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Lecture - 24 

Bending of beams (contd.) 

Hello everyone! Welcome to Lecture 24! We will continue with our discussion on bending of beams. In 
the previous lecture, we learnt about pure bending of beams in which bending moment was constant 
along the beam. In this lecture, we will discuss non-uniform bending of beams. 

1 Non-uniform Bending (start time: 00:43) 

1.1 Introduction (start time: 00:58) 

In case of pure bending, we had the same moment acting on every cross-section. For this reason, pure 

bending is also called uniform bending. We will now move on to non-uniform bending of a beam where 
bending moment is not uniform along the length of the beam. In the previous lecture, we had derived 
the following relation for bending moment M and curvature κ: 

 M = EI κ. (1) 

If bending moment M is not constant along the length, bending curvature will also not be constant. We 
now consider another case of loading where we can also have distributed load b(x) acting on the beam 

as shown in Figure 1. 

 

Figure 1: A beam acted upon by a distributed load b(x) 

The load b(x) is assumed to act in +y direction. Let us cut a small part of the beam of length ∆x at a 

distance x from the clamped end and (see the red region in Figure 1) and further draw its free body 
diagram as shown in Figure 2. 

 



 

Figure 2: Free body diagram of a small part of the beam shown in red in Figure 1. 

On this section, apart from distributed load, there will be bending moment as well as shear force acting 

at the two ends. By convention, for the cross section having normal in + x direction, shear force acting in 
+y direction is considered as positive while for the cross section having normal in − x direction, shear 
force acting in −y direction is considered as positive. We denote this shear force by V. The center of the 

left cross-section is marked as O and the position of a general point in the section of the beam is denoted 
by ξ which varies from x to x + ∆x. Due to static equilibrium, the net moment on this part of the beam 
must be zero about any point. In particular, let us do moment balance about O: 

   

(2) 

As everything is pointing in e3 direction, we can easily extract e3 component of the equation to get the 
following scalar equation: 

  (3) 

Since this equation holds for an arbitrary part of the beam having arbitrary length ∆ x, we can divide both 
the sides by ∆x and take the limit ∆x → 0 to shrink the section to a single point, i.e., 

  

 

 (4) 



We have derived an important relation between the variation of bending moment and shear force. It 
says that whenever moment varies along the beam, there has to be a non-zero shear force acting on the 

beam’s cross-section. The case of zero shear force corresponds to the case of pure bending where 
moment is constant throughout the length of the beam as we saw in the last lecture.  

1.2 Variation of σxx in the cross-section (start time: 11:20) 

For the case of non-uniform bending, the variation of σxx can be taken to be the same as in the last 
lecture. We just have to use local bending moment in the formula, i.e.,  

  (5) 

In the above expression, y represents distance from the neutral axis as earlier. 

2 Variation of τyx in the cross-sectional plane (start time: 12:07) 

The shear components of traction in the cross sections are τyx and τzx. As there is an overall shear force 
V(x) acting on the cross section in y direction, τyx must be non-zero. Let us now try to obtain its 

distribution in the cross-section. 

2.1 Assumption (start time: 13:40) 

The stress component τyx in a cross section can be a function of both y and z in general. However, we 

make a simplifying assumption that it is only a function of y and not of z. This means that τyx would be 
the same at all points on lines parallel to z axis as shown in Figure 3 - different horizontal lines will have 
different τyx though. 

 

Figure 3: A typical cross section of the beam with variation of τyx shown such that it is a function of y 

alone 

2.2 Analysis (start time: 16:44) 

To find the distribution of τyx, we cut a small cuboid element from the beam as shown in Figure 4 in 

green. 



 

Figure 4: A cuboid element cut from the beam. 

A zoomed view of this green cuboid with all external loads acting on it is shown in Figure 5.  

 

Figure 5: Free body diagram of the cuboidal element cut from the beam shown in Figure 4.  

The bottom surface (−y plane) of this element is at a distance of y from the neutral plane where as its 

left face ( −x plane) is at a distance x from the beam’s clamped end. Its free body diagram is shown in 
Figure 5. The top face is the +y plane where the distributed load b(x) acts. The bottom face is the −y 
plane and traction components τxy, σyy and τzy act on it in −x, −y and −z directions, respectively. The +z 

and −z faces (side faces) are part of the lateral surfaces of the original beam. As external forces are 
assumed to be applied only on the +y plane of the beam, the +z and −z faces of the element are traction 
free. On the +x face, we have bending stress σxx that we have derived already. We also have τyx and τzx 

acting there. Similarly, σxx, τyx and τzx act on −x plane but in negative directions. In order to find τyx, we 
just need to balance the forces on this small cuboidal element in x direction. Let’s first consider the force 



due to σxx on the +x plane. We also introduce coordinates ξ, η and γ for x, y and z variations from the 
centroid of the cross-section of the beam at the clamped end. Thus, any general point on the cross 

section of the beam has (y,z) coordinates as (η,γ) as shown in Figure 4. The total force due to σxx on the 
+x face of the small cuboidal element will be obtained by its integration over the area of this face. As 

evident from Figure 4, η varies from y to 
𝑦

2
 and γ varies from 

−𝑏

2
 to 

𝑏

2
 on +x and −x faces of the element. 

Thus, force due to σxx on the +x and −x faces will be 

  (6) 

The +z and −z faces of the element being traction free and do not contribute to force in any direction. 

The force on +y face has no component in x direction since the external distributed load acting there is 
assumed to act along y direction. However, −y face has τxy acting on it which contributes to force in x 

direction. The local coordinate ξ varies from x to x + ∆x while γ varies from 
−𝑏

2
 to 

𝑏

2
 for y faces of the 

element. Thus, the net force due to τxy in x direction will be  

  (7) 

Summing all the forces in x direction to zero, we get 

  (8) 

We can also substitute the following expression for σxx 

  (9) 

in equation (8), which yields 

   

(10) 

 

As the first integral is over x planes, Mz and Izz act as constants. To make things simpler, we assume that 
the beam’s cross section does not vary along its length. Thus, Izz does not vary along the length. Similarly, 

we assumed initially that τxy does not vary with z or γ coordinate. All these simplifications lead to 

 (11) 

As the above equations holds for cuboid element of any length ∆ x, we can shrink its length such that ∆x 

approaches zero. As always, we first divide the above equation by ∆ x and then take limit ∆x → 0, i.e., 

  



   

 

 

(12) 

Notice the simplification in second integral. As ∆x → 0, the range of the second integral shrinks to point 

x itself. So, the integrand τxy(ξ,y) becomes a constant, i.e., τxy(x,y) and comes out of the integral which is 
then multiplied by the length of the integration interval ∆x and further divided by ∆x. The integral in the 
first term above is y-moment of x face of the cuboid element which is also shown as the shaded area in 
Figure 7. 

 

Figure 7: The cross section of the beam with the shaded region representing the area of the x face of 
the small cuboidal element. 

We denote this moment by Q(y): a function of y alone. As we change y, the shaded area changes and 

thus the first moment of the shaded area also changes. Thus, the final expression for τxy becomes 

  (13) 

which is same as τyx, the shear component in the cross-sectional plane. Here, we have allowed b, the 
width of the cross section, to vary with y. This enables us to use this result for cross-sections of beams 

such as I-beams. If we compare equations (5) and (13), we see that while bending stress σxx is 
proportional to moment, shear stress τyx is proportional to shear force. 

3 Variation in τyx for some representative cross-sections (start time: 43:40) 

3.1 Rectangular cross-section (start time: 43:40) 

A typical rectangular cross section is shown in Figure 8 and we want to find the value of τyx at a distance 
of y from the neutral axis. 

τ xy ( x,y )   = 
V ( x ) Q ( y ) 

I zz b ( y ) 



 

Figure 8: A rectangular cross section for the calculation of τyx. 

As τyx is independent of z, it will have the same value over lines parallel to the z axis. For applying equation 
(13), we need to find Q(y), b(y) and Izz. As this is a rectangular cross section, width b(y) is constant and 
equal to b. We have already derived Izz for a rectangular cross section in one of the previous lectures to 

be 

  (14) 

We only need to obtain expression for the first moment Q(y) of the area above y line where τyx is to be 

calculated (shown as the shaded region in Figure 8). The first moment will simply be y coordinate of the 

centroid of the shaded area multiplied by the shaded area. As the height of the shaded area is  
ℎ

2
 - y, its 

centroid will be at half of this distance from the y line and hence at 

  (15) 

from the neutral axis. Thus, Q(y) becomes 

  (16) 

while τyx becomes 

  (17) 

 

As V is the total shear force on the cross section and bh is the area of the cross section, 
𝑉

𝑏ℎ
 equals average 

shear stress τavg while τyx at the neutral axis is 

 

 



Likewise, at the periphery of the cross section    , τyx is 

  (18) 

The variation of y vs τyx is shown in Figure 9. 

 

Figure 9: Plot of y vs τyx for a rectangular cross section 

We observe that due to the presence of shear force in the cross section, shear stress is maximum at 

centroid and vanishes at the two ends. There is another way to realise the vanishing of shear stress at 

the ends. The points y = 
ℎ

2
 , 
−ℎ

2
 also lie on top and bottom surfaces of the beam, respectively. There is no 

external traction on the bottom surface whereas on the top surface, the distributed load b(x) acts in y 

direction. Thus, τxy is zero at both top and bottom surfaces. However, due to τxy and τyx being equal, shear 

stress on cross-sectional plane vanishes at y = 
ℎ

2
 , 
−ℎ

2
. 

3.2 Circular cross-section (start time: 54:30) 

In the derivation for rectangular beams, we had assumed that τyx is independent of z coordinate. For a 
circular beam however, this assumption cannot be used. Consider the beam shown in Figure 10 and 

analyze one of its cross-sections. 



 

Figure 10: A radial distributed load applied on a circular beam 

If τyx is constant along lines parallel to z axis, the shear stress will be as shown in Figure 11. 

 

Figure 11: τxy on a cross section of a circular beam with the assumption that τxy is independent of z. 

Basically, it is non-zero even at the ends. Let us work with cylindrical coordinate system and assume a 

radial distributed load is acting (e.g., pressure load) which could also be zero. In that case τzr must be 
zero on the lateral surface. So, τrz must also be zero along the periphery of the cross section, i.e., shear 
stress cannot have radial component along the periphery of the cross-section in the cross-sectional 

plane. However, if we look at Figure 11, the assumption of τyx being independent of the z coordinate 
leads to a non-zero radial component which is a contradiction. Thus, we can conclude that for circular 
cross-sections, considering τyx independent of z is not a good assumption. Still, this assumption is often 
used since it gives an approximate distribution of shear stress.  

3.3 I-beam cross-section (start time: 59:45) 

Figure 12 shows the cross-section of an I-beam. 



 

Figure 12: The cross section of an I-beam 

The centroid of this section would be at the center because of symmetry. So, the neutral axis passes 

through the center. There are two different values of width possible in the cross section. To find τyx at a 
distance y from the neutral axis, we can again use equation (13). As the width changes abruptly in this 
case, the distribution of shear stress will also exhibit a jump corresponding to this abrupt change in width 

b. A plot of y vs. τyx is shown in Figure 13 exhibiting this jump. 

 

Figure 13: Plot of y vs τyx for an I-section. 



This concludes our discussion on non-uniform bending of beams. Till now, we have only looked at beams 
having symmetrical cross-section. In the next lecture, we will learn how the analysis differs for beams 

having asymmetrical cross-section. 


