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Lecture - 26 
Concept of Shear Center 

Hello everyone! Welcome to Lecture 26! In this lecture, we will discuss about a very interesting concept: 
the concept of shear center. 

1 Definition (start time: 00:34) 

The shear center is defined as the point in the cross-sectional plane relative to which the net torque due 
to shear stress distribution (originating because of transverse load only) vanishes. Finding analytical 
formula for the location of the shear center for a general cross-section isn’t possible. However, the same 
can be derived for thin and open cross-sections such as the one in Figure 1. We show this derivation now. 

 

Figure 1: A typical thin and open cross-section. 

2 Analysis (start time: 04:46) 

We had derived the following formula for shear stress τsx at arc-length s: 

   (1) 

which is assumed to be uniformly distributed through the cross-section’s thickness. Let us denote by sc = 
(∆y,∆z), the location of the shear center as shown in Figure 1. The centroid of the cross-section is located 
at O. As the net torque T about sc vanishes as per definition, we can first find the total moment about sc 

and then equate its x-component to zero. Let us denote the cross-sectional area by Ω and an arbitrary 
point in the cross-section by P. The position vector of P with respect to shear center (𝑟P/sc) can be written 
as follows: 



 

  (2) 

The total torque T due to shear stress distribution will thus be 

  (3) 

In the second integral term, the shear center position (∆y𝑗̂ + ∆z�̂�) can be taken out of the integral while 

the integral of shear stress over the cross-section gives the total shear force �⃗⃗� in the cross-section. For 
the first integral, let us write area dA as dsdt and change the area integral into two line integrals: one 
along the arc-length s and the other along the thickness t. Thus, the above equation can be rewritten as 

  (4) 

The expression    gives us the first moment which we can replace by the position vector of 
point P0 times the thickness of the cross-section at arc-length s, i.e., ts and P0 denotes the centroidal point 
at arc-length s. These centroidal points form the centerline of the cross-section shown as the dashed 
green line in Figure 1. Thus, we get 

  (5) 

Here, Lc denotes the full arc-length along the cross-section boundary and should not be confused with 
the length of the beam. Upon working out the above integral, we get 

 T/sc = CyVy + CzVz − [∆yVz − ∆zVy] (6) 

where Cy and Cz are the constants obtained through the integration over the cross-section’s arclength. 
As, the torque about the shear center must be zero, we get the following upon rearranging: 

 (Cy + ∆z)Vy + (Cz − ∆y)Vz = 0. (7) 

As this holds for arbitrary Vy and Vz, we finally obtain 

 ∆y = Cz, ∆z = −Cy. (8) 

We can find Cy and Cz by substituting equation (1) for τxs in equation (5). Let us consider the case when 
only Vy acts on the cross-section and (y, z) axes are also the principal axes. So, Iyz becomes zero and 
formula (1) for τsx simplifies to 



 

 . (9) 

Plugging this expression in equation (5), we get: 

  (10) 

Thus, we get z-coordinate of the shear center to be 

  (11) 

Proceeding along similar lines, y-coordinate of the shear center turns out to be 

  (12) 

Note that the above formulas hold only if y and z axes are also the principal axes of the cross-section. 

3 Bending-twisting coupling in unsymmetrical cross-sections (start time: 22:35) 

We now illustrate that a beam can also twist when subjected to transverse load if the line of action of 
transverse load does not pass through shear center. We show such a beam in Figure 2 which is clamped 
at one end and a point load is applied in the transverse direction at the other end at point A. 

 

Figure 2: A beam with unsymmetrical cross-section is subjected to a transverse point load 

 

The line joining the shear center of different cross-sections is also shown there. Let us isolate the beam 
from the clamped end support and include the reaction of shear stress distribution from this support in 
the left end cross-section in the beam’s free body diagram. The net moment on the beam would have to 
be zero about any general axis in static equilibrium. Consider this axis to be the line of shear centers for 
which the moment about it would be torque since this axis is perpendicular to the beam’s cross-section. 
The torque due to shear stress distribution in the left cross-section about the shear center of the left end 
cross-section will be zero by the definition of shear center. However, the torque due to the applied 



 

transverse load about the axis of shear center will be non-zero since the load is acting eccentrically to 
the shear center axis. Thus, a net torque acts on the beam which will also induce twist in the beam in 
addition to the usual bending due to transverse load. This twist will lead to additional reaction of shear 
stress distribution from the support on the left end cross-section so that the overall torque on the entire 
beam finally vanishes. Needless to say if we apply the transverse load such that its line of action passes 
through the shear center at the right end cross-section, there will be no tendency in the beam to twist 
and the beam will undergo just bending. 

4 Shear center for symmetrical cross-sections (start time: 32:10) 

It can be shown using formulae (11) and (12) for the shear center that it always lies on the line of 
symmetry of the cross-section (if any present). For example, consider several symmetrical cross-sections 
in Figure 3. 

 

Figure 3: (a) annular cross-section having infinite lines of symmetry (b) heart-shaped cross-section 
having one line of symmetry (c) Flower shaped cross-section having four lines of symmetry 

 

In Figure (3a), we have an annular cross-section for which all diametrical lines are lines of symmetry. 
Accordingly, shear center and its centroid coincide. In Figure (3b), we have a heart-shaped cross-section 
which has just one line of symmetry as shown in the figure. Accordingly, the shear center lies on this line. 
To fix the other coordinate of shear center, one would have to use the formula derived above. Finally, in 
Figure (3c), we have a flower-shaped cross-section having four-fold symmetry. As the shear center must 
lie on all lines of symmetry, it gets uniquely specified here too just by inspection. 

4.1 Shear center for an L-shaped cross-section 

Consider the thin L-shaped cross-section shown in Figure 4. 



 

 

(a) (b) 

Figure 4: A thin L-shaped cross-section with its shear center and shear stress distribution shown (a) 
cross-section having one line of symmetry (b) cross-section having no line of symmetry 

 

For the cross-section in Figure (4a), it again has one line of symmetry as shown in the figure. As the cross-
section is thin and open, the shear stress flows from one end to the other in the cross-section. By 
inspection, one can also see that torque due to shear stress distribution vanishes about its corner point: 
the line of action of shear stress at every point in the cross-section passes through the corner point. 
Accordingly, the corner point is the shear center which also happens to lie on the line of symmetry. In 
contrast, for Figure (4b), the two legs of the cross-section are not of same length. Hence, it has no line 
of symmetry. The corner point is again the shear center since the torque due to shear stress vanishes for 
the same reason as earlier. 

5 Shear center for a cut annulus (start time: 38:14) 

Let us think of a thin cross-section which has the shape of an annulus but it is cut as shown in Figure 5a. 
For such a cross-section, we have only one line of symmetry due to the presence of cut. Thus, the shear 
center lies on this line of symmetry but its position does not get completely known. As the cross section 
is thin and open, shear stress flows from one end to the other. If we find torque about any point in the 
green region (see Figure 5a), the torque due to all the shear stresses contribute in the same direction 
and hence does not vanish. Thus, the shear center must lie outside this green region. Let us try to find 
the exact location of the shear center. 
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(a)                                                              (b) 

Figure 5: (a) A cross-section of the shape of a cut annulus has one line of symmetry as shown: flow of 
shear stress is also shown (b) the relevant dimension and variables for the analysis of the cross-section 

shown 

 

Suppose that the mean radius of the annulus is R and the thickness is t. As the shear center has to lie on 
the line of symmetry, ∆y = 0. Notice that even though there is an infinitesimal cut in the cross-section, 
any pair of perpendicular lines will still form the cross-section’s principal axes, in particular, the (y − z) 
axis also form principal axes. We can thus use formula (11) to obtain ∆z which can be alternatively written 
in terms of θ coordinate to denote arc-length as follows: 

  (13) 

We need to know find         for the region [0,θ] (see Figure 5b) which has also been drawn separately in 
Figure 6. 

 

Figure 6: The part of the cross-section from 0 up to θ 

 

Let us identify a tiny strip shown in red in Figure 6 which subtends an angle dφ at the center. The y-
coordinate of the centroid of this tiny strip is Rsinφ and its area is tRdφ. Thus, for this tiny strip, we can 
write: 



 

dQy = �̅� dA= R2tsinφ dφ           (14) 

We can now find        by integrating over such tiny strips, i.e. 

  (15) 

Let us now find Izz for the cross-section about its centroid O. As the cut is really thin, the annulus is 
approximately complete. So, to calculate Ixx, Iyy and Izz, we can forget about the thin cut. We thus have 

Izz = Iyy = 1/2 Ixx = 1/2R2 (2πR t) = πR3 t.           (16) 

Finally substituting equations (15) and (16) into equation (13), we obtain 

  (17) 

The shear center thus does not lie on the cross-section. As discussed earlier, if we want to apply shear 
force on beams having such cross-sections so that the beam does not twist, we must apply shear force 
so that its line of action passes through shear center. For the present cross-section, we need to create 
an extension of it (e.g., by a thin rod as shown in red in Figure 7) and apply shear force there so that the 
beam indeed does not twist. 

 

Figure 7: An extension made to the beam’s cross-section to avoid twisting of the beam due to 
application of transverse load 


