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Lecture - 28 
Theory of Beams (contd...) and Beam Buckling 

Hello everyone! Welcome to Lecture 28! In this lecture, we will discuss about Timeshenko beam 
theory. 

1 Timoshenko Beam Theory (start time: 00:20) 

1.1 Introduction (start time: 00:25) 

In Euler-Bernouli beam theory, it is assumed that the centerline tangent and the cross-section normal 
are aligned as shown in Figure 1a. So, we have only one kinematic variable which is the deflection of the 

beam y: we can obtain the cross-section orientation from its derivative , i.e., 
𝑑𝑦

𝑑𝑋
. However, in Timoshenko 

Beam Theory (TBT), we do not assume the centerline tangent and cross-section normal to be aligned 
aligned as shown in Figure 1b. 

 

Figure 1: (a) Alignment of centerline tangent and cross-section normal in EBT (b) Non-alignment of 
centerline tangent and cross-section normal in TBT 

Thus, this is a more general theory than EBT: we now have deflection y and cross-section rotation θ as 
two independent unknowns. 



 

1.2 Governing equations (start time: 03:33) 

Let us consider a beam which is initially straight as shown in Figure 2a and gets deformed due to some 
arbitrary loading. Let us focus on a typical cross-section of the beam in its deformed configuration as 
shown in Figure 2b. 

                  

Figure 2: (a) An initially straight beam clamped at one end (b) the cross-section rotation θ and 
centerline tangent rotation α of the deformed beam shown 

The centerline tangent makes an angle α with the horizontal which implies 

 

  (assuming the slope to be small enough) 

  (assuming the axial displacement to be small enough) (1) 

The deformed cross-section normal makes an angle θ with the horizontal. Thus, the angle between the 
cross-sectional line (shown as solid green line in Figure 2b: it should not be confused with cross-section 
normal) and the centerline tangent becomes 

                                                            . (2) 

In the undeformed straight beam, the angle between the cross-sectional line (which lies along e2 axis) 

and the centerline tangent (which lies along e1 axis) was 
𝜋

2
 which, upon deformation, changes to   

𝜋

2
+ 𝜃 −  

𝑑𝑦

𝑑𝑥
  as shown above. As shear strain measures the changes in angle (initial-final angle) between 

perpendicular line elements, we have 

  (3) 

The superscript (0) here denotes the fact that it is the shear strain at the centroid of the cross-section 
since one of the perpendicular lines, i.e., the centerline passes through the centroid of the cross-section. 
Let us relate this centroidal shear strain to the total shear force acting in the cross-section. Suppose V 



 

represents the shear force acting in the cross-section and A the cross-sectional area. The average shear 
stress τxy in the cross-section will then be 

                     . (4) 

If we further assume rectangular cross-section for the beam, we can find the exact value of shear stress 
at the centroid. In a previous lecture, we had found the variation of shear stress in rectangular cross-
section which is also shown in Figure 3. 

 

Figure 3: Variation of shear stress in a rectangular cross-section 

We had found the value of shear stress at the centroidal line to be 
3

2
τavg, i.e., 

                                . (5) 

The factor 
2

3
 is the shear correction factor k for rectangular beams which is different for different cross-

section shapes. Further, using linearly isotropic stress-stress relationship, we get 

                                      . (6) 

Substituting this in equation (3), we finally get 

  (7) 

This is one of the equations of TBT. We need one more equation which comes from moment-curvature 
relation, i.e., 

 EI κ = M. (8) 

dy 

dX 
− θ = 

V 

kGA 



 

In EBT, we could write the bending curvature as the curvature of the centerline. But in TBT, bending 
curvature is no more equal to the curvature of the centerline since the centerline is also undergoing 
shear, i.e., 

                   . (9) 

In TBT, we can relate the bending curvature to cross-section rotation θ. Figure 4 shows a bent beam into 
an arc of a circle of radius R. 

 

Figure 4: Bending of a beam into an arc of radius R 

Let us focus on two cross-sections located very close to each other (shown by solid red lines in the 
Figure). The relative rotation between the two cross-sections is the same as the angle subtended by the 
arc joining the two cross-sections at the center (shown by dθ). As the neutral axis does not undergo any 
stretching, we can write 

  (10) 

In fact, the above relation for bending curvature holds even when the centerline undergoes stretching 
which of course is not considered in either EBT or TBT. Plugging the above form for bending curvature 
into equation (8), we get 

  (11) 

This is a more general equation than the one used in Euler-Bernouli beam theory. We can compare the 
two theories as follows: 

EI 
dθ 

dX 
= M ( X ) 



 

 For EBT:  

 For TBT:                                           . (12) 

We have thus obtained the two equations for TBT (equations (7) and (11)) which form a system of 
coupled first order linear differential equations. Two boundary conditions will be needed to solve this 
system. In fact, more boundary conditions will be needed if shear force V(x) and bending moment M(x) 
contain extra unknown parameters. 

1.3 Example (start time: 22:17) 

Consider the problem that we had solved using EBT in the previous lecture. A transverse force P is applied 
at the free end of a beam which is clamped at the other one end as shown in Figure 5. 

 

Figure 5: Bending of a beam subjected to a transverse load P at the free end 

This problem is also called a Cantilever Problem. We would like to solve for the deformation using TBT 
and compare the result with those of EBT. The first step in solving is finding the shear force and bending 
moment profile in the beam. For that, we cut a section in the beam at a distance X from the clamped 
end and draw the free body diagram of the right portion of the beam as shown in Figure 6. 

 

Figure 6: Free body diagram of the right section of the beam shown in Figure 5. 

 



 

The transverse load P acts on the free end while a shear force and moment acts on its left end. Moment 
balance about the centroid of the left-end yields 

−M(X) + P(L − X) = 0 ⇒ M(X) = P(L − X)          (13) 

whereas force balance yields 

V (X) = P.            (14) 

Plugging them into equations of TBT (equations (7) and (11)), we get 

                                        , (15) 

  (16) 

We have two boundary conditions both at the clamped end. The displacement y and the cross-section 
rotation θ must be zero here, i.e., 

y(0) = 0,            (17) 

θ(0) = 0.            (18) 

We should keep in mind that we cannot set 
𝑑𝑦

𝑑𝑋
 = 0 as 

𝑑𝑦

𝑑𝑋
  no longer denotes rotation of the cross-section. 

Integrating equation (15), we get 

  (19) 

Using equation (18) in it, we get C1 = 0. Now, we can plug the above expression for θ in equation (16) to 
get 

  (20) 

whose integration yields 

 

  (using (17)) (21) 

This is the final expression for deflection y obtained by TBT. We get an extra term 
𝑃𝑋

𝑘𝐺𝐴
 when we compare 

the result with the one from EBT. 



 

1.4 When to use EBT/TBT? (start time: 27:04) 

Let us now explore which of the two theories to use in a given scenario. If the result from TBT is very 
close to the one from EBT, then we can simply apply EBT and neglect the effect of shear. The tip 
deflection from TBT can be found by substituting X = L in equation (21) which yields 

  (22) 

whereas the tip deflection from EBT was 

                               . (23) 

Assuming the result from TBT to be more accurate, the relative error in EBT solution (    ) will be 

                                                                                    . (24) 

We can write the moment of area Izz in terms of the cross-sectional area and radius of gyration of the 
cross-section (RG). The radius of gyration RG  also depends on the shape and size of the cross-section. For 
a rectangular cross-section of height h and width b, e.g., 

                                                                      . (25) 

Plugging this into equation (24), we get 

                                                   . (26) 

For EBT to be applicable, the relative error must be very small, i.e., 

   

(27) 

In the above expression, we have separated the geometric and material parameters: the geometric term 
on the left is the aspect ratio of the beam whereas the material parameter ν on the right is the material’s 
Poisson’s ratio. For illustration, consider a case where the Poisson’s ratio ν is 0.3 and the cross-section 

of the beam is rectangular. Thus, k = 
2

3
. Putting these values into the RHS of the above relation, we get: 

  (28) 

So, if the ratio       is much greater than 3.4, (e.g., 10), then we can use Euler-Bernouli Beam theory safely. 
For shorter beams having low aspect ratio, one would have to use Timoshenko beam theory. 



 

2 Buckling of Beams (start time: 35:43) 

2.1 Introduction (start time: 35:53) 

When we try to compress a stick of a broom (or any long and thin rod), it initially remains straight as 
shown in Figure 7 but as we increase the compressive force, it suddenly bends. 

 

Figure 7: A representative beam being compressed from both its ends 

Initially, there is no bending but when we apply the compressive force above a critical value, the 
stick/beam bends instantly. This is called buckling and the critical value of compressive load is called 
buckling load. This is an interesting phenomena. Whenever we design a machine having beam like 
element and it has to hold compressive load, we have to make sure that the operative compressive load 
is less than the buckling load. Otherwise, the beam element will buckle leading to failure of the machine. 

2.2 Finding buckling load (start time: 38:55) 

Let us see how to obtain buckling load. We will use EBT to model the beam. This means that we are 
neglecting the effect of shear which, as derived earlier, is a good assumption for long enough beams 
(aspect ratio > 10). We will consider the case of column buckling by which we mean that we have a 
column clamped at one end and is subjected to an axial compressive force at the other end (see Figure 
8). 

 



 

 

Figure 8: A compressive force being applied at the free end of a column 

When the compressive load P reaches the critical value, the beam/column will bend as shown in Figure 
9 even though we are applying axial compressive load here. 

 

Figure 9: Buckling of a column as the compressive load P increases to buckling load 

We want to find this critical load. Let us rewrite the equations of EBT: 

  (29) 

We need to first find the bending moment profile. For this, we cut a section in the beam at a distance X 
from the clamped end (see Figure 9) and draw the free body diagram of the right portion of the beam as 
shown in Figure 10. 



 

 

Figure 10: Free body diagram of the right portion of the column shown in Figure 9 

The applied load P acts on its right-end while shear force V (X) and bending moment M(X) acts on its left 
end. The y coordinate of the left and right ends are y(X) and yL, respectively. Moment balance about the 
centroid of the left-end cross-section gives 

  (30) 

Upon substituting this in equation (29), we get 

                                           . (31) 

This is a second order non-homogeneous equation. To find its general solution, we need to first solve 
the corresponding homogeneous equation and then add particular integral to it. The corresponding 
homogeneous equation is 

                                    . (32) 

We can note that P is positive as it is always compressive in nature. If P were a tensile load, it would 
become negative. So, we can substitute y = eλX in the equation to get the complementary function. 

                                     

 

  

(33) 

Here, i represents the imaginary number √−1. As λ is imaginary, the solution has cosine and sine parts. 
The complementary function can thus be written as 



 

  (34) 

We can get the particular integral just by observation in this case. When we substitute y = yL in equation 
(31), we see that it satisfies the equation. As any solution/function that satisfies the differential equation 
can be considered as a particular integral, we can consider y = yL as the particular integral. Thus, the 
general solution of the non-homogeneous differential equation becomes 

                                                                                           . (35) 

To find the integration constants C1 and C2, we need to use boundary conditions. At the clamped end, 
both deflection and cross-section rotation are zero, i.e., 

(36) 

(37) 

Differentiating equation (35), we get 

 (38) 

Substituting X = 0 in this equation, we get 

 

                (39) 

Similarly, substituting X = 0 in equation (35), we get 

y(0) = C1 + yL = 0 (using (36)) 

⇒ C1 = −yL.             (40) 

Thus, the general solution becomes 

                                                                   . (41) 

To obtain P, we can use the fact that the above expression must be equal to yL if we substitute X = L in it, 
i.e., 

   

(42) 



 

This is the expression for the buckling load. We can get multiple buckling loads by setting n=0,1,2,3 and 
so on. The smallest buckling load will be obtained for n = 0. This value is the critical buckling load that 
we wanted to find. Thus 

                         . (43) 

This is the buckling load for column buckling. If the compressive force is greater than the above critical 
value, the beam will bend (buckle), otherwise it will simply remain straight. The critical buckling load is 
proportional to bending stiffness EI and inversely proportional to square of the beam’s length. So, a 
longer beam requires lesser force to buckle than a shorter beam. This can be experienced easily in real 
life. The buckling solution was obtained by substituting the boundary conditions in general solution (35). 
If we apply different sets of boundary conditions, we would obtain different expression for buckling load. 
For example, for a beam clamped at both the ends as shown in Figure 11, 

 

Figure 11: Buckling of a clamped-clamped beam under compressive force 

the buckling load turns out to be 

                            . (44) 

In fact, the buckled shape of the beam is also different (see the red dashed buckled solution in Figure 
11). However, the buckling load is again inversely proportional to square of the beam’s length. With this, 
we close our discussion on beam theory. 


