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Lecture - 29 
Energy Methods 

Hello everyone! Welcome to Lecture 29! In this lecture, we will discuss energy methods which can be 
used to solve the deformation problem. 

1 Introduction (start time: 00:20) 

To obtain the deformation of a body, we first discussed how stress-equilibrium equation can be used. 
We then discussed beam theory for solving deformation of beams. There is also an alternate method to 
obtain deflection in an arbitrary body, which is the energy method. You might recall from first year 
mechanics course that we could solve for the motion of rigid bodies either by using Newton’s laws of 
motion or by using the principal of minimum potential energy. The latter approach yields simpler 
equations in several cases and thus is attractive. Likewise, energy methods provide an alternate method 
for solving the deformation of bodies using simpler equations. 

2 Linearity and superposition (start time: 01:52) 

Consider an arbitrary body as shown in Figure 1. 

 

Figure 1: An arbitrary body clamped at two points and subjected to a point load at point 1 

It is clamped at two points and subjected to a concentrated load F1 at point 1. Let us say we want to 
measure the deflection δ at a different point (say point 3 in the figure) which can be either on the surface 
of the body or within the body. How is the deflection δ related to force F1? To explore it, let us look at 
the stress equilibrium equations as given below: 

 



 

 

 

(1) 

These equations are supplemented with the following boundary conditions: 

σ n = t0, (traction boundary condition) 

       u        =           u0.        (displacement boundary condition)          (2) 

Notice that the above equation is linear in stress components which, in turn, are linear in strain 
components (due to linear stress-strain relation) . Finally, strain components are also linear in 
displacement components.1 Thus, the governing equations become linear in unknown displacement 
components. Similarly, the boundary conditions are also linear unknown displacement components. Due 
to this linearity of governing equations, the displacement of the body will be linearly related to externally 
applied load. To illustrate it more clearly, think of a spring-mass problem as shown in Figure 2. 

 

Figure 2: A mass tied to a spring is stretched by a force f(t). 

We know that the governing equation for the displacement x of the block of mass m is: 

 m𝑥̈ + kx = f(t). (3) 

Here, k represents the spring constant and f(t) represents the externally applied force. The equation 
being linear, we know that the displacement x is linearly related to the forcing term f(t). So, if we double 
the applied force, the displacement also gets doubled. Furthermore, if the displacement solutions for 
forces F1 and F2 are x1 and x2, respectively, then the solution when the applied force is F1+F2 will be x1+x2. 
This means that if the equation is linear in the unknown, then the unknown becomes a linear function 
of the forcing term and superposition also holds. The linearity and superposition property applies also 
to solid mechanics problems since the governing equations and boundary conditions are linear too in 
the unknown displacement. The external load here consists of the body force and boundary 

 
1 If we consider large deformation problem, then stress-strain relation and strain-displacement relation will become 

nonlinear. 



 

traction/point loads. Coming back to the problem shown in Figure 1, δ3 will thus be linearly related to 
the applied load F1: 

 δ3 ∝ F1 ⇒ δ3 = k31F1. (4) 

The proportionality constant k31 is also called influence coefficient. If we change the location of the force 
F1, k31 will change. Similarly, if we change the point at which we are measuring the displacement, k31 will 
change. Hence, the influence coefficient depends on the location of the applied force as well as on the 
location of the point where displacement is being measured. It also depends on the direction of applied 
force but does not depend on the magnitude of force.2 Finally, the influence coefficient also depends on 
the direction along which we are measuring the displacement component. For example, displacement 
being a vector quantity, δ3 will have three components     ,       and    . For each of the components, we 
will have different influence coefficients relating to each component of force applied at point 1, i.e., 

 

(5) 

Each of the equations above resembles Hooke’s law for a spring where force in the spring is proportional 
to the elongation of the spring. The above equations hold only if one (but any) of the components of 
force is present. In case all components are present, one can apply the principle of superposition as 
mentioned earlier which would yield 

 

(6) 

Note that the influence coefficients are unaffected whether only one component of force is present or 
all components are present. The principle of superposition would hold similarly even if the force is acting 
at two (or more) different points in the body. For example, suppose we only apply a force F1 at point 1 
and no other force, the displacement at point 3 in a prescribed direction will be given by: 

 δ3 = k31F1. (7) 

Now, in another situation, if we apply a force F2 at point 2 and no other force, the displacement at point 
3 will be given by: 

 δ3 = k32F2. (8) 

In a third situation, if we apply force F1 at point 1 and force F2 at point 2 together, the displacement at 
point 3 will become 

 
2  If the influence coefficient were to depend also on the magnitude of applied load, the relationship between 

displacement and applied force will become nonlinear. 



 

δ3 = k31F1 + k32F2.             (9) 

3 Alternate way to prove superposition (start time: 19:54) 

Consider an arbitrary body clamped at two locations. We apply a force F1 at point 1 and measure vertical 
component of displacement at point 3 (see Figure 3). 

 

Figure 3: A force F1 is applied on a body at a point 1 and vertical displacement is being measured at 
point 3. 

The displacement will be 

 δ3 = k31F1. (10) 

Due to the application of force, the system must have deformed and changed its shape and size (see blue 
dotted lines in Figure 4). 

 

Figure 4: A force F2 is applied on the deformed body (shown as blue dotted line) at point 2’ (originally 
at 2) 
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In the next step, we apply force F2 at point 2’ (originally at 2) to the deformed body. So, both F1 and F2 

are acting now. As F2 starts to act after the body has deformed, so the influence coefficient k32 may have 
changed to       which implies 

                                     . (11) 

In the third step, we apply a force −F1 at point 1” (originally at 1) to the currently deformed body. Due to 
this, the total force acting at point 1 becomes zero and we are only left with a force F2 at point 2. As the 
condition of the body has changed, the influence coefficient k31 may have changed to . So, the total 
vertical displacement at the same point 3 will be 

                                                          . (12) 

Alternately, as in the final configuration, we only have a force F2 at point 2, the vertical displacement of 
point 3 should be 

 δ3 = k32F2. (13) 

Notice that we have used the original influence coefficient in the above equation as if only force F2 were 
acting right from the beginning. We could say so because the displacement in an elastic body only 
depends on the final state of applied loads and does not depend on how those loads were applied. 
Equating equations (12) and (13) since the final state of loading is the same, we obtain 

 

 (14) 

Since this has to hold for arbitrary magnitudes of (F1, F2), their coefficients must vanish. Thus, we get 

  

 (15) 

This means that in step 2 when both F1 and F2 act, the displacement would simply be 

 δ3 = k31F1 + k32F2 (16) 

which proves that one can apply superposition principle. 

4 Corresponding displacement/Work absorbing displacement (start time: 26:55) 

The displacement of the body at the point of application of force and in the same direction as the applied 
force is called the corresponding displacement. As this component of displacement is also responsible 
for the actual work done by the force, it is therefore also called the work absorbing displacement. The 



 

perpendicular component of displacement does no work. Suppose we apply force at point 1 and measure 
the corresponding displacement δ1, then 

 δ1 ∝ F1 or δ1 = k11F1. (17) 

5 Energy stored in the body due to an applied force (start time: 30:24) 

We now want to find the energy stored in a deformable body due to a force, say F1. Would it simply be 
F1 · δ1 where δ1 is the corresponding displacement? To find an answer to this, consider a spring having 
spring constant k and clamped at one end. A force F is applied at the other end as shown in Figure 5. 

 

Figure 5: A spring clamped at one end is stretched by a force F. 

We know that the energy stored in the spring due to this force is 

 Energy stored =  (18) 

Here, x denotes the elongation in the spring or the displacement of other end which is also the 

corresponding displacement. To understand the origin of the factor 
1

2
 in the above expression, we can 

think of pulling the spring very slowly. When the displacement of the spring is ∆, the force within the 
spring is just k∆. So, to ramp up the displacement from 0 to x, we need to ramp up the force from 0 to 
kx (= F). The corresponding force-displacement curve is shown in Figure 6. 

 

Figure 6: Force-displacement curve for a spring that is stretched quasi-statically from 0 to x. 

The work done in this process will be area under the curve which is the area of the shaded triangle                 

( = 
1

2
 F · x). When we apply the load quasi-statically in this manner, the total energy stored is just 

1

2
 F · x. 

However, the final energy stored is independent of the loading path taken in the process: it only depends 
on the final force/displacement. Thus, even if we apply the force instantly to reach the final stage, the 



 

energy stored in equilibrium would still be 
1

2
 F · x. We should keep in mind that when we apply the force 

F instantly and the spring displaces by x, the work done by the external agent is F ·x. The energy stored 
in the spring is just half of this value - the other half of the energy either gets converted into kinetic 
energy or dissipates as heat. In the quasistatic path, the work done by the external agent exactly equals 

the energy stored in the spring, i.e. 
1

2
 F · x and no part of the work is dissipated. Taking the analogue of 

the spring, we can note that the energy stored in a deformable body due to the action of force F1 is 

                                                        . (19) 

This is the energy stored due to a single force. We can have multiple forces F1, F2, ...Fn (with corresponding 
displacements δ1 ,δ2, ...δn) acting on the deformable body as shown in Figure 7. 

 

Figure 7: Multiple forces applied on a body 

The total energy stored would be 

                    . (20) 

In the above, we cannot substitute δi as kiiFi because δi contains contributions from multiple forces. It 
would be the following: 

(21) 

 

Plugging this into equation (20), we get 

 Total energy stored:                                . (22) 

This is the expression of total energy stored in the body in terms of the applied forces and influence 
coefficients. 



 

6 Reciprocal relation (start time: 38:05) 

The reciprocal relation allows us to obtain relationship between influence coefficients kij and kji. Let us 
work this out through energy considerations. We will consider two different processes. In the first 
process, think of a body with a force F1 applied on it at point 1. The energy stored in the body will be 

                                          . (23) 

This action is shown in Figure 8 where due to this force, the body deforms from solid black configuration 
to dotted red configuration. 

 

Figure 8: Subsequent application of forces F1 and F2 on a body. 

We call this step 1 where the point 1 gets displaced to 1’ during deformation. Then, we apply force F2 at 
point 2’ in the current configuration which was at point 2 in the original/undeformed body. The body 
gets further deformed to dashed blue configuration as shown in Figure 8. The point 1’ goes to 1” and 2’ 
goes to 2”. This is step 2. The energy stored in the body in the final state will be 

   

(24) 

Notice that the contribution to energy due to F1 during step 2 is not divided by 2. This is because during 
step two, the full F1 acts throughout the deformation: the work done will thus simply be the force F1 

times the extra displacement (1’ → 1’’). This additional displacement is nothing but the displacement 
due to F2, i.e., k12F2. The work done due to the sudden application of force F2 at its own point of 
application is same as the ramped up work. Thus, it is divided by 2. The corresponding displacement in 
this term represents movement of 2’→2” (and not of 2→2”) as this part of displacement is the one due 
to the application of F2 which can be written as k22F2. 

We now think of the second process which is basically the first process only but the order of the two 
steps is reversed here. This means that we first apply force F2 and then apply force F1 in the second step. 
Due to application of F2 in the first step, the energy stored in the body will be 



 

                        . (25) 

In the second step, F1 is applied. As F2 is acting fully in this step, the additional energy due to it in step 2 
will not be divided by 2. The total energy stored in the body will thus be 

  

 

(26) 

Now, in both the processes, the final state is the same with both F1 and F2 acting. Thus, the final energy 
stored in the two processes must be the same. Hence, upon comparing equations (24) and (26), we get 

       k12 = k21.            (27) 

Generalizing this, we can write the reciprocal relation as 

       kij = kji.                   (28) 

7 Maxwell-Betti-Rayleigh reciprocal theorem (start time: 50:19) 

Consider again a body which is clamped at some points. We think of two situations. In the first situation, 
multiple forces F1,F2,...Fn are applied on it as shown in Figure 7. The corresponding displacements for 
these forces are δ1,δ2,...δn. In the second situation, we apply forces   at the same locations 
and measure the corresponding displacements as     . The Maxwell-Betti-Rayleigh reciprocal 
theorem tells us that 

 (29) 

This means that the work done by forces in situation 1 through the corresponding displacements of 
situation 2 equals the work done by forces in situation 2 through the corresponding displacements of 
situation 1. Let us try to prove this. Consider the LHS of equation (29): 

 

 

 

(30) 

We can rearrange these terms by collecting the first terms within each bracket, second terms within 
each bracket and so on, i.e., 



 

 

 

 

 

 

(31) 

This completes the proof of reciprocal theorem. 

8 Generalized forces and generalized displacements (start time: 58:35) 

Till now, we have only discussed about forces and displacements. The above relations can be extended 
to moments and rotations as well. Just like the work analog of force is displacement, the work analog of 
moment is rotation. Consider an arbitrary body on which several forces and moments act (see Figure 9). 

 

Figure 9: A body on which several forces and moments act 

We can measure the corresponding displacements and corresponding rotations. A corresponding 
rotation is the local rotation of the deformable body in the direction of the applied moment at the same 
point. Moments and rotations can be seen as generalized forces and generalized displacements, 
respectively. If we think in these terms, the relations derived above do not differentiate between forces 
and moments or between displacements and rotations. Thus, all above relations will hold for moments 
and rotations also. For example, the corresponding rotation (θ4) for M4 will be given by 

 θ4 = k41F1 + k42F2 + k43F3 + k44M4 + k45M5 + k46M6 (32) 
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The dimensions of the influence coefficients relating force and rotation and those relating moment and 

rotation are different though. For example, the dimension of k41 is 
𝜃

𝑓𝑜𝑟𝑐𝑒
 or 

1

𝑓𝑜𝑟𝑐𝑒
 while that of k44 is 

𝜃

𝑚𝑜𝑚𝑒𝑛𝑡
 𝑜𝑟 

1

𝑚𝑜𝑚𝑒𝑛𝑡
 .3 Similarly, the corresponding displacement for force F1 can be written as 

 δ1 = k11F1 + k12F2 + k13F3 + k14M4 + k15M5 + k16M6 (33) 

The dimension of k11 is of 
𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑓𝑜𝑟𝑐𝑒
 while that of k14 is of 

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡

𝑚𝑜𝑚𝑒𝑛𝑡
. As the dimension of moment 

equals that of force × displacement, the dimension of k14 can also be written as that of 
1

𝑓𝑜𝑟𝑐𝑒
. This means 

that the dimension of k14 and k41 are same. So, the reciprocal relation can be easily extended to mixed 
combinations (i.e., displacement-moment or rotation-force) without any dimensional constraints and 
we can write 

 k14 = k41. (34) 

 
3 Note that rotation is dimensionless. 


