, the traction on the plane with normal n, has to be the same irrespective of what 

three planes were used to find out this traction, i.e., 

  (2) 

In the first case, the planes used have normals along e1, e2, e3 whereas in the second case, the planes 

used have normals along 𝑒̂1, 𝑒̂2, 𝑒̂3. 

Result : The formula for tn is independent of what three planes are used. 

plane 



 

2   Stress Tensor (start time: 05:24)  

We can write equation (2) in a slightly different way using the commutative property of dot product:  

  (3) 

A vector is represented as a column and dot product (a·b) in matrix form is given as [a]T [b] (derived in 

lecture 1). So, writing a general term of this summation in matrix form: 

 

(4) 

As matrix multiplication is associative, we can also write this as : 

  (5) 

tensor product 

We know that [a][b]T was the matrix representation for tensor product (a ⊗ b). We can check that the 

dimensions of the overall product remain same as the tensor product gives a 3 × 3 matrix and that 

multiplied by a vector will again give back a vector (3 × 1). Going back to the vector notation again by 

using rearrangement given by (5) in summation terms of equation (3), we get: 

  (6) 

stress tensor 

This is just a different viewpoint and the nice thing about the final result here is that the orientation n 

has been separated. The tensor that is multiplied with n is called STRESS TENSOR. It is denoted by σ. So 

finally, we get : 

  (7) 

We have thus found out the expression for the stress tensor (dependent on x alone) from equation 

(6) as: 



 

  (8) 

Thus, to obtain a stress tensor, choose three independent planes at a point,  find tractions on those 

planes, do their tensor product and sum! The stress tensor is independent of what three planes we 

choose! (Because this summation has to remain the same for any set of three planes we choose)  

 

3   Representation of vectors and second order tensors in a coordinate system (start time: 14:40)  

3.1   Representation of vectors (start time: 14:51) 

We have a vector v in space (with magnitude v) and we first choose a coordinate system (e1, e2, e3) such 

that our vector is aligned along e1 as shown in Figure 2. Thus, representing the vector in this coordinate 

system, we get: 

  (9) 

Now, choose another coordinate system ( 𝑒̂1, 𝑒̂2, 𝑒̂3) as shown in Figure 2 in red. Here, 𝑒̂3 is same as e3 

and 𝑒̂1 makes an angle of 45◦ with e1. Representation of v in this new coordinate system will be: 

  (10) 

Thus, for vectors, their representation in different coordinate systems is different even though the 

vectors themselves do not change with coordinate system. This is true for nth-order tensors in general. 

 

 

 

 

 

 

Figure 2: Two coordinate systems (black and red) with a vector v 



 

3.2   Representation of second order tensors (start time: 17:30) 

Let us try to represent equation (8) in (e1, e2, e3) coordinate system. Now, as we know that stress tensor 

is a second order tensor, so it’s representation is going to be a matrix.  

 

We have to represent ti and ei also in (e1,e2,e3) coordinate system: 

  (11) 

Here, a general traction component signifies the following: 

 (12)  

So, tij represents the component of traction on ‘i’ plane along jth direction. Thus, if we want to write down 

the stress matrix in (e1,e2,e3) coordinate system, then the first column has to be the representation of 

traction on plane whose normal is along the first coordinate axis (which is e1 here). Similarly, the second 

column has to be the representation of traction on plane with normal along second coordinate axis and 

the third column has to be the representation of traction on plane with normal along third coordinate 

axis. Often, a slightly different notation is used for stress matrix, i.e., 

  (13) 

Off diagonal elements are represented by τ and diagonal components are denoted by σ. So, if we 

consider a component τij or σii, ’j’ denotes the plane normal and ’i’ denotes the component of traction 

(i.e. the direction of component). So, τij represents traction on jth plane and its component along ith 

direction. σii is trivial and denotes traction on ith plane and its component in the ith direction itself. 

 

3.2.1 Representation of stress tensor in Cartesian coordinate system (start time: 30:38)  

Cartesian coordinate system means that our coordinate axes are e1,e2 and e3 (perpendicular axes). We 

want to know the stress tensor at a given point x in our body and we want to represent the stress matrix 

in the Cartesian coordinate system. Think of a cuboid around the point x as shown in Figure 3 on the left. 

It is centered at x. Its six faces are along e1, e2, e3, -e1, -e2, -e3 respectively. The traction that acts on e1 

plane is t1. It has three components as shown in Figure 3. The component along e1 is σ11, the component 

along e2 is τ21 and the component along third direction (e3) is τ31. We can conclude that σ11 is normal to 



 

the plane whereas τ21 and τ31 are in the plane. Thus, σ11 is called the normal component of traction and 

τ21 and τ31 are called as the shear components of traction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: The coordinate axes are shown on the right. A cuboid is considered at point  x and traction 

components are shown on this cuboid. 

The shear components of the traction are in the plane and they try to shear the body. To visualize this, 

think of two planes in the body which are very close to each other and have their normals parallel to e1. 

Between those planes, if we have a traction with a component along the plane, then that will try to shear 

the plane (i.e. displace the two planes along the plane itself). Similarly, σ11 is perpendicular to both the 

planes considered. If σ11 is positive, the nature of the traction will be tensile and it will try to pull the two 

planes apart. So, on the first plane, the second plane will apply traction so as to pull it towards itself and 

vice versa. And for shear components, if there is some traction component in the e2 direction, then the 

shearing is going to happen along e2 direction and if there is some component along e3 direction then 

the shearing is going to happen along e3 direction. If we have a component in both these directions, then 

the shear will happen along some other resultant direction. 

Remark: Positive σ11 implies it is tensile in nature and negative σ11 means it is compressive in nature. 

Shearing means sliding between two planes along the plane itself. 

 

Going back to our cuboid, the components of traction on top and front face also are drawn in Figure 3. 

Remember that second index denotes the plane normal and the first index denotes the direction. For 

the bottom face however, plane normal is along -e2. So, we need to find t−2. We have already seen in 

previous lectures that: 

 t−2 = −t2 (14) 



 

So, on the bottom face, the traction components will point in the opposite direction of those of the top 

face. The magnitude of the traction on the bottom face remains same as that for the top face but the 

direction gets reversed. In this way, traction components on all the planes can be drawn.  

Note : We should keep in mind that we wanted to find out the stress matrix at the point x and the six 

planes that we have here are not passing through the point x. However, if the planes are not passing 

through point x, then we do not have tractions at that point. We should understand that the point x is 

drawn at the center of the cuboid just for visualization. These six faces actually pass through the point x 

when we shrink this cuboid to the point x. Only then, we have these traction components at this point 

itself which we can then relate with the stress matrix at the same point. 

 


