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Bending of Unsymmetrical Beams 

Hello everyone! Welcome to Lecture 25! We will discuss bending of unsymmetrical beams today.  

1 Introduction (start time: 00:26) 

Think of bending of symmetrical beams, e.g., a beam having rectangular cross-section with its axis along 
x-axis and the cross-sectional sides along y and z axes. If we apply moment on the beam acting along z-

axis, the neutral axis of the cross-section was shown to pass through its centroid but the direction of 
neutral axis was simply assumed to be parallel to the direction of applied moment, i.e., z -axis in this case 
(also see Figure 1). 

 

Figure 1: A typical cross-section of a beam having rectangular cross-section 

This assumption is not true in general though. For example, Figure 2 shows a typical cross-section of an 
unsymmetrical beam. 

 

Figure 2: A typical cross-section of an unsymmetrical beam - direction of applied moment and neutral 
axis need not be parallel. 



 

The neutral axis for this case turns out to be inclined relative to the direction of bending moment. This 
is non-intuitive since it means the axis of bending (neutral axis) can be in a direction other than the 

direction of the applied moment. Let us investigate this observation rigorously. 

2 Pure bending of unsymmetrical beams (start time: 03:40) 

Think of an unsymmetrical beam with its axis along x-axis as shown in Figure 3. 

 

Figure 3: Pure bending of an unsymmetrical beam. 

To start with, let us consider the case of pure bending, i.e., a terminal bending moment is applied 

transverse to the beam’s axis. Thus, the bending moment will be constant all along the beam and no 
shear/axial force will be present in the beam’s cross-section. Figure 4 shows a typical cross-section of 
this beam. As this is the case of an unsymmetrical cross-section, the direction of neutral axis is an 

unknown too. Let us assume some arbitrary direction (in the plane of the cross-section) for neutral axis 
which need not pass through the centroid of the cross-section (see Figure 4). 

 

Figure 4: The cross section of the beam shown in Figure 3 with the neutral axis shown in blue.  

The beam bends into a circle of radius R about the neutral axis. We then think a line parallel to the 
neutral axis but at a distance y’  from it (shown by the green line in Figure 4). The longitudinal strain ϵxx 

for all points lying on this line will be given by 



 

  (1) 

following similar logic as earlier for symmetrical cross-sections. Further assuming σyy and σzz to be zero 

as earlier, σxx at such points will be given by 

  (2) 

The axial force in the cross-section will thus be 

  (3) 

However, as no axial force acts on the cross-section in case of pure bending, this implies 

  (4) 

Thus, the first moment of the cross-section relative to the neutral axis must be zero which simply means 

that the neutral axis has to pass through the centroid of the cross-section. So, just like the case of 
symmetrical cross-sections, neutral axis passes through the centroid even for unsymmetrical cross 
sections. 

We now redraw the cross-section keeping in mind that the neutral axis passes through the centroid as 
shown in Figure 5 and again consider a point A at a distance of y’ from the neutral axis. 

 

Figure 5: A typical cross-section of the beam with neutral axis passing through the centroid 

Let the coordinates of this point be A(y,z) and express y’ in terms of y and z. Suppose the neutral axis 
makes an angle β with the y-axis as shown in Figure 6. Construct two lines, one parallel to the neutral 

axis from the point B(0,z) and the other perpendicular to the neutral axis from point A(y,z) as shown in 
Figure 6. 



 

 

Figure 6: Zoomed view of Figure 5 with relevant dimensions. 

The point at which these two lines intersect is denoted by C. As the neutral axis makes an angle β with 

the vertical line, the line BC, constructed parallel to the neutral axis, will also be at an angle β from the 
vertical line. The other angle (∠BAC) in the right triangle ABC thus becomes 90◦ − β. Also, the angle that 
the neutral axis makes with the z-axis will also be 90◦ − β. Think of another point D at which the neutral 
axis and AC intersect. The length y’ will be equal to the difference of the lengths AC and CD in Figure 6. 

We now draw a line perpendicular to the neutral axis from the point B which intersects the neutral axis 
at E. As BCDE becomes a rectangle, CD = BE. Thus, we get 

y’ = AC − CD = AC − BE = y sinβ − z cosβ.           (5) 

Substituting this in equations (1) and (2), we get 

  (6) 

Let us now obtain moment about the cross-section’s centroid due to normal stress distribution σxx which 

should equal the externally applied moment, i.e., 

   

 

(7) 

 

Here E and R could be taken out of the integration. Let us define second area moments of the cross-

section as follows: 

(8) 

Neutral axis 



 

Using them in (7), we get 

  (9) 

 

So, if we apply external moments My and Mz on the beam, we can observe from the above equation that 

 My = (Iyy cosβ − Iyz sinβ)Eκ, Mz = (Izz sinβ − Iyz cosβ)Eκ. (10) 

Here κ denotes the bending Curvature as in previous lectures which equals inverse of radius of curvature 
R. The angle β, which represents the angle between the neutral axis and y-axis and the bending curvature 
κ are the two unknowns and we also have two equations in (10) to obtain them. To obtain β, we divide 

equations (10a) and (10b) which yields 

  (11) 

This equation can be used to find β for the general case. For a special case when we apply moment only 
about z-axis, i.e., My = 0, the numerator of the above equation can be set to zero to yield 

  (12) 

For cross-sections which are symmetric about y−axis and moment is applied about z−axis, the mixed 
moment of area Iyz vanishes which when substituted in the above equation yields 

 tanβ = ∞ ⇒ β = 90◦.  (13) 

This means that the neutral axis makes an angle of 90◦ with the y-axis. In other words, it coincides with 

z-axis or the direction of applied bending moment something that we had simply assumed earlier. 

Coming back to the general situation for unsymmetrical beams, once we get β from equation (11), we 
can substitute it in either of the equations (10a) or (10b) to obtain bending curvature κ. For example, in 

the former case, we would get 

  (14) 

Finally, substituting κ from the above equation in equation (6), we get 

  

 

(on substituting β from (11)). (15) 



 

2.1 Special Case: When y and z axes are aligned along principal axes (start time: 29:40) 

Let us consider a special case where y and z axes are aligned along the principal axes of the crosssection 

but the bending moment is allowed to act in arbitrary direction (see Figure 7).  

 

Figure 7: The cross section of an unsymmetrical beam where y and z axes are aligned with the principal 
axes. 

We can resolve this moment along the y and z axes as My and Mz, respectively. As y and z axes are 
principal axes, Iyz = 0. Substituting this in equation (15) simplifies it greatly, i.e.,  

  (16) 

If we apply moment about z axis only, i.e., My = 0, we get 

  (17) 

which is the same result that we had obtained earlier for symmetrical cross sections with only Mz 

present. If we look at equation (16), we observe that the first term comes with a negative s ign whereas 

the second term comes with a positive sign. To understand this, consider the cross section shown in 
Figure 8. 



 

 

Figure 8: Thin cross-sections of beams with shear stress distribution shown for open ones 

When we apply moment about z axis, the bending is such that the top side (+y side) is under compression 
whereas the bottom (-y side) is under tension. Thus, we have a negative sign in front of the first term in 
equation (16). But, if we apply a moment about y-axis, the beam bends in such a way that the part of 

the beam on the left side (+z side) undergoes tension while the other part undergoes compression. Since, 
the positive side is under tension, there is a positive sign in front of the second term in equation (16). 
We can also conclude that even though the cross section is unsymmetrical, if we apply moment along 

principal axis, the bending happens as if it were a symmetrical cross-section! The neutral axis gets aligned 
with the direction of the applied moment too leading to the formula for bending stress which is the same 
as the one for symmetrical cross-sections. 

3 Non-uniform bending of unsymmetrical cross-sections (start time: 37:05) 

In non-uniform bending, a shear force is also present in the cross section due to  which the bending 
moment varies along the length of the beam. The direction of neutral axis will again be governed by 

equation (11). To obtain shear stress distribution in the cross-section, let us look at the line which is at a 
distance of y’ from the neutral axis. For symmetrical beams, for simplicity, we had assumed uniform 
shear stress distribution on lines parallel to neutral axis as shown in Figure 9.  
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Figure 9: Shear stress along a line parallel to the neutral axis if we make an assumption of uniform 
shear distribution. 

Will such an assumption be valid for unsymmetrical beams also? It turns out that we cannot make such 

an assumption. This is because in that case, at points on the cross-sectional boundary, the shear 
component of traction would not be tangential to the cross-section’s boundary. Whenever we have a 
beam having symmetrical or unsymmetrical cross-section and its lateral surface is free of externally 
applied load, then, along the periphery of the cross-section, shear traction has to be directed along the 

periphery as shown in Figure 10. 

 

Figure 10: Shear stress distribution along the periphery of the cross-section of a beam when the lateral 
surface of the beam is traction free 

However, we cannot comment about shear stress distribution at points away from the periphery just 
using the free surface condition. Essentially, we cannot assume uniform shear stress distribution barring 
us from obtaining any analytical result. However, we do obtain analytical result for special type s of cross-

sections - they have to be thin and open which we discuss now. 

3.1 Shear stress distribution in thin and open cross-sections (start time: 42:11) 

Figure 11 shows three different cross sections all of which are thin, i.e., their thickness is very small.  

 

 



 

 

Figure 11: Thin cross-sections of beams with shear stress distribution shown for open ones 

The second figure is a closed cross-section while first and third are open cross-sections. We know that 

the shear stress at points which are close to the periphery of the cross-section has to be directed along 
the periphery itself. At points away from the periphery, the direction of shear stress is an unknown. For 
thin cross-sections, however, the thickness is so small that all points can be safely assumed to lie near 

the periphery. We can thus assume that the shear stress distribution is along the periphery at all points 
through the thickness too. In fact, one can also assume the magnitude of shear stress to be uniform 
through the thickness due to such a small thickness. Moreover,  for open cross sections, the shear stress 

must flow from one end of the cross-section to the other end as shown in the open cross-sections in 
Figure 11 - this flow may be directed oppositely too which gets known only after solving. For closed cross -
sections, there are no definite ends though which does not allow the flow to be unidirectional. So, we 

will consider only thin and open cross-sections as they are easy to analyze. 

Let us consider a general thin and open cross-section beam as shown in Figure 12. 

 

Figure 12: A small element is considered in a beam with thin and open cross-section 



 

As the shear flows from one end to the other and that it is uniform through the thickness, one can 
paramterize its distribution using an arc-length coordinate s along the cross-section’s periphery as shown 

in Figure 13. 

 

Figure 13: A typical cross-section of the beam shown in Figure 12 together with the arc-length 

coordinate s. 

We can further safely assume the shear to flow in the direction of increasing s. If the distribution comes 
out to be negative, it would simply mean that the shear actually flows in the other direction. We can also 

denote the shear stress as τsx: x denotes the plane of the cross-section in which shear stress is acting 
while s dentoes the direction of shear stress. Furthermore, τsx will be a function of s and x only. To find 
τsx, we consider a small element at one end of the beam as shown in Figure 12. All the forces acting on 

this element in the x-direction are shown in Figure 14. 

 

Figure 14: The small element considered in Figure 12 with all forces in the x -direction shown. 

The end faces (whose normals are in s direction) will be called the s faces. On +x and −x planes, σxx acts. 
The −s plane at s = 0 is traction-free while τxs acts on +s plane at arc-length s in +x-direction. The total 
force on this element in x-direction must be zero for equilibrium, i.e., 

 



 

  (18) 

Here, ξ denotes the local coordinate in x-direction. It varies from x to x+∆x for points in the small element. 

As the above equation is valid for all elements regardless of the size ∆ x, we can shrink the size ∆x to zero. 
Let us first divide both the sides by ∆x and then take limit ∆x → 0, i.e., 

  (19) 

In the second integral, as the integrand τxs does not vary through the thickness, the integration through 
the thickness yields τxs ts where ts denotes the thickness of the cross-section at s. The second area integral 
thus gets converted into just a line integral along x, i.e., 

  

 

 

(20) 

We can now plug in the expression of σxx from equation (15) which yields 

  (21) 

 

We can then replace the derivatives of moments with shear forces using the following relation which we 
had derived in the last lecture: 

  (22) 

Upon plugging them into (21), we get 

  (23) 

 

As shear forces and the second area moments are constants for a cross-section, the denominator of the 

integrand can be taken out of the integration. We just need to work out the integrals  ∬𝑦𝑑𝐴 and ∬𝑧𝑑𝐴 
in the numerator. These integrals are over the x-plane of the small element only and not over the entire 
cross section. Figure 15 shows the area of this integration going from the arc-length coordinate 0 to s as 
shaded. 

 



 

 

Figure 15: x-plane of the small element considered in Figure 14 denoted as the shaded area. 

The integrations ∬𝑦𝑑𝐴   and ∬𝑧𝑑𝐴  over this shaded part of the x-plane would give us the y and z 
coordinates of the centroid of the shaded area multiplied with the area of shaded region which we 
denote by 

  (24) 

Here, �̅�s and 𝑍̅s are the centroidal coordinates just the shaded region (from s = 0 to s = s) and not the 
whole cross-section. Similarly, As is the area of just the shaded region. Upon plugging them into equation 
(23) and further noting that τxs = τsx, we get 

   (25) 

This is the general formula for shear stress distribution in thin and open cross -sections. We can again 
consider the special case where y and z axes are aligned along the principal axes in which case Iyz 

vanishes. The above formula then simplifies to 

 . (26) 

If we further assume Vz = 0, our formula reduces to 

  (27) 

This is the same expression that we had derived earlier for symmetrical cross-sections except that there 
is a negative sign here. This difference arises because the direction of increasing s that we have chosen 
coincides more with −y direction than +y direction. 


